• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 15
  • 9
  • 6
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 199
  • 130
  • 114
  • 77
  • 48
  • 46
  • 29
  • 29
  • 29
  • 26
  • 26
  • 26
  • 23
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

SUMOylation modulates α-synuclein toxicity and fibril formation / SUMOylierung verändert die Toxizität und Fibrillenbildung von α-Synuklein

Krumova, Petranka 03 June 2009 (has links)
No description available.
162

Cellular function and toxicity of the Parkinson’s disease-related genes α-synuclein and catp-6 in C. elegans

Wender, Nora 11 April 2012 (has links)
No description available.
163

Development and application of correlative STED and AFM to investigate neuronal cells

Curry, Nathan January 2018 (has links)
Over the past three decades in cellular neuroscience there has been a shift towards the view of the 'tripartite synapse', where, astrocytes -- as well as the pre-synapse and post-synapse -- are involved in synaptic signalling. The migration of astrocytes to form branched networks in the brain is, therefore, of great interest in understanding brain development and neuronal function. Migration is a complex interplay between cytoskeletal reorganisation and cell mechanical stiffness. In order to improve understanding of this process, correlative measurements of cytoskeletal organisation and mechanical stiffness are required. To investigate astrocyte migration a technique combining atomic force microscopy (AFM) with stimulated emission depletion (STED) microscopy was developed. First a custom STED microscope was developed. To facilitate the design of this system the theoretical performance of a range of STED techniques (cw-STED, time-gated STED, pulsed STED and RESOLFT) were compared, identifying that pulsed STED theoretically has the highest photon efficiency. A pulsed STED microscope, which uses adaptive optics, was then designed, developed and characterised. The microscope was found to achieve resolutions below 50 nm. The STED microscope was combined with a commercial AFM to study live cells. Using the recently developed SiR-actin and SiR-tubulin dyes and AFM probes optimised for live cell mechanical property studies, images of the actin and tubulin cytoskeleton were correlated with AFM topography and mechanical stiffness measurements. It was found that, in astrocytes, actin contributes significantly both to astrocyte stiffness and topography. Investigations of migrating cells showed differences in actin organisation and mechanical stiffness between the basis and leading edge of migration. A further study was performed, investigating the effects of the gap-junction protein connexin30, which is expressed during the early stages of brain development, on migration. This protein was found to inhibit the actin reorganisation and mechanical stiffness changes observed in basal conditions. Overall the combination of mechanosensitive AFM measurements with advanced microscopy, such as super-resolution, on live cells is a promising approach which will enable a range of investigations, for instance when studying cell structural remodeling during brain development or tumorigenesis.
164

Localised dosing and nanodetection using a novel scanning ion conductance microscope and its application to Alzheimer's disease

Chen, Wei-Hsin Chen January 2018 (has links)
Scanning ion conductance microscopy (SICM) is a technique for non-contact topographic imaging. In this thesis, a biophysical investigation into Alzheimer's Disease (AD) was carried, with toxic oligomers dosed locally and quantitatively on to single astrocytes using SICM and simultaneously monitoring the response of the target cell. Examination of the effectiveness of antibodies that bind to Abeta or alpha-synuclein (Asyn)peptides depends on the measurement of oligomer-induced abnormal calcium homeostasis in single astrocytes. The method was shown to work at physiological concentrations of oligomers. A series of experiments measuring the reduction in calcium inux in mixtures of antibodies and cerebrospinal fluid (CSF) of AD patients suggested that the binding to co-oligomers composed of Abeta and Asyn may be crucial in the treatment of AD. Furthermore, it may be beneficial to test antibodies before the clinical trial using this assay. The mechanism of this entry of calcium is hypothesised to be the result of the formation of oligomer-induced transient pores in the cell membrane. To verify this hypothesis, a new SICM instrument was built with two nanopipettes; one for dosing and one for detection of the adenosine triphosphate (ATP) release from these pores. A variety of different ATP sensors were made. The best had a sensitivity of 10 micro molar and works as a hexokinase-cofunctioned electrolyte-gated organic field-effect-transistor. However no statistically significant results for ATP release have been obtained in the experiments performed to date. Overall this thesis describes new biophysical methods to study the effect of protein aggregates on live cells and the effectiveness of potential therapies, such as antibodies and nanobodies, to reduce these aggregate induced effects. It can be applied to synthetic aggregates of Abeta or the aggregates present in human CSF.
165

