51 |
BAD Phosphorylation: A Novel Link between Apoptosis and Cancer / BAD Phosphorylierung: Eine Neue Verbindung zwischen Apoptose und KrebsPolzien, Lisa January 2011 (has links) (PDF)
BAD (Bcl-2 antagonist of cell death, Bcl-2 associated death promoter) is a pro-apoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD (mBAD), little data are available with respect to phosphorylation of human BAD (hBAD) protein. In this work, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating serines 75, 99 and 118 of hBAD (Chapter 3.1). Our results indicate that RAF kinases phosphorylate hBAD in vivo at these established serine residues. RAF-induced phosphorylation of hBAD was not prevented by MEK inhibitors but could be reduced to control levels by use of the RAF inhibitor Sorafenib (BAY 43-9006). Consistently, expression of active RAF suppressed apoptosis induced by hBAD and the inhibition of colony formation caused by hBAD could be prevented by RAF. In addition, using surface plasmon resonance technique we analyzed the direct consequences of hBAD phosphorylation by RAF with respect to complex formation of BAD with 14-3-3 proteins and Bcl-XL. Phosphorylation of hBAD by active RAF promotes 14-3-3 protein association, whereby the phosphoserine 99 represents the major binding site. Furthermore, we demonstrate in this work that hBAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity is dependent on phosphorylation status and interaction with 14-3-3 proteins. Additionally, we show that hBAD pores possess a funnel-shaped geometry that can be entered by ions and non-charged molecules up to 200 Da (Chapter 3.2). Since both lipid binding domains of hBAD (LBD1 and LBD2) are located within the C-terminal region, we investigated this part of the protein with respect to its structural properties (Chapter 3.3). Our results demonstrate that the C-terminus of hBAD possesses an ordered β-sheet structure in aqueous solution that adopts helical disposition upon interaction with lipid membranes. Additionally, we show that the interaction of the C-terminal segment of hBAD with the BH3 domain results in the formation of permanently open pores, whereby the phosphorylation of serine 118 proved to be necessary for effective pore-formation. In contrast, phosphorylation of serine 99 in combination with 14-3-3 association suppresses formation of channels. These results indicate that the C-terminal part of hBAD controls hBAD function by structural transitions, lipid binding and phosphorylation. Using mass spectrometry we identified in this work, besides the established in vivo phosphorylation sites at serines 75, 99 and 118, several novel hBAD phosphorylation sites (serines 25, 32/34, 97, 124 and 134, Chapter 3.1). To further analyze the regulation of hBAD function, we investigated the role of these newly identified phosphorylation sites on BAD-mediated apoptosis. We found that in contrast to the N-terminal phosphorylation sites, the C-terminal serines 124 and 134 act in an anti-apoptotic manner (Chapter 3.4). Our results further indicate that RAF kinases and PAK1 effectively phosphorylate BAD at serine 134. Notably, in the presence of wild type hBAD, co-expression of survival kinases, such as RAF and PAK1, leads to a strongly increased proliferation, whereas substitution of serine 134 by alanine abolishes this process. Furthermore, we identified hBAD serine 134 to be strongly involved in survival signaling in B-RAF-V600E containing tumor cells and found phosphorylation of this residue to be crucial for efficient proliferation in these cells. Collectively, our findings provide new insights into the regulation of hBAD function by phosphorylation and its role in cancer signaling. / BAD (Bcl-2 antagonist of cell death, Bcl-2 associated death promoter) ist ein pro-apoptotisches Mitglied der Bcl-2 Proteinfamilie und wird in Abhängigkeit von Wachstumsfaktoren durch Phosphorylierung reguliert. Obwohl der Identifizierung von Phosphorylierungsstellen in murinem BAD (mBAD) in den vergangenen Jahren viel Aufmerksamkeit gewidmet wurde, ist die Phosphorylierung