• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 9
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Läkemedelseffekter på α-synuklein aggregering - betydelse för Parkinsons sjukdom

Nuhovic, Emina January 2019 (has links)
Parkinsons sjukdom (PD) är ett tillstånd som ger en försvårad och försämrad livskvalité. I dagsläget finns det endast symtomatiska läkemedel men ingen bot med vilken sjukdomen upphör eller som bromsar förloppet. Pågående forskningsarbete utgår bland annat från att ta fram nya läkemedel men även också undersöka om redan befintliga läkemedel går att använda som behandling av PD. Många av de redan befintliga läkemedlen som testas är de som har förmågan att påverka proteinet α-synuklein (α-syn) och dess aggregering, som visats vara en central orsak till uppkomsten av PD. I föreliggande litteraturstudie undersöktes på vilket sätt en del läkemedel vars indikation är PD och även andra sjukdomstillstånd såsom astma, påverkar (ex. påskyndar eller inhiberar) in-vitro aggregering av α-syn. Därutöver genomfördes en detaljerad analys av de utvalda läkemedlen och deras effekt på α-syn aggregering utifrån deras kemiska egenskaper med avseende på löslighet (hydrofila, lipofila, amfifila) och inbindning till α-syn. Här kunde det visas att aggregering av α-syn inhiberades av alla utvalda läkemedel förutom dexametason, som istället påskyndade aggregeringskinetiken för proteinet. Dessutom uppvisade fasudil, ceftriaxon, dopamin, entakapon och tolkapon inbindning till delar av (hydrofila, hydrofoba eller amfifila) vilka delade samma fysikalkemiska egenskaper som α-syn. Därtill uppvisade utvalda läkemedel med till viss del plana strukturer (ex. aromatiska ringar) direkt inbindning till α-syn, vilka också rapporterats ha en något högre grad av transport över blod-hjärnbarriären, dock måste dessa fynd mer noggrant undersökas. Sammanfattningsvis visade alla utvalda läkemedel förutom dexametason anti-aggregeringsegenskaper (hämmande) mot α-syn genom att antingen indirekt eller direkt binda till proteinet och därmed hindra proteinet från att börja binda till sig själv. Mer studier måste genomföras för att studera effekten av läkemedelsexponering på α-syn för att identifiera viktiga segment av proteinet som kan utgöra läkemedelsmål för inhibering av α-syn aggregering. / Parkinson's disease (PD) is a condition that leads to an aggravated and worsened quality of life. At present, there are only symptomatic drugs for PD but no cure that eradicate the disease nor halter the disease progression have been found. Current research is being carried out to develop new drugs, but efforts also investigate whether existing drugs can be used as treatment for PD. Many of the already existing drugs being tested are those that have the ability to interact with a protein called α-synuclein (α-syn), that has been implicated to be a major player for onset of PD. In the present literature study, it was investigated in what way some drugs, whose indication is PD but also other diseases such as asthma, affect (i.e. propagate or inhibit) the in-vitro aggregation kinetics of αsyn. Additionally, a detailed analysis of the investigated drugs and their effect on the aggregation pathway was made to characterize common chemical features of the selected drugs based upon choice of solvents and binding to α-syn. Here, it could be shown that aggregation of α-syn is inhibited upon exposure to all selected drugs except dexametason which instead propagated aggregation of α-syn. In addition, fasudil, ceftriaxone, dopamine, entacapone and tolcapone was found to bind to parts (hydrophilic, hydrophobic or amphiphilic) of α-syn similar to their solubility features. Moreover, the selected drugs that were found to bind to α-syn seemed to exhibit planar in structure (i.e. aromatic rings) and also be associated to pass the blood-brain barrier to a greater extent, however these findings need to be more thoroughly investigated. In summary, all drugs but dexametason were shown to inhibit aggregation of α-syn invitro by either indirectly or directly affecting the aggregation of the protein. Further investigations need to be carried out to study the effect of drug exposure on α-syn aggregation in order to propose key segments of α-syn that can act as drug targets for inhibition of protein aggregation.
2

SUMOylation modulates α-synuclein toxicity and fibril formation / SUMOylierung verändert die Toxizität und Fibrillenbildung von α-Synuklein

Krumova, Petranka 03 June 2009 (has links)
No description available.
3

Untersuchungen zur Dynamik und zum Aggregationsmechanismus von alpha-Synuklein in chronischen Toxinmodellen der dopaminergen Primärzellkultur