Untersuchungen zur Dynamik und zum Aggregationsmechanismus von alpha-Synuklein in chronischen Toxinmodellen der dopaminergen Primärzellkultur

Oster, Sandra 22 January 2018 (has links) (PDF)
Ein Schlüsselbefund der Parkinson-Krankheit auf zellulärer Ebene ist das Auftreten von Protein-Einschlusskörperchen, sogenannten Lewykörperchen. Der Hauptbestandteil dieser Lewykörperchen ist pathologisch aggregiertes, fibrilläres α-Synuklein, ein Protein, welches Einfluss auf präsynaptische Vesikel, Protein- und Enzymfunktionen sowie den Dopaminstoffwechsel und den axonalen Transport hat. Bis heute ungeklärt ist die Ursache der Aggregation des Proteins. Zahlreiche Forschungsaktivitäten werden in diese Richtung unternommen. Die pathologischen Mechanismen, die zur abnormen Aggregation von α-Synuklein führen, bleiben noch weitgehend unbekannt. Ein großer Teil der Literatur unterstützt die Hypothese, dass α-Synuklein bei Punktmutationen oder erhöhter Expression anfällig für Aggregationen ist und damit Neuronen geschädigt werden. Die Einzelheiten dieses sukzessiven Aggregationsprozesses und die Mechanismen, die dabei letztlich den Zelltod verursachen, bleiben unklar. Alterungsprozesse und Umweltfaktoren sind entscheidende Risikofaktoren. Obwohl es immer mehr Hinweise gibt, dass α-Synuklein-Aggregate eine wichtige pathophysiologische Rolle spielen, wird bisher noch unzulänglich verstanden, wie die für die dopaminergen Neurone toxische Wirkung entfaltet wird. Als gesicherter Pathomechanismus der Degeneration der dopaminergen Nervenzellen gilt ein erhöhter oxidativer Stress. Es wird vermutet, dass er zur Aggregation des α-Synukleins beitragen kann. Ziel dieser vorgelegten Arbeit ist es, durch die Verwendung eines geeigneten Zellkulturmodells zur Aufklärung der beschriebenen pathologischen Mechanismen beizutragen. In dieser Studie wurden zwei artifizielle Modellsubstanzen in einer dopaminergen Primärzellkultur eingesetzt, die Pestizide Rotenon und Paraquat, um die pathologischen Verhältnisse in der Substantia nigra zu simulieren. Sie erzeugen oxidativen Stress durch Hemmung der mitochondrialen Atmungskette bzw. Redoxreaktionen mit molekularem Sauerstoff, was zum dopaminergen Zelltod führt. Im Rahmen dieser Studie gelang es, beide Parkinson-Zellkulturmodelle anhand der Lokalisierung, des Aggregationsverhaltens, des Einflusses auf die Mikroglia-Aktivierung sowie des Abbaus von α-Synuklein näher zu charakterisieren. Hierzu wurde α-Synuklein durch Fluoreszenzfärbung, Westernblot und Immunpräzipitation analysiert. Eine kurzzeitige Behandlung mit hoch konzentrierten Toxinen löst eine akute Degeneration dopaminerger Neurone aus, die so nicht der des Idiopathischen Parkinsons entspricht. Beim IPS erfolgt die Degeneration über Jahre hinweg. Um auch den Einfluss der zellulären Alterung auf die α-Synuklein-Aggregation zu zeigen, wurden die in dieser Arbeit verwendeten Zellkulturen über 46 Tage kultiviert und die Pestizid-Konzentration so eingestellt, dass etwa 25-50 % der dopaminergen Neurone absterben. Es konnte gezeigt werden, dass es nach chronischer Behandlung mit dem jeweiligen Pestizid zu den verschiedenen Zeitpunkten Unterschiede in der Lokalisation sowie in der Konformation von α-Synuklein gibt. Die zum Vergleich nur bis zum Tag 11 kultivierten Zellkulturen zeigten nach kurzer Behandlung mit hochkonzentrierter Toxin-Menge eine Ansammlung von α-Synuklein im Soma, aber keine Auswanderung und Lokalisierung in und an den Neuriten, wie es nach chronischer Rotenon-Behandlung beobachtet werden konnte. Bei den Rotenon-behandelten Zellen ist ein Prozess der Verlagerung und Anhäufung des α-Synuklein aus dem Soma in die Neuriten bereits ab einem früheren Zeitpunkt zu beobachten als in den Kontrollen, welche sich aber mit zunehmendem Alter ähnlich verhalten. Außerdem konnte in den Kulturen, besonders bei den Rotenon-behandelten dopaminergen Neuronen, ein punktförmiges Verteilungsmuster und größere Ansammlungen des Proteins in den Neuriten beobachtet werden, was für eine aggregierte Form des α-Synukleins spricht. Diese Aggregate ließen sich durch die Proteo-Aggreosom-Färbung nachweisen. Auch der Nachweis von am Serin 129 phosphoryliertem α-Synuklein in diesen größeren Ansammlungen gilt als Zeichen für eine aggregierte Form. Die Beobachtung, dass α-Synuklein mit zunehmendem Kulturalter aus dem Soma in die Peripherie austritt, konnte bei der chronischen Paraquat-Behandlung so nicht getätigt werden. Unter Paraquat-Behandlung war keine Herauf-Regulierung der Gesamt-α-Synuklein Expression in der Kultur zu beobachten, wie dies sowohl bei Kontrolle als auch bei Rotenon der Fall ist. Wir vermuten im Paraquat-Modell, dass die sich im Soma ansammelnde Form von α-Synuklein durch vermehrte Einschleusung in den Zellkern zur Toxizität beitragen kann. Auch eine Interaktion von α-Synuklein mit der Zellmembran könnte unter Paraquat-Einfluss zum dopaminergen Zelltod beitragen. Durch Immunpräzipitation und Fluoreszenz-Doppelfärbung von α-Synuklein und Ubiquitin konnten wir den Abbau des fehlgefalteten α-Synukleins in der Zelle durch Ubiquitinierung nachweisen. Unter Rotenon ist ab DIV 14 eine starke Kolokalisation von α-Synuklein und Ubiquitin zu erkennen, die im Verlauf der Kultur nachlässt und nur noch in punktförmigen Aggregaten außerhalb der Zelle zu sehen ist. Unter Paraquat zeigte sich während der gesamten Kultivierung Polyubiquitinierung und Kolokalisation der beiden Proteine in der gesamten Zelle. Die Aggregationsform von α-Synuklein scheint das Proteinabbausystem durch Ubiquitinierung zu beeinflussen, da wir davon ausgehen, dass es sich bei der α-Synuklein-Konformation zu verschiedenen Zeitpunkten in den Paraquat-behandelten dopaminergen Neuronen nicht um die Aggregationsform handelt, die wir unter Rotenon beobachten konnten.
166