des humanen BAD (hBAD) Proteins kaum charakterisiert. In der vorliegenden Arbeit wird der quantitative Beitrag unterschiedlicher Kinasen in Bezug auf die Phosphorylierung der etablierten Phosphorylierungsstellen Serin 75, 99 und 118 von hBAD dargestellt (Kapitel 3.1). Unsere Ergebnisse deuten darauf hin, dass RAF-Kinasen hBAD in vivo an diesen etablierten Stellen phosphorylieren. Die RAF-bedingte Phosphorylierung konnte nicht durch MEK-Inhibitoren beeinflusst werden, dagegen bewirkte die Gabe des RAF-Inhibitors Sorafenib (BAY 43-9006) eine Reduktion der Phosphorylierung auf das Niveau der Kontrollproben. Übereinstimmend konnte durch die Expression von aktiven RAF-Kinasen die BAD-induzierte Apoptose sowie die BAD-bedingte Inhibierung der Koloniebildung unterdrückt werden. Zusätzlich verwendeten wir Oberflächen-Plasmon-Resonanz-Spektroskopie um die Auswirkungen der RAF-bedingten BAD-Phosphorylierung auf die Komplexbildung von hBAD mit 14-3-3-Proteinen und Bcl-XL zu analysieren. Dabei wurde festgestellt, dass die Phosphorylierung von hBAD durch aktive RAF-Kinasen die Assoziierung von 14-3-3 begünstigt, wobei Phosphoserin 99 die Hauptbindungsstelle darstellt. Weiterhin gelang der Nachweis, dass hBAD in vitro Poren in Lipid-Doppelschicht-Membranen bilden kann. Wir wiesen nach, dass die Fähigkeit von hBAD Poren zu bilden phosphorylierungsabhängig ist und durch die Interaktion mit 14-3-3-Proteinen beeinflusst wird. Außerdem demonstrieren wir in dieser Arbeit, dass die BAD-Poren eine zylinderförmige Geometrie aufweisen und sowohl für Ionen als auch für ungeladene Moleküle mit einer Größe von bis zu 200 Da zugänglich sind (Kapitel 3.2). Da beide Lipid-Bindungsstellen (LBD1 und LBD2) am C-Terminus des hBAD lokalisiert sind, charakterisierten wir des Weiteren diesen Teil des Proteins in Hinblick auf seinen strukturellen Aufbau (Kapitel 3.3). Unsere Ergebnisse demonstrieren, dass der hBAD-C-Terminus in wässriger Lösung eine geordnete β-Faltblattstruktur aufweist und bei Eintritt in eine Lipidumgebung helikale Elemente ausbildet. Zusätzlich zeigen wir in dieser Arbeit, dass die Interaktion des C-terminalen hBAD-Segments mit der BH3-Domäne zur Ausbildung von permanent offenen Poren führt, wobei die Phosphorylierung an Serin 118 eine Notwendigkeit für effektive Porenbildung darstellt. In Gegensatz dazu bewirkte die Phosphorylierung von Serin 99 in Kombination mit der Assoziierung von 14-3-3-Protein eine Inhibierung der Porenbildung. Diese Ergebnisse weisen darauf hin, dass der C-terminale Teil von hBAD durch strukturelle Veränderungen, Lipidbindung und Phosphorylierung entscheidend die Funktion von hBAD reguliert. Mit Hilfe von Massenspektroskopie konnten wir im Rahmen dieser Arbeit, zusätzlich zu den etablierten Phosphorylierungsstellen Serin 75, 99 und 118, einige neue in vivo Phosphorylierungsstellen von hBAD identifizieren (Serin 25, 32/34, 97, 124 und 134, Kapitel 3.1). Um die Regulierung der Funktion von hBAD weiter zu analysieren, untersuchten wir die Rolle dieser neu identifizierten Phosphorylierungsstellen in Bezug auf die BAD-induzierte Apoptose (Kapitel 3.4). Wir fanden heraus, dass im Gegensatz zu den N-terminalen Phosphorylierungsstellen, die Phosphorylierungsstellen am C-Terminus an der Apoptoseregulation mitwirken. Weiterhin weisen unsere Ergebnisse darauf hin, dass RAF-Kinasen, neben PAK1, an der Phosphorylierung von Serin 134 von hBAD beteiligt sind. Interessanterweise bewirkte die Co-Expression von RAF oder PAK1 mit dem wildtypischen hBAD eine erhebliche Verstärkung der Zellproliferation. Diese verstärkte Proliferation konnte durch einen Serin-zu-Alanin-Austausch in hBAD an der Stelle 134 vollständig verhindert werden. Weiterhin entdeckten wir, dass die Phosphorylierung dieser Stelle in B-RAF-V600E enthaltenden Tumorzellen bei der Regulation der Zellproliferation mitwirkt und für eine effiziente Proliferation entscheidend ist. Zusammenfassend gewähren unsere Ergebnisse neue Einblicke in die Regulierung der Funktion von hBAD durch Phosphorylierung sowie in die Rolle von hBAD bei der Krebsentwicklung.