Oster, Sandra 22 January 2018 (has links) (PDF)
Ein Schlüsselbefund der Parkinson-Krankheit auf zellulärer Ebene ist das Auftreten von Protein-Einschlusskörperchen, sogenannten Lewykörperchen. Der Hauptbestandteil dieser Lewykörperchen ist pathologisch aggregiertes, fibrilläres α-Synuklein, ein Protein, welches Einfluss auf präsynaptische Vesikel, Protein- und Enzymfunktionen sowie den Dopaminstoffwechsel und den axonalen Transport hat. Bis heute ungeklärt ist die Ursache der Aggregation des Proteins. Zahlreiche Forschungsaktivitäten werden in diese Richtung unternommen. Die pathologischen Mechanismen, die zur abnormen Aggregation von α-Synuklein führen, bleiben noch weitgehend unbekannt. Ein großer Teil der Literatur unterstützt die Hypothese, dass α-Synuklein bei Punktmutationen oder erhöhter Expression anfällig für Aggregationen ist und damit Neuronen geschädigt werden. Die Einzelheiten dieses sukzessiven Aggregationsprozesses und die Mechanismen, die dabei letztlich den Zelltod verursachen, bleiben unklar. Alterungsprozesse und Umweltfaktoren sind entscheidende Risikofaktoren. Obwohl es immer mehr Hinweise gibt, dass α-Synuklein-Aggregate eine wichtige pathophysiologische Rolle spielen, wird bisher noch unzulänglich verstanden, wie die für die dopaminergen Neurone toxische Wirkung entfaltet wird. Als gesicherter Pathomechanismus der Degeneration der dopaminergen Nervenzellen gilt ein erhöhter oxidativer Stress. Es wird vermutet, dass er zur Aggregation des α-Synukleins beitragen kann. Ziel dieser vorgelegten Arbeit ist es, durch die Verwendung eines geeigneten Zellkulturmodells zur Aufklärung der beschriebenen pathologischen Mechanismen beizutragen. In dieser Studie wurden zwei artifizielle Modellsubstanzen in einer dopaminergen Primärzellkultur eingesetzt, die Pestizide Rotenon und Paraquat, um die pathologischen Verhältnisse in der Substantia nigra zu simulieren. Sie erzeugen oxidativen Stress durch Hemmung der mitochondrialen Atmungskette bzw. Redoxreaktionen mit molekularem Sauerstoff, was zum dopaminergen Zelltod führt. Im Rahmen dieser Studie gelang es, beide Parkinson-Zellkulturmodelle anhand der Lokalisierung, des Aggregationsverhaltens, des Einflusses auf die Mikroglia-Aktivierung sowie des Abbaus von α-Synuklein näher zu charakterisieren. Hierzu wurde α-Synuklein durch Fluoreszenzfärbung, Westernblot und Immunpräzipitation analysiert. Eine kurzzeitige Behandlung mit hoch konzentrierten Toxinen löst eine akute Degeneration dopaminerger Neurone aus, die so nicht der des Idiopathischen Parkinsons entspricht. Beim IPS erfolgt die Degeneration über Jahre hinweg. Um auch den Einfluss der zellulären Alterung auf die α-Synuklein-Aggregation zu zeigen, wurden die in dieser Arbeit verwendeten Zellkulturen über 46 Tage kultiviert und die Pestizid-Konzentration so eingestellt, dass etwa 25-50 % der dopaminergen Neurone absterben. Es konnte gezeigt werden, dass es nach chronischer Behandlung mit dem jeweiligen Pestizid zu den verschiedenen Zeitpunkten Unterschiede in der Lokalisation sowie in der Konformation von α-Synuklein gibt. Die zum Vergleich nur bis zum Tag 11 kultivierten Zellkulturen zeigten nach kurzer Behandlung mit hochkonzentrierter Toxin-Menge eine Ansammlung von α-Synuklein im Soma, aber keine Auswanderung und Lokalisierung in und an den Neuriten, wie es nach chronischer Rotenon-Behandlung beobachtet werden konnte. Bei den Rotenon-behandelten Zellen ist ein Prozess der Verlagerung und Anhäufung des α-Synuklein aus dem Soma in die Neuriten bereits ab einem früheren Zeitpunkt zu beobachten als in den Kontrollen, welche sich aber mit zunehmendem Alter ähnlich verhalten. Außerdem konnte in den Kulturen, besonders bei den Rotenon-behandelten dopaminergen Neuronen, ein punktförmiges Verteilungsmuster und größere Ansammlungen des Proteins in den Neuriten beobachtet werden, was für eine aggregierte Form des α-Synukleins spricht. Diese Aggregate ließen sich durch die Proteo-Aggreosom-Färbung nachweisen. Auch der Nachweis von am Serin 129 phosphoryliertem α-Synuklein in diesen größeren Ansammlungen gilt als Zeichen für eine aggregierte Form. Die Beobachtung, dass α-Synuklein mit zunehmendem Kulturalter aus dem Soma in die Peripherie austritt, konnte bei der chronischen Paraquat-Behandlung so nicht getätigt werden. Unter Paraquat-Behandlung war keine Herauf-Regulierung der Gesamt-α-Synuklein Expression in der Kultur zu beobachten, wie dies sowohl bei Kontrolle als auch bei Rotenon der Fall ist. Wir vermuten im Paraquat-Modell, dass die sich im Soma ansammelnde Form von α-Synuklein durch vermehrte Einschleusung in den Zellkern zur Toxizität beitragen kann. Auch eine Interaktion von α-Synuklein mit der Zellmembran könnte unter Paraquat-Einfluss zum dopaminergen Zelltod beitragen. Durch Immunpräzipitation und Fluoreszenz-Doppelfärbung von α-Synuklein und Ubiquitin konnten wir den Abbau des fehlgefalteten α-Synukleins in der Zelle durch Ubiquitinierung nachweisen. Unter Rotenon ist ab DIV 14 eine starke Kolokalisation von α-Synuklein und Ubiquitin zu erkennen, die im Verlauf der Kultur nachlässt und nur noch in punktförmigen Aggregaten außerhalb der Zelle zu sehen ist. Unter Paraquat zeigte sich während der gesamten Kultivierung Polyubiquitinierung und Kolokalisation der beiden Proteine in der gesamten Zelle. Die Aggregationsform von α-Synuklein scheint das Proteinabbausystem durch Ubiquitinierung zu beeinflussen, da wir davon ausgehen, dass es sich bei der α-Synuklein-Konformation zu verschiedenen Zeitpunkten in den Paraquat-behandelten dopaminergen Neuronen nicht um die Aggregationsform handelt, die wir unter Rotenon beobachten konnten.
4