Selektive neuronale Vulnerabilität neurodegenerativer Erkrankungen am Beispiel des Thalamus / Selective neuronal vulnerability of neurodegenerative diseases using the example of the thalamus

Mathes, Joachim 05 March 2018 (has links)
No description available.
167

Alpha-Synuclein Oligomers : Cellular Mechanisms and Aspects of Antibody Treatment

Gustafsson, Gabriel January 2017 (has links)
In Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), aggregated α-synuclein deposit inside cells within the brain. Smaller soluble α-synuclein aggregates, oligomers, are present both intra- and extracellularly. The α-synuclein oligomers are known to be particularly harmful, although the underlying neurotoxic mechanisms are not fully understood. The aim of this thesis was to investigate the pathogenic roles of α-synuclein oligomers and the possibility to target such species with antibody treatment. Passive immunotherapy with α-synuclein antibodies can lead to reduced pathology and ameliorated symptoms in transgenic mice. However, it remains unknown whether the antibodies are taken up by cells or whether they act extracellularly. In Paper I, we assessed cellular internalization of various α-synuclein monoclonal antibodies. The oligomer selective mAb47 displayed the highest uptake, which was promoted by the extracellular presence of α-synuclein. Alpha-synuclein aggregates can be found in both neurons and glial cells, but the pathogenic role of glial deposits has only been sparsely investigated. In Paper II, co-cultures of neurons and glia were exposed to α-synuclein oligomers. The astrocytes in the cultures rapidly accumulated oligomers, which were only partially degraded by lysosomes. The sustained intracellular α-synuclein deposits were associated with mitochondrial stress reactions in the astrocytes.  In Paper III, we sought to explore whether the astrocytic pathology induced by α-synuclein oligomers could be ameliorated by antibody treatment. Pre-incubation of oligomers with mAb47 promoted α-synuclein clearance, reduced astrocytic accumulation and rescued cells from mitochondrial stress. We could demonstrate that binding of the antibody to its antigen in the extracellular space was crucial for these effects to occur. The progressive pathology in PD is believed to be driven by cell-to-cell spreading of α-synuclein aggregates, potentially via exosomes and other extracellular vesicles (EVs). In Paper IV, we found that either fusing α-synuclein to a non-physiological protein tag or introducing the PD-causing A53T mutation directed α-synuclein towards EV secretion. Also, EV-associated α-synuclein was particularly prone to induce toxicity in recipient cells. In conclusion, this thesis sheds new light on the cellular dysfunction related to α-synuclein pathology and on how the underlying pathogenic processes may be targeted by antibody treatment.
168