|
52 |
Funktionelle Untersuchungen zur Regulation der Protein Kinase CK2 durch Polyamine in Drosophila melanogaster und deren physiologische Bedeutung / Functional analysis of the regulation of the protein kinase CK2 by polyamines in Drosophila melanogaster and its psyiological meaningStark, Felix January 2011 (has links) (PDF)
Die heterotetramere Proteinkinase CK2 nimmt aufgrund der großen Anzahl und Diversität ihrer Substrate, sowie aufgrund ihrer Eigenschaft Signalwege miteinander zu vernetzen eine Sonderstellung innerhalb der Kinasen ein. CK2 beeinflusst Proliferation, Differenzierung und Apoptose, Prozesse an denen auch Polyamine und der MAPK-Signalweg beteiligt sind. Eine vor kurzem durchgeführte Arbeit beschreibt die Bindung von CK2 an das Gerüstprotein KSR und die Verstärkung des MAPK-Signalwegs durch Phosphorylierung von Raf-Proteinen in Vertebraten. In dieser Arbeit konnte gezeigt werden, dass CK2 auch in Drosophila mit KSR interagiert und das einzige in Drosophila vorhandene Raf-Potein (DRaf) in vitro phosphoryliert. Im Gegensatz zur Phosphorylierung der humanen B-Raf und C-Raf Proteine an Serin 446 bzw. Serin 338 innerhalb der „negative charge regulatory region“ (N-Region), führten Kinasereaktionen und Massenspektrometrische Untersuchungen zur Identifizierung von Serin 11 als CK2 Phosphorylierungsstelle in DRaf, während ein zu Serin 446 in B-Raf äquivalentes Serin in der N-Region in Drosophila nicht durch CK2 phosphoryliert wird. Durch Überexpression von DRaf sowie von zwei DRaf-Varianten bei denen Serin 11 durch Alanin oder Aspartat substituiert wurde (DRafS11A und DRafS11D) konnte in Zellkulturexperimenten gezeigt werden, dass die Ladung an der Aminosäureposition 11 die Funktion von DRaf beeinflusst, wobei eine negative Ladung an dieser Stelle zur Phosphorylierung und Aktivierung der Effektorkinase Erk führt. Die Phosphorylierung durch CK2 ist unabhängig von regulatorischen Botenstoffen ("second messengers"), wird aber durch Bindung von Polyaminen moduliert. Intrazelluläre Polyamine entstammen zum grossen Teil dem zellulären Aminosäurekatabolismus und beeinflussen die Phosphorylierung von DRaf durch CK2 in vitro, wobei Spermin ein effizienter Inhibitor der Reaktion ist, während die Effekte von Putrescin und Spermidin gering sind. Auch in Drosophila Schneider S2 Zellen und in adulten weiblichen Fliegen hat Spermin einen inhibitorischen, CK2-abhängigen Effekt auf die Aktivierung von Erk. Ausserdem konnte gezeigt werden, dass Putrescin und Spermidin in der Lage sind die Aktivierung von Erk, im Vergleich zu Zellen die nur mit Spermin behandelt wurden, zu erhöhen. Das spricht dafür, dass die Phosphorylierung von DRaf und die davon abhängige Aktivierung von Erk durch CK2 von der Menge und Relation der verschiedenen Polyamine zueinander abhängt. Die Ergebnisse dieser Arbeit lassen den Schluss zu, dass der Polyaminmetabolismus über CK2 mit dem MAPK-Signalweg verknüpft ist. Nachdem Polyamine durch Aminosäurekatabolismus enstehen, kann auf diese Weise der MAPK-Signalweg in Abhängigkeit der Verfügbarkeit