Spelling suggestions: "subject:"A priori dde forma"" "subject:"A priori dde forms""
1 |
Segmentation par coupes de graphe avec a priori de forme Application à l'IRM cardiaqueGrosgeorge, Damien 27 May 2014 (has links) (PDF)
Le contourage des ventricules cardiaques sur IRM est nécessaire à la détermination de la fonction contractile du cœur. Cette tâche est difficile, en particulier pour le ventricule droit (VD), due au flou aux frontières des cavités, aux irrégularités des intensités et à sa forme complexe et variable. Peu de travaux ont cependant été réalisés afin de résoudre cette problématique de segmentation. Dans ce but, nous avons proposé et développé deux méthodes de segmentation basées sur la méthode des coupes de graphe (GC), à laquelle nous avons incorporé des a priori de forme. La première méthode, semi-automatique, repose sur une carte d'a priori statistique créée à base d'Analyses en Composantes Principales et intégrée à la méthode des GC binaires. La seconde, automatique, permet la segmentation d'un ensemble d'objets par GC multi-labels à partir d'un modèle de forme probabiliste basé sur le recalage et la fusion d'atlas. Ces méthodes ont été évaluées sur une base importante d'IRM cardiaques, composée de 48 patients. Une comparaison aux méthodes de l'état de l'art pour cette application à travers le challenge de segmentation du VD MICCAI'12, que nous avons organisé, montre l'efficacité de nos méthodes.
|
2 |
Knowledge-based image segmentation using sparse shape priors and high-order MRFs / Segmentation d’images avec des a priori de forme parcimonieux et des champs de Markov aléatoires d’ordre supérieurXiang, Bo 28 November 2013 (has links)
Nous présentons dans cette thèse une approche nouvelle de la segmentation d’images, avec des descripteurs a priori utilisant des champs de Markov d’ordre supérieur. Nous représentons le modèle de forme par un graphe de distribution de points qui décrit les informations a priori des invariants de pose grâce à des cliques L1 discrètes d’ordre supérieur. Chaque clique de triplet décrit les variations statistiques locales de forme par des mesures d’angle,ce qui assure l’invariance aux transformations globales (translation, rotation et échelle). L’apprentissage d’une structure de graphe discret d’ordre supérieur est réalisé grâce à l’apprentissage d’un champ de Markov aléatoire utilisant une décomposition duale, ce qui renforce son efficacité tout en préservant sa capacité à rendre compte des variations.Nous introduisons la connaissance a priori d’une manière innovante pour la segmentation basée sur un modèle. Le problème de la segmentation est ici traité par estimation statistique d’un maximum a posteriori (MAP). L’optimisation des paramètres de la modélisation- c’est à dire de la position des points de contrôle - est réalisée par le calcul d’une fonction d’énergie globale de champs de Markov (MRF). On combine ainsi les calculs statistiques régionaux et le suivi des frontières avec la connaissance a priori de la forme.Les descripteurs invariants sont estimés par des potentiels de Markov d’ordre 2, tandis que les caractéristiques régionales sont transposées dans un espace de caractéristiques et calculées grâce au théorème de la Divergence.De plus, nous proposons une nouvelle approche pour la segmentation conjointe de l’image et de sa modélisation ; cette méthode permet d’obtenir une segmentation plus fine lorsque la délimitation précise d’un objet est recherchée. Un modèle graphique combinant l’information a priori et les informations de pixel est développé pour réaliser l’unité des modules "top-down" et "bottom-up". La cohérence entre l’image et sa modélisation est assurée par une décomposition qui associe les parties du modèle avec la labellisation de chaque pixel.Les deux champs de Markov d’ordre supérieur considérés sont optimisés par les algorithmes de l’état de l’art. Les résultats prometteurs dans les domaines de la vision par ordinateur et de l’imagerie médicale montrent le potentiel de cette méthode appliquée à la segmentation. / In this thesis, we propose a novel framework for knowledge-based segmentation using high-order Markov Random Fields (MRFs). We represent the shape model as a point distribution graphical model which encodes pose invariant shape priors through L1 sparse higher order cliques. Each triplet clique encodes the local shape variation statistics on the angle measurements which inherit invariance to global transformations (i.e. translation,rotation and scale). A sparse higher-order graph structure is learned through MRF training using dual decomposition, producing boosting efficiency while preserving its ability to represent the shape variation.We incorporate the prior knowledge in a novel framework for model-based segmentation.We address the segmentation problem as a maximum a posteriori (MAP) estimation in a probabilistic framework. A global MRF energy function is defined to jointly combine regional statistics, boundary support as well as shape prior knowledge for estimating the optimal model parameters (i.e. the positions of the control points). The pose-invariant priors are encoded in second-order MRF potentials, while regional statistics acting on a derived image feature space can be exactly factorized using Divergence theorem. Furthermore, we propose a novel framework for joint model-pixel segmentation towardsa more refined segmentation when exact boundary delineation is of interest. Aunified model-based and pixel-driven integrated graphical model is developed to combine both top-down and bottom-up modules simultaneously. The consistency between the model and the image space is introduced by a model decomposition which associates the model parts with pixels labeling. Both of the considered higher-order MRFs are optimized efficiently using state-of the-art MRF optimization algorithms. Promising results on computer vision and medical image applications demonstrate the potential of the proposed segmentation methods.