MOLECULAR PERTURBATIONS IN SYNUCLEINOPATHY DISORDERS: INSIGHTS FROM PRE-CLINICAL TO HUMAN NEUROPATHOLOGY

Paola C. Montenegro (5930060) 15 May 2019 (has links)
<div><p>Parkinson’s disease (PD) is a devastating neurodegenerative disorder that affects 10 million people worldwide and is characterized by pronounced motor symptoms. Dementia with Lewy Bodies (DLB) involves both cognitive and motor deficits and affects ~1 million people in the United States. To date there is no cure for PD or DLB, and current treatments address only a subset of the symptoms that define these diseases. PD and DLB are ‘synucleinopathies’, defined as disorders involving the accumulation in patients’ brains of Lewy bodies. Lewy bodies are cellular inclusions that consist largely of aggregated species of alpha-synuclein (aSyn), a presynaptic protein that exists as both cytosolic and membrane-bound forms. Pathophysiological findings suggest that aggregated aSyn is involved in neurodegeneration in PD and DLB. However, mechanisms by which aSyn forms neurotoxic aggregates, and neurotoxic processes that distinguish different synucleinopathies such as PD and DLB, are poorly understood. To address these gaps, we have (i) designed a protocol to establish a primary cell culture model that can recapitulate key neuropathological features of PD, (ii) examined effects of expressing aSyn variants in a rat model of PD, and (iii) examined the expression profiles of neuroprotective genes in PD and DLB brain specimens.</p><p> </p><p>In the first part of my thesis, I describe the development of an optimized protocol to prepare primary midbrain and cortical cultures from rat embryonic brains for the study of PD and other synucleinopathies. The establishment of cellular models that simulate specific aspects of neuropathology can enable the characterization of molecular perturbations that lead to dopaminergic (DA) neuronal death. Our primary midbrain mixed culture model provides an outstanding opportunity to explore therapeutic strategies to rescue DA neurons from toxicity elicited by a range of PD-related insults. In addition, our primary cortical mixed cultures can be used to model cortical neuropathology in various CNS disorders including synucleinopathies.</p><p> </p><p>A number of mutations in the gene that codes for aSyn are associated with familial, early-onset forms of PD. A major goal of my thesis research is to characterize neurotoxic effects of a recently discovered familial substitution, A53E. This mutant was chosen based on the rationale that the introduction of a negatively charged residue at position 53 could potentially interfere with aSyn-membrane interactions and favor A53E aggregation, as we described for other familial aSyn mutants. For the first time, we have reproduced the neurotoxicity of A53E seen in human patients by expressing the mutant protein in rat midbrain. Rats injected unilaterally in the substantia nigra (SN) with rAAV encoding A53E and another familial mutant, A53T, but not rAAV encoding WT aSyn or a vector-control (‘stuffer’) virus, exhibited a significant motor impairment. Immunohistochemical analysis at 14 weeks after the viral injection revealed that brain sections from aSyn-expressing rats exhibit key features reminiscent of neuropathology in human PD, including nigral dopaminergic neuron loss (confirmed by unbiased stereology), striatal terminal depletion, and aSyn inclusion formation. In addition, it was determined that WT aSyn and the A53E and A53T mutants invaded the non-injected substantia nigra, implying that expressed aSyn protein can spread throughout the brain in the rat rAAV-aSyn model. These results yield insights into the molecular basis for the neurotoxicity of A53E and shed light on a potential role for membrane-induced aSyn aggregation in PD pathogenesis in vivo, thus setting the stage for developing therapies to slow neurodegeneration in the brains of familial and idiopathic PD patients. </p><p> </p><p>aSyn neurotoxicity varies with the expression of neuroprotective proteins, and misfolded aSyn affects cellular functions and gene expression. These observations suggest that differential gene expression patterns can inform us about similarities and differences in pathogenic mechanisms of different synucleinopathy disorders. A third phase of my thesis research was aimed at determining the expression levels of a panel of candidate neuroprotective genes in post-mortem brain samples from DLB and PD patients and age-matched controls (5 individuals in each group). mRNAs encoding the following proteins were quantified via qRT-PCR in homogenates prepared from the frontal cortex and the BA24 region encompassing the cingulate gyrus: DJ-1, a protein with antioxidant and chaperone activities; PGC1α, a master regulator of mitochondrial biogenesis and oxidative metabolism; MsrA, an antioxidant enzyme responsible for repairing oxidatively damaged proteins; and ATP13A2, a lysosomal protein involved in autophagy. In addition to yielding new insights into differential gene expression patterns in cortex versus cingulate gyrus, the data revealed differences in mRNA expression levels in DLB versus non-DLB cortical tissue. Although levels of all four neuroprotective mRNAs were increased (or showed a trend towards being increased) in DLB cortex, Western blot analysis revealed that only the DJ-1 and PGC1α proteins showed a trend towards being up-regulated, whereas levels of ATP13A2 and MsrA were unchanged. These findings suggest that there is a failure to induce cellular antioxidant responses and lysosomal autophagy at the protein level in DLB cortex, and in turn this failure could contribute to neuropathology. Interestingly, analysis of the same panel of neuroprotective genes in PD cortical samples did not show significant differences in mRNA or protein levels compared to control samples, suggesting that different neuroprotective mechanisms are induced in DLB versus PD cortex. These studies shed light on brain-region specific changes in gene expression associated with different synucleinopathy disorders, and they set the stage for developing new diagnostic tests and therapeutic strategies.</p></div><br>
169