zellulärer Aminosäuren reguliert werden. Vorversuche zeigten eine Beeinflussung von Proliferation und Apoptose durch CK2 und Polyamine. Weitere Untersuchungen sind aber nötig um spezifische Einflüsse von Polyaminen und CK2 auf zelluläre Prozesse wie Proliferation, Differenzierung und Apoptose aufzudecken. / Because of its high number and diversity of substrates, as well as its ability to cross-link signalling pathways, the heterotetrameric protein kinase CK2 has an exceptional position within kinases. CK2 influences proliferation, differentiation and apoptosis, processes in which also polyamines and the MAPK-signalling pathway are involved. A recent publication delineates binding of CK2 to the scaffold protein KSR and the enhancement of the MAPK-signalling pathway by phosphorylation of Raf-proteins in vertebrates. In my thesis I could show that CK2 also interacts with KSR in Drosophila and phosphorylates the only existing Raf protein in Drosophila (DRaf) in vitro. In contrast to the phosphorylation of human B-Raf- and C-Raf-proteins on serine 446 respectively serine 338 within the "negative charge regulatory region" (N-region), kinase reactions and mass spectrometric analyses led to the identification of serine 11 as phosphorylation site in DRaf, whereas a serine in the N-region, which corresponds to serine 446 of B-Raf, is not phosphorylated by CK2 in Drosophila. In cell culture experiments overexpression of DRaf and two DRaf-variants, in which serine 11 was substituted by alanine or aspartate (DRafS11A and DRafS11D), revealed the charge at amino acid position 11 to affect the function of DRaf, with a negative charge leading to phosphorylation and activation of the effector kinase Erk. Phosphorylation by CK2 is independent of second messengers, whereas it is modified by binding of polyamines. Intracellular polyamines mainly derive from cellular amino acid catabolism and modulate the phosphorylation of DRaf by CK2 in vitro with spermine being an efficient inhibitor of the reaction, whereas the effects of putrescine and spermidine are minor. In Drosophila Schneider S2 cells and adult flies spermine inhibits the activation of Erk in a CK2-dependent way. Furthermore administration of putrescine and spermidine in combination with spermine leads to enhanced Erk activation in cells compared to cells that are treated with spermine. These results suggest that phosphorylation of DRaf and the subsequent activation of Erk by CK2 are dependent on the amount and relative concentrations of polyamines. Altogether the results of this work demonstrate a role for CK2 in linking polyamine metabolism to the MAPK-signalling pathway. Since polyamines derive from amino acid catabolism, the MAPK-signalling pathway can be regulated dependent on the availability of cellular amino acids. Preliminary experiments point to CK2- and polyamine-dependent effects on proliferation and apoptosis. Further investigations are necessary to reveal specific effects of polyamines and CK2 on cellular processes like proliferation, differentiation and apoptosis.