|
3 |
Champs de phase pour l'extraction de réseaux à partir d'images de télédétection.El Ghoul, Aymen 17 September 2010 (has links) (PDF)
Cette thèse décrit la construction d'un modèle de réseaux non-directionnels (e.g. réseaux routiers), fondé sur les contours actifs d'ordre supérieur (CAOSs) et les champs de phase développés récemment, et introduit une nouvelle famille des CAOSs des champs de phase pour des réseaux directionnels (e.g. réseaux hydrographiques en imagerie de télédétection, vaisseaux sanguins en imagerie médicale). Dans la première partie de cette thèse, nous nous intéressons à l'analyse de stabilité d'une énergie de type CAOSs aboutissant à un ‘diagramme de phase'. Les résultats, qui sont confirmés par des expériences numériques, permettent une bonne sélection des valeurs des paramètres pour la modélisation de réseaux non-directionnels. Au contraire des réseaux routiers, les réseaux hydrographiques sont directionnels, i.e. ils contiennent un ‘flux' monodimensionnel circulant dans chaque branche. Cela implique des propriétés géométriques spécifiques des branches et particulièrement des jonctions, propriétés qu'il est utile de traduire dans un modèle, pour l'extraction de réseaux. Nous développons donc un modèle de champ de phase non-local de réseaux directionnels, qui, en plus du champ de phase scalaire décrivant une région par une fonction caractéristique lisse et qui interagit non-localement afin que des configurations de réseaux linéiques soient favorisées, introduit un champ vectoriel représentant le ‘flux' dans les branches du réseau. Ce champ vectoriel est contraint d'être nul à l'extérieur, et de magnitude égale à 1 à l'intérieur du réseau ; circulant dans le sens longitudinal des branches du réseau ; et de divergence très faible. Cela prolonge les branches du réseau ; contrôle la variation de largeur tout au long une branche ; et forme des jonctions non-symétriques telles que la somme des largeurs entrantes soit approximativement égale à celle des largeurs sortantes. En conjonction avec une nouvelle fonction d'interaction pour le champ de phase scalaire, le modèle assure aussi une vaste gamme de valeurs des largeurs stables des branches. Ce nouveau modèle a été appliqué au problème d'extraction de réseaux hydrographiques à partir d'images satellitaires très haute résolution.
|
4 |
Les contours actifs basés région avec a priori de bruit, de texture et de forme : Application à l'échocardiographieLecellier, François 15 May 2009 (has links) (PDF)
L'objectif de ce travail est la conception et l'implémentation d'une méthode de segmentation générique d'images médicales qui puisse s'adapter à l'évolution des modalités et des besoins exprimés par les médecins. Partant ainsi du constat que la segmentation d'images médicales nécessite l'introduction de connaissances, nous avons opté pour une méthode pouvant combiner avantageusement les informations de bruit, de texture et de forme : les contours actifs basés région. Cette méthode consiste à déformer une courbe vers l'objet à segmenter. Ces déformations sont déduites de la dérivation d'une fonctionnelle à optimiser. <br />Notre contribution principale se situe au niveau de l'obtention de critères généraux permettant les ajouts d'informations a priori. Concernant le modèle de bruit, le critère consiste à considérer une fonction générale d'une loi paramétrique appartenant à la famille exponentielle. Nous avons mis en évidence que l'estimation des paramètres de la loi intervient de façon primordiale dans le calcul de l'équation d'évolution du contour. Pour le modèle de texture, l'absence de représentation discriminant de manière générale les textures, nous a conduit à utiliser une approche non paramétrique reposant sur les représentations parcimonieuses. Enfin l'a priori de forme utilise un critère basé sur les moments de Legendre. Les différents a priori sont ensuite reliés par le biais d'un algorithme de minimisation alternée ce qui permet de pondérer efficacement les termes d'attache aux données photométriques et l'a priori géométrique.<br />Les trois approches ont été testées et validées séparément puis de manière combinée sur des images synthétiques et réelles.