Structural characterization of alpha-synuclein aggregates seeded by patient material

Strohäker, Timo 14 December 2018 (has links)
No description available.
170

Untersuchungen zur Dynamik und zum Aggregationsmechanismus von alpha-Synuklein in chronischen Toxinmodellen der dopaminergen Primärzellkultur

Oster, Sandra 18 December 2017 (has links)
Ein Schlüsselbefund der Parkinson-Krankheit auf zellulärer Ebene ist das Auftreten von Protein-Einschlusskörperchen, sogenannten Lewykörperchen. Der Hauptbestandteil dieser Lewykörperchen ist pathologisch aggregiertes, fibrilläres α-Synuklein, ein Protein, welches Einfluss auf präsynaptische Vesikel, Protein- und Enzymfunktionen sowie den Dopaminstoffwechsel und den axonalen Transport hat. Bis heute ungeklärt ist die Ursache der Aggregation des Proteins. Zahlreiche Forschungsaktivitäten werden in diese Richtung unternommen. Die pathologischen Mechanismen, die zur abnormen Aggregation von α-Synuklein führen, bleiben noch weitgehend unbekannt. Ein großer Teil der Literatur unterstützt die Hypothese, dass α-Synuklein bei Punktmutationen oder erhöhter Expression anfällig für Aggregationen ist und damit Neuronen geschädigt werden. Die Einzelheiten dieses sukzessiven Aggregationsprozesses und die Mechanismen, die dabei letztlich den Zelltod verursachen, bleiben unklar. Alterungsprozesse und Umweltfaktoren sind entscheidende Risikofaktoren. Obwohl es immer mehr Hinweise gibt, dass α-Synuklein-Aggregate eine wichtige pathophysiologische Rolle spielen, wird bisher noch unzulänglich verstanden, wie die für die dopaminergen Neurone toxische Wirkung entfaltet wird. Als gesicherter Pathomechanismus der Degeneration der dopaminergen Nervenzellen gilt ein erhöhter oxidativer Stress. Es wird vermutet, dass er zur Aggregation des α-Synukleins beitragen kann. Ziel dieser vorgelegten Arbeit ist es, durch die Verwendung eines geeigneten Zellkulturmodells zur Aufklärung der beschriebenen pathologischen Mechanismen beizutragen. In dieser Studie wurden zwei artifizielle Modellsubstanzen in einer dopaminergen Primärzellkultur eingesetzt, die Pestizide Rotenon und Paraquat, um die pathologischen Verhältnisse in der Substantia nigra zu simulieren. Sie erzeugen oxidativen Stress durch Hemmung der mitochondrialen Atmungskette bzw. Redoxreaktionen mit molekularem Sauerstoff, was zum dopaminergen Zelltod führt. Im Rahmen dieser Studie gelang es, beide Parkinson-Zellkulturmodelle anhand der Lokalisierung, des Aggregationsverhaltens, des Einflusses auf die Mikroglia-Aktivierung sowie des Abbaus von α-Synuklein näher zu charakterisieren. Hierzu wurde α-Synuklein durch Fluoreszenzfärbung, Westernblot und Immunpräzipitation analysiert. Eine kurzzeitige Behandlung mit hoch konzentrierten Toxinen löst eine akute Degeneration dopaminerger Neurone aus, die so nicht der des Idiopathischen Parkinsons entspricht. Beim IPS erfolgt die Degeneration über Jahre hinweg. Um auch den Einfluss der zellulären Alterung auf die α-Synuklein-Aggregation