|
53 |
The Laws of Terrorism: Representations of Terrorism in German Literature and FilmChen, Yannleon 03 October 2013 (has links)
Representations of the reasons and actions of terrorists have appeared in German literature tracing back to the age of Sturm und Drang of the 18th century, most notably in Heinrich von Kleist's Michael Kohlhaas and Friedrich Schiller's Die Räuber, and more recently since the radical actions of the Red Army Faction during the late 1960s and early 1970s, such as in Uli Edel's film, The Baader Meinhof Complex. By referring to Walter Benjamin's system of natural law and positive law, which provides definitions of differing codes of ethics with relation to state laws and personal ethics, one should be able to understand that Michael Kohlhaas, Karl Moor, and the members of the RAF are indeed represented as terrorists. However, their actions and motives are not without an internal ethics, which conflicts with that of their respective state-sanctioned authorities. This thesis reveals the similarities and differences in motives, methods, and use of violence in Schiller, Kleist, and representations of the RAF and explores how the turn to terrorism can arise from a logical realization that ideologies of state law do not align with the personal sense of justice and law of the individual.
|
54 |
O Gênero Croton L. seção cyclostigma Griseb. e seção Luntia (Raf.) G. L. Webster (Euphorbiaceae) ocorrentes na Amazônia brasileiraGUIMARÃES, Luiz Alberto Cavalcante January 2006 (has links)
Euphorbiaceae is one of the larger, complex and diversified families of Angiosperma, including 317 genera and 8,000 species approximately. It is specially distributed in the Tropics, in the most variable types of vegetation and habitat. In Brazil, it is represented by 72 genera and 1,100 species with different habits and habitats, occurring in ali vegetation types. This study, which encloses 7 species of Croton L., has as main objective to modernize the Euphorbiaceae's taxonomy, specially considering genera and species with geographical
distribution concentrated in the (Brazilian or International) Amazônia, as well as to carry out morpho-anatomic studies with the selected species as a further help for their correct identification. Through morpho-anatomic characters, we intend to clarify the boundary of close related species, such as C. urucurana and C. draconoides, which affinities still rather confuse. The results aim at to contribute for a better understanding of the diverse section and subsections proposed to organize the genus Croton. It was observed that the trichome types and the flower position at the inflorescences are very important for the identification of the studied species. The leaf architecture study allowed the separation of the species by the presence or absence of sheathing, trichome type, druses, pair number of secondary veins, presence of secondary veins, and type of lignifications of vascular bundle. In conclusion, the morphologic characters allied to the anatomic characters allow a more accurate identification of the species treated in this work. / Euphorbiaceae é composta por aproximadamente 317 gêneros e 8.000 espécies, distribuídos
especialmente nos trópicos, nos mais variados tipos de vegetação e habitats, sendo uma das
maiores, mais complexas e diversificadas famílias das Angiospermas. No Brasil ocorrem 72
gêneros e 1.100 espécies, de hábitos e habitat diferentes, difundidas em todos os tipos de
vegetação. Este estudo, abrange 7 espécies de croton L. pertencentes à seção Cyclostigma
Griseb. e seção Luntia (raf.) G. L. webster ocorrentes na Amazônia brasileira, tem como
principal objetivo atualizar a taxonomia das Euphorbiaceae, especialmente em relação aos
gêneros e espécies com distribuição geográfica concentrada na Amazônia (brasileira e extrabrasileira),
bem como realizar estudos morfo-anatômicos (venação) com as espécies
selecionadas como um subsídio a mais para identificá-las corretamente. Através de caracteres
morpho-anatômicos pretende-se esclarecer o limite de espécies muito próximas, como é o
caso de C. urucurana e C. draconoides, cujas afinidades ainda são um tanto confusas. Os
resultados visam contribuir para o melhor entendimento das diversas seções e subseções
propostas para organizar o gênero Croton. Observou-se que os tipos e posição onde se
encontram os tricomas nas folhas e flores, a presença ou ausência de corola são muito
importantes na identificação das espécies estudadas. O estudo da arquitetura foliar
possibilitou a separação das espécies através da presença ou ausência de bainha, tipos de
tricomas, drusas, número de pares de nervuras secundárias, presença de nervuras secundárias
e tipo de lignificação dos feixes vasculares. Em conclusão, os caracteres morfológicos aliados
aos caracteres anatômicos possibilitam a identificação mais precisa das espécies tratadas neste
trabalho.