Selektive neuronale Vulnerabilität neurodegenerativer Erkrankungen am Beispiel des Thalamus / Selective neuronal vulnerability of neurodegenerative diseases using the example of the thalamus

Mathes, Joachim 05 March 2018 (has links)
No description available.
5

Untersuchungen zur Dynamik und zum Aggregationsmechanismus von alpha-Synuklein in chronischen Toxinmodellen der dopaminergen Primärzellkultur

Oster, Sandra 18 December 2017 (has links)
Ein Schlüsselbefund der Parkinson-Krankheit auf zellulärer Ebene ist das Auftreten von Protein-Einschlusskörperchen, sogenannten Lewykörperchen. Der Hauptbestandteil dieser Lewykörperchen ist pathologisch aggregiertes, fibrilläres α-Synuklein, ein Protein, welches Einfluss auf präsynaptische Vesikel, Protein- und Enzymfunktionen sowie den Dopaminstoffwechsel und den axonalen Transport hat. Bis heute ungeklärt ist die Ursache der Aggregation des Proteins. Zahlreiche Forschungsaktivitäten werden in diese Richtung unternommen. Die pathologischen Mechanismen, die zur abnormen Aggregation von α-Synuklein führen, bleiben noch weitgehend unbekannt. Ein großer Teil der Literatur unterstützt die Hypothese, dass α-Synuklein bei Punktmutationen oder erhöhter Expression anfällig für Aggregationen ist und damit Neuronen geschädigt werden. Die Einzelheiten dieses sukzessiven Aggregationsprozesses und die Mechanismen, die dabei letztlich den Zelltod verursachen, bleiben unklar. Alterungsprozesse und Umweltfaktoren sind entscheidende Risikofaktoren. Obwohl es immer mehr Hinweise gibt, dass α-Synuklein-Aggregate eine wichtige pathophysiologische Rolle spielen, wird bisher noch unzulänglich verstanden, wie die für die dopaminergen Neurone toxische Wirkung entfaltet wird. Als gesicherter Pathomechanismus der Degeneration der dopaminergen Nervenzellen gilt ein erhöhter oxidativer Stress. Es wird vermutet, dass er zur Aggregation des α-Synukleins beitragen kann. Ziel dieser vorgelegten Arbeit ist es, durch die Verwendung eines geeigneten Zellkulturmodells zur Aufklärung der beschriebenen pathologischen Mechanismen beizutragen. In dieser Studie wurden zwei artifizielle Modellsubstanzen in einer dopaminergen Primärzellkultur eingesetzt, die Pestizide Rotenon und Paraquat, um die pathologischen Verhältnisse in der Substantia nigra zu simulieren. Sie erzeugen oxidativen Stress durch Hemmung der mitochondrialen Atmungskette bzw. Redoxreaktionen mit molekularem Sauerstoff, was zum dopaminergen Zelltod führt. Im Rahmen dieser Studie gelang es, beide Parkinson-Zellkulturmodelle anhand der Lokalisierung, des Aggregationsverhaltens, des Einflusses auf die Mikroglia-Aktivierung sowie des Abbaus von α-Synuklein näher zu charakterisieren. Hierzu wurde α-Synuklein durch Fluoreszenzfärbung, Westernblot und Immunpräzipitation analysiert. Eine kurzzeitige Behandlung mit hoch konzentrierten Toxinen löst eine akute Degeneration dopaminerger Neurone aus, die so nicht der des Idiopathischen Parkinsons entspricht. Beim IPS erfolgt die Degeneration über Jahre hinweg. Um auch