zu zeigen, wurden die in dieser Arbeit verwendeten Zellkulturen über 46 Tage kultiviert und die Pestizid-Konzentration so eingestellt, dass etwa 25-50 % der dopaminergen Neurone absterben. Es konnte gezeigt werden, dass es nach chronischer Behandlung mit dem jeweiligen Pestizid zu den verschiedenen Zeitpunkten Unterschiede in der Lokalisation sowie in der Konformation von α-Synuklein gibt. Die zum Vergleich nur bis zum Tag 11 kultivierten Zellkulturen zeigten nach kurzer Behandlung mit hochkonzentrierter Toxin-Menge eine Ansammlung von α-Synuklein im Soma, aber keine Auswanderung und Lokalisierung in und an den Neuriten, wie es nach chronischer Rotenon-Behandlung beobachtet werden konnte. Bei den Rotenon-behandelten Zellen ist ein Prozess der Verlagerung und Anhäufung des α-Synuklein aus dem Soma in die Neuriten bereits ab einem früheren Zeitpunkt zu beobachten als in den Kontrollen, welche sich aber mit zunehmendem Alter ähnlich verhalten. Außerdem konnte in den Kulturen, besonders bei den Rotenon-behandelten dopaminergen Neuronen, ein punktförmiges Verteilungsmuster und größere Ansammlungen des Proteins in den Neuriten beobachtet werden, was für eine aggregierte Form des α-Synukleins spricht. Diese Aggregate ließen sich durch die Proteo-Aggreosom-Färbung nachweisen. Auch der Nachweis von am Serin 129 phosphoryliertem α-Synuklein in diesen größeren Ansammlungen gilt als Zeichen für eine aggregierte Form. Die Beobachtung, dass α-Synuklein mit zunehmendem Kulturalter aus dem Soma in die Peripherie austritt, konnte bei der chronischen Paraquat-Behandlung so nicht getätigt werden. Unter Paraquat-Behandlung war keine Herauf-Regulierung der Gesamt-α-Synuklein Expression in der Kultur zu beobachten, wie dies sowohl bei Kontrolle als auch bei Rotenon der Fall ist. Wir vermuten im Paraquat-Modell, dass die sich im Soma ansammelnde Form von α-Synuklein durch vermehrte Einschleusung in den Zellkern zur Toxizität beitragen kann. Auch eine Interaktion von α-Synuklein mit der Zellmembran könnte unter Paraquat-Einfluss zum dopaminergen Zelltod beitragen. Durch Immunpräzipitation und Fluoreszenz-Doppelfärbung von α-Synuklein und Ubiquitin konnten wir den Abbau des fehlgefalteten α-Synukleins in der Zelle durch Ubiquitinierung nachweisen. Unter Rotenon ist ab DIV 14 eine starke Kolokalisation von α-Synuklein und Ubiquitin zu erkennen, die im Verlauf der Kultur nachlässt und nur noch in punktförmigen Aggregaten außerhalb der Zelle zu sehen ist. Unter Paraquat zeigte sich während der gesamten Kultivierung Polyubiquitinierung und Kolokalisation der beiden Proteine in der gesamten Zelle. Die Aggregationsform von α-Synuklein scheint das Proteinabbausystem durch Ubiquitinierung zu beeinflussen, da wir davon ausgehen, dass es sich bei der α-Synuklein-Konformation zu verschiedenen Zeitpunkten in den Paraquat-behandelten dopaminergen Neuronen nicht um die Aggregationsform handelt, die wir unter Rotenon beobachten konnten.

Page generated in 0.0353 seconds