|
5 |
Statistiques de formes pour la segmentation d'images avec a prioriCharpiat, Guillaume 13 December 2006 (has links) (PDF)
Le but de cette thèse est de construire, à partir d'un ensemble donné d'exemples de contours d'objets, un critère qui exprime quantitativement la ressemblance entre une forme quelconque et ces exemples. Ce critère permettra ainsi d'avoir un a priori sur la forme de l'objet à rechercher dans une nouvelle image à segmenter. On définit tout d'abord mathématiquement l'ensemble de "toutes les formes". L'étude de plusieurs métriques sur cet ensemble conduit à leur équivalence topologique. Une approximation dérivable de la distance de Hausdorff permet alors de construire un chemin entre deux formes quelconques par descente de gradient. Le gradient d'une application dépendant d'une forme est un champ de déformation appartenant à son espace tangent; il dépend de son produit scalaire, qui peut alors être vu comme un a priori sur les champs de déformation en changeant qualitativement les évolutions. Une extension de la notion de gradient à des a priori non linéaires est également proposée. Les champs instantanés de déformation d'une forme vers une autre obtenus par gradient d'une distance permettent de définir la "moyenne" d'un ensemble donné de contours, ainsi que les modes caractéristiques de déformation qui lui sont associés, exprimant la variabilité de la forme dans l'échantillon étudié. De ces statistiques sur les formes on déduit plusieurs critères de segmentation, qui sont testés et illustrés sur quelques exemples. Des statistiques assez similaires sont également menées sur des images (au lieu de formes) dans une approche difféomorphique, testées sur des photographies de visages, puis utilisées dans une tâche de reconnaissance d'expression.
|
6 |
Segmentation et interprétation d'images naturelles pour l'identification de feuilles d'arbres sur smartphone / Segmentation and interpretation of natural images for tree leaf identification on smartphonesCerutti, Guillaume 21 November 2013 (has links)
Les espèces végétales, et en particulier les espèces d'arbres, forment un cadre de choix pour un processus de reconnaissance automatique basé sur l'analyse d'images. Les critères permettant de les identifier sont en effet le plus souvent des éléments morphologiques visuels, bien décrits et référencés par la botanique, qui laissent à penser qu'une reconnaissance par la forme est envisageable. Les feuilles constituent dans ce contexte les organes végétaux discriminants les plus faciles à appréhender, et sont de ce fait les plus communément employés pour ce problème qui connaît actuellement un véritable engouement. L'identification automatique pose toutefois un certain nombre de problèmes complexes, que ce soit dans le traitement des images ou dans la difficulté même de la classification en espèces, qui en font une application de pointe en reconnaissance de formes.Cette thèse place le problème de l'identification des espèces d'arbres à partir d'images de leurs feuilles dans le contexte d'une application pour smartphones destinée au grand public. Les images sur lesquelles nous travaillons sont donc potentiellement complexes et leur acquisition peu supervisée. Nous proposons alors des méthodes d'analyse d'images dédiées, permettant la segmentation et l'interprétation des feuilles d'arbres, en se basant sur une modélisation originale de leurs formes, et sur des approches basées modèles déformables. L'introduction de connaissances a priori sur la forme des objets améliore ainsi de façon significative la qualité et la robustesse de l'information extraite de l'image. Le traitement se déroulant sur l'appareil, nous avons développé ces algorithmes en prenant en compte les contraintes matérielles liées à leur utilisation.Nous introduisons également une description spécifique des formes des feuilles, inspirée par les caractéristiques déterminantes recensées dans les ouvrages botaniques. Ces différents descripteurs fournissent des informations de haut niveau qui sont fusionnées en fin de processus pour identifier les espèces, tout en permettant une interprétation sémantique intéressante dans le cadre de l'interaction avec un utilisateur néophyte. Les performances obtenues en termes de classification, sur près de 100 espèces d'arbres, se situent par ailleurs au niveau de l'état de l'art dans le domaine, et démontrent une robustesse particulière sur les images prises en environnement naturel. Enfin, nous avons intégré l'implémentation de notre système de reconnaissance dans l'application Folia pour iPhone, qui constitue une validation de nos approches et méthodes dans un cadre réel. / Plant species, and especially tree species, constitute a well adapted target for an automatic recognition process based on image analysis. The criteria that make their identification possible are indeed often morphological visual elements, which are well described and referenced by botany. This leads to think that a recognition through shape is worth considering. Leaves stand out in this context as the most accessible discriminative plant organs, and are subsequently the most often used for this problem recently receiving a particular attention. Automatic identification however gives rise to a fair amount of complex problems, linked with the processing of images, or in the difficult nature of the species classification itself, which make it an advanced application for pattern recognition.This thesis considers the problem of tree species identification from leaf images within the framework of a smartphone application intended for a non-specialist audience. The images on which we expect to work are then potentially very complex scenes and their acquisition rather unsupervised. We consequently propose dedicated methods for image analysis, in order to segment and interpret tree leaves, using an original shape modelling and deformable templates. The introduction on prior knowledge on the shape of objects enhances significatively the quality and the robustness of the information we extract from the image. All processing being carried out on the mobile device, we developed those algorithms with concern towards the material constraints of their exploitation. We also introduce a very specific description of leaf shapes, inspired by the determining characteristics listed in botanical references. These different descriptors constitute independent sources of high-level information that are fused at the end of the process to identify species, while providing the user with a possible semantic interpretation. The classification performance demonstrated over approximately 100 tree species are competitive with state-of-the-art methods of the domain, and show a particular robustness to difficult natural background images. Finally, we integrated the implementation of our recognition system into the \textbf{Folia} application for iPhone, which constitutes a validation of our approaches and methods in a real-world use.
|
Page generated in 0.0662 seconds