den Einfluss der zellulären Alterung auf die α-Synuklein-Aggregation zu zeigen, wurden die in dieser Arbeit verwendeten Zellkulturen über 46 Tage kultiviert und die Pestizid-Konzentration so eingestellt, dass etwa 25-50 % der dopaminergen Neurone absterben. Es konnte gezeigt werden, dass es nach chronischer Behandlung mit dem jeweiligen Pestizid zu den verschiedenen Zeitpunkten Unterschiede in der Lokalisation sowie in der Konformation von α-Synuklein gibt. Die zum Vergleich nur bis zum Tag 11 kultivierten Zellkulturen zeigten nach kurzer Behandlung mit hochkonzentrierter Toxin-Menge eine Ansammlung von α-Synuklein im Soma, aber keine Auswanderung und Lokalisierung in und an den Neuriten, wie es nach chronischer Rotenon-Behandlung beobachtet werden konnte. Bei den Rotenon-behandelten Zellen ist ein Prozess der Verlagerung und Anhäufung des α-Synuklein aus dem Soma in die Neuriten bereits ab einem früheren Zeitpunkt zu beobachten als in den Kontrollen, welche sich aber mit zunehmendem Alter ähnlich verhalten. Außerdem konnte in den Kulturen, besonders bei den Rotenon-behandelten dopaminergen Neuronen, ein punktförmiges Verteilungsmuster und größere Ansammlungen des Proteins in den Neuriten beobachtet werden, was für eine aggregierte Form des α-Synukleins spricht. Diese Aggregate ließen sich durch die Proteo-Aggreosom-Färbung nachweisen. Auch der Nachweis von am Serin 129 phosphoryliertem α-Synuklein in diesen größeren Ansammlungen gilt als Zeichen für eine aggregierte Form. Die Beobachtung, dass α-Synuklein mit zunehmendem Kulturalter aus dem Soma in die Peripherie austritt, konnte bei der chronischen Paraquat-Behandlung so nicht getätigt werden. Unter Paraquat-Behandlung war keine Herauf-Regulierung der Gesamt-α-Synuklein Expression in der Kultur zu beobachten, wie dies sowohl bei Kontrolle als auch bei Rotenon der Fall ist. Wir vermuten im Paraquat-Modell, dass die sich im Soma ansammelnde Form von α-Synuklein durch vermehrte Einschleusung in den Zellkern zur Toxizität beitragen kann. Auch eine Interaktion von α-Synuklein mit der Zellmembran könnte unter Paraquat-Einfluss zum dopaminergen Zelltod beitragen. Durch Immunpräzipitation und Fluoreszenz-Doppelfärbung von α-Synuklein und Ubiquitin konnten wir den Abbau des fehlgefalteten α-Synukleins in der Zelle durch Ubiquitinierung nachweisen. Unter Rotenon ist ab DIV 14 eine starke Kolokalisation von α-Synuklein und Ubiquitin zu erkennen, die im Verlauf der Kultur nachlässt und nur noch in punktförmigen Aggregaten außerhalb der Zelle zu sehen ist. Unter Paraquat zeigte sich während der gesamten Kultivierung Polyubiquitinierung und Kolokalisation der beiden Proteine in der gesamten Zelle. Die Aggregationsform von α-Synuklein scheint das Proteinabbausystem durch Ubiquitinierung zu beeinflussen, da wir davon ausgehen, dass es sich bei der α-Synuklein-Konformation zu verschiedenen Zeitpunkten in den Paraquat-behandelten dopaminergen Neuronen nicht um die Aggregationsform handelt, die wir unter Rotenon beobachten konnten.
6