|
55 |
An Investigation into Modern Facial Expressions Recognition by a ComputerJanuary 2019 (has links)
abstract: Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models achieve high accuracy on the lab-controlled images, they still struggle for the wild expressions. Wild expressions are captured in a real-world setting and have natural expressions. Wild databases have many challenges such as occlusion, variations in lighting conditions and head poses. In this work, I address these challenges and propose a new model containing a Hybrid Convolutional Neural Network with a Fusion Layer. The Fusion Layer utilizes a combination of the knowledge obtained from two different domains for enhanced feature extraction from the in-the-wild images. I tested my network on two publicly available in-the-wild datasets namely RAF-DB and AffectNet. Next, I tested my trained model on CK+ dataset for the cross-database evaluation study. I prove that my model achieves comparable results with state-of-the-art methods. I argue that it can perform well on such datasets because it learns the features from two different domains rather than a single domain. Last, I present a real-time facial expression recognition system as a part of this work where the images are captured in real-time using laptop camera and passed to the model for obtaining a facial expression label for it. It indicates that the proposed model has low processing time and can produce output almost instantly. / Dissertation/Thesis / Masters Thesis Computer Science 2019
|
56 |
Affinity protein based inhibition of cancer related signaling pathwaysVernet, Erik January 2009 (has links)
Dysregulation of protein activity, caused by alterations in protein sequence, expression, or localization, is associated with numerous diseases. In order to control the activity of harmful protein entities, affinity ligands such as proteins, oligonucleotides or small molecules can be engineered to specifically interact with them to modulate their function. In this thesis, non-immunoglobulin based affinity proteins known as affibody molecules are used to functionally inhibit proteins important for signaling through pathways that are overactive in different cancers. In Paper I and Paper II, affibody molecules with high affinity for the receptor tyrosine kinases HER2 or EGFR are expressed in the secretory compartments of model cancer cell lines SKOV3 or A431 using a retrovirus-based gene delivery system. Equipping the affinity proteins with an ER retention tag, the affibody molecules together with their target protein are retained in the secretory compartments as shown by confocal fluorescence imaging. Flow cytometric analysis showed a 60 % or 80 % downregulation of surface located HER2 or EGFR in these cell lines, respectively. A significant decreased in proliferation rate of the cells was also observed, which for EGFR retention could be correlated with inhibition of phosphorylation in the kinase domain. In Paper III, novel affibody molecules interacting with the hormone binding site of the insulin growth factor-1 receptor were generated. One variant had high (1.2 nM) affinity for the receptor and could be used for immunofluorescence analysis and for receptor pull-out from cell lysates. Addition of this affibody molecule to MCF-7 cells had a dose dependent growth inhibitory effect on the cells. In Paper IV, novel affibody molecules against the intracellular oncoproteins H-Ras and Raf-1 were selected and characterized, and they proved to be specific for their target proteins. Mapping experiments showed that the affibody molecules selected against H-Ras interacted at over-lapping epitopes not affecting the interaction between Ras and Raf. In contrast, the predominant variant isolated during selection against Raf-1 could completely inhibit the Ras/Raf interaction in a real-time biospecific interaction analysis. Taken together, the affibody molecules presented here and the strategies by which they are used to interfere with cancer related proteins and pathways may be valuable tools for further investigation of these systems and may possibly also be used to generate molecules suitable for cancer therapy. / QC 20100818
|
57 |
Matrix Metalloproteinase genes are transcriptionally regulated by E2F transcription factors: a link between cell cycle control and metastatic progressionJohnson, Jacqueline Lea 01 January 2012 (has links)
The RbµE2F transcriptional regulatory pathway plays a critical role in the cell cycle. Rb is inactivated through multiple waves of phosphorylation, mediated mainly by cyclin D and cyclin E associated kinases. Once Rb is inactivated, cells can enter Sµphase. Collectively, three Rb family members and ten E2F proteins coordinate every additional stage of the cell cycle, from quiescence to mitosis. However the RbµE2F pathway is frequently altered in cancer. Aside from cell proliferation, the RbµE2F pathway regulates other essential cellular processes including apoptosis, cell differentiation, angiogenesis and DNA damage repair pathways, but its role in invasion and cancer progression is less clear. We demonstrate here that matrix metalloproteinases genes (MMPs), which regulate the invasion, migration and collagen degradation activities of cancer cells during metastasis are transcriptionally regulated by the RbµE2F pathway. Unlike E2F target genes involved in cell proliferation, which are solely regulated by the E2F activators (E2F1µ3), additional E2F family members can regulate MMP9, MMP14, and MMP15. While we had previously shown that Rafµ1 kinase physically interacts with Rb, and that disruption of this interaction with a small molecule inhibitor of the RbµRafµ1 interaction (RRDµ251) can inhibit cell proliferation, angiogenesis, and growth of tumors in mouse models, we now show RRDµ251 inhibits the expression of MMPs and the biological functions mediated by MMPs as well—including invasion, migration, and collagen degradation. RRDµ251 also inhibits metastatic foci development in a tail vein lung colonization model in mice. These results suggest that E2F transcription factors may play a role in promoting metastasis through regulation of MMP genes. Conversely, another MMP gene connected to metastasis, MMP2, is transcriptionally repressed by E2F1 in lung cancer cells through a p53µKAP1µHDAC1µmediated mechanism. However, E2F1 cannot repress the MMP2 promoter in cells that are lacking any component of this complex, such as p53 mutant breast cancer cells. Therefore the role of the RbµE2F pathway in MMP transcription and metastasis is cell type dependent. In addition to growth factors, nicotine can also induce cell proliferation, angiogenesis, EMT, and progression of lung cancer. In our studies, nicotine induced invasion, collagen degradation, and transcription of MMP2, MMP9, MMP14, and MMP15 required nAChRs, and multiple E2F family members. Our studies also show that nicotine not only promotes tumor growth in vivo through the nAChRµE2F pathway—it also results in metastasis to the liver and brain. Taken together, these studies link the RbµE2F pathway to the regulation of many facets of cancer.
|
58 |
A critical edition of Kitab Raf' shan al-hubshan by Jalal al-din al-Suyutial-Khathlan, Saud H. January 1983 (has links)
The edition is based on nine manuscripts. The work deals with the virtues of noble Abyssinians and is based on the earlier work by ibn al-Jawzi which it partly extends. The Arabic writings on the black races are reviewed from the beginnings of the genre to works influenced by Suyuti. Attention is therefore particularly given to Suyuti's predecessors and successors from the 2nd to the 11th centuries with special reference to the relations between Suyuti's work and that of ibn al-Jawzi. The thesis is divided into two parts. The first part is the English introduction which consists of four chapters with the conclusions placed after Chapter Three. The first chapter deals with the works relevant to al-sudan and the Abyssinians. First, the two terms "al-Habashah" and "al-Sudan" are briefly discussed in an attempt to define their usage. The second chapter, which is a critical study of Kitab Raf Shan al-Hubshan, is divided into six sections, in the last section of which it will be shown how this book was more popular than ibn al-Jawzi's work' on which it was dependent. The third chapter provides biographical detail of al-Suyuti's life with some comments on the number of his works. The fourth chapter contains the description of the manuscripts and editing principles. Finally, the bibliography is provided at the end of this part. The second part consists of the list of works cited in the footnotes of the Arabic Text, the list of abbreviations used in these footnotes, the conventional signs used in the Text, the Text, and the indexes.