Examining FYCO1 as a modulator of autophagy for alpha-synuclein aggregate clearance in hiPSC derived neurons

Beer, Judith 21 February 2024 (has links)
Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide affecting 1 - 2 % of the population older than 65. Patients develop characteristic motoric dysfunctions alongside early-onset non-motor symptoms including sleeping disorders, anxiety or depression and late-stage cognitive deficits such as dementia. To date, dopamine-replacement therapies are the gold standard for treating PD patients, improving motoric disorders by compensating for the loss of dopaminergic neurons in the substantia nigra, however no curative therapies to prevent disease progression are yet available. The pathomechanism underlying PD is complex, and the interplay of factors causing the disease is not entirely understood. The formation of α-synuclein protein aggregates, being one of the hallmarks associated with PD, is regarded as a major contributor to neuronal death and the spreading of PD pathology throughout different brain regions as the disease progresses. In the past, deficits in cellular protein clearance machinery have been affiliated with the accumulation of α-synuclein aggregates in PD. In particular, impairements in the macroautophagy-lysosomal pathway (here referred to as autophagy), which is involved in the degradation of large cytosolic components, were found to promote α-synuclein aggregation. In contrast, autophagic stimulation has been shown to benefit α-synuclein degradation and rescue PD phenotypes in cell and rodent models. In this study, I examined the role of FYCO1 in modulating neuronal autophagic processes for α-synuclein aggregate clearance in hiPSC-derived neurons. FYCO1 is an interaction partner of the central autophagic regulator RAB7 but was mostly unnoticed since it was not found detrimental to cellular homeostasis under basal conditions. Still, previous work of our group has identified FYCO1 to rescue PD phenotypes in model systems such as HEK cells and Drosophila, due to improved α-synuclein clearance following FYCO1 overexpression. Mechanistically, FYCO1 is involved in autophagosome-lysosome fusion events by binding to autophagic vesicles, which is required for autophagosome maturation and final degradation. In addition, FYCO1 affiliates autophagic vesicles with the cellular transport machinery via kinesin motor proteins. While fusion promotion can be assigned to an enhancing effect on autophagic clearance, FYCO1-induced anterograde transport promotion is opposite to the retrograde trafficking route of autophagic vesicles for maturation, which is of special importance in neuronal axons. Here, I illuminated FYCO1 effects on both axonal vesicle transport processes and somal vesicle pools to evaluate its ability to promote autophagy-related degradation in neurons. To this end, I established a lentiviral transduction-based model in hiPSC-derived neurons to express FYCO1 in the presence of either a fluorescently labelled marker for autophagic vesicles (LC3-TFL) or in the presence of α-synuclein. In neuronal axons, FYCO1 overexpression impaired retrograde autophagic transport resulting in less movement, implying an inhibitory effect on axonal autophagy. In contrast, FYCO1 enhanced autophagic processes in neuronal somata by upregulating LC3 levels, promoting the collection of α-synuclein in autophagic vesicle clusters and increasing the colocalisation of autophagosomes with lysosomal markers, pointing to the advance in autophagosome maturation. I could not fully resolve, whether α-synuclein degradation was promoted by this induction, as α-synuclein clearance was not indicated yet in the time course of three weeks. Still, studying mutant forms of FYCO1 revealed deficits in autophagosome maturation, which were not represented with wild-type FYCO1. In particular, the autophagosome-interaction domain was essential for autophagosome-lysosome fusion and additionally seemed to be relevant for autophagosomes entering axonal transport, while mutations in the kinesin binding domain caused autophagosome acidification impairments. The most pronounced effect of FYCO1 overexpression in neurons was the modulation of lysosomal vesicles. Besides increasing