|
59 |
Structural and Mechanistic Insights into RAF Kinase Regulation by the KSR/CNK/HYP ComplexRajakulendran, Thanashan 19 November 2013 (has links)
The RAS/RAF/MEK/ERK pathway is the prototypical cellular signal transduction cascade and has been the focus of intense scrutiny over the last two decades. As a mitogenic pathway, its activation is a potent driver of cellular growth and survival, and its deregulation underlies many cancers. While RAS family GTPases have long been recognized as prolific human oncogenes, a landmark study in 2002 also established the RAF family kinase as a bona fide oncogene (Davies et al., 2002). Indeed, aberrant RAS-RAF signaling underlies nearly one-third of all human cancers (Wellbrock et al., 2004). Notably, mutations in RAF are found with astounding frequency in certain cancers (e.g. 70% of malignant melanomas) (Dhomen and Marais, 2007). These findings have identified intercepting aberrant RAF function as an ideal therapeutic target. RAF is a Ser/Thr protein kinase and its activity is strictly regulated by a core complex of at least three proteins, namely, KSR, CNK and HYP (Claperon and Therrien, 2007). The mechanism by which the KSR/CNK/HYP complex regulates RAF function remains enigmatic. In particular, the function of KSR in regulating RAF activity is highly controversial. The work described in this thesis was conducted with the aim of: i) understanding the interactions that underlie formation of the KSR/CNK/HYP complex, and ii) elucidating the mechanism by which the complex regulates RAF function. I have attempted to accomplish these aims using a combination of structural biology, biochemistry and cell biology approaches. I begin by presenting the structure of the SAM domain mediated interaction between CNK and HYP. I describe a model for how the CNK/HYP interaction in turn serves to recruit KSR to form the higher-order KSR/CNK/HYP complex.
Subsequently, I describe the allosteric mechanism by which KSR controls RAF activation via the formation of specific side-to-side kinase domain heterodimers of KSR and RAF. Lastly, I describe a potential mechanism by which RAS directly mediates the attainment of the side-to-side dimer configuration of RAF through its own ability to form dimers. The acquisition of the side-to-side dimer configuration is essential for aberrant RAF signaling in cancers, suggesting future RAF inhibition strategies could be aimed at preventing dimer formation.
|
60 |
Structural and Mechanistic Insights into RAF Kinase Regulation by the KSR/CNK/HYP ComplexRajakulendran, Thanashan 19 November 2013 (has links)
The RAS/RAF/MEK/ERK pathway is the prototypical cellular signal transduction cascade and has been the focus of intense scrutiny over the last two decades. As a mitogenic pathway, its activation is a potent driver of cellular growth and survival, and its deregulation underlies many cancers. While RAS family GTPases have long been recognized as prolific human oncogenes, a landmark study in 2002 also established the RAF family kinase as a bona fide oncogene (Davies et al., 2002). Indeed, aberrant RAS-RAF signaling underlies nearly one-third of all human cancers (Wellbrock et al., 2004). Notably, mutations in RAF are found with astounding frequency in certain cancers (e.g. 70% of malignant melanomas) (Dhomen and Marais, 2007). These findings have identified intercepting aberrant RAF function as an ideal therapeutic target. RAF is a Ser/Thr protein kinase and its activity is strictly regulated by a core complex of at least three proteins, namely, KSR, CNK and HYP (Claperon and Therrien, 2007). The mechanism by which the KSR/CNK/HYP complex regulates RAF function remains enigmatic. In particular, the function of KSR in regulating RAF activity is highly controversial. The work described in this thesis was conducted with the aim of: i) understanding the interactions that underlie formation of the KSR/CNK/HYP complex, and ii) elucidating the mechanism by which the complex regulates RAF function. I have attempted to accomplish these aims using a combination of structural biology, biochemistry and cell biology approaches. I begin by presenting the structure of the SAM domain mediated interaction between CNK and HYP. I describe a model for how the CNK/HYP interaction in turn serves to recruit KSR to form the higher-order KSR/CNK/HYP complex.
Subsequently, I describe the allosteric mechanism by which KSR controls RAF activation via the formation of specific side-to-side kinase domain heterodimers of KSR and RAF. Lastly, I describe a potential mechanism by which RAS directly mediates the attainment of the side-to-side dimer configuration of RAF through its own ability to form dimers. The acquisition of the side-to-side dimer configuration is essential for aberrant RAF signaling in cancers, suggesting future RAF inhibition strategies could be aimed at preventing dimer formation.
|
Page generated in 0.0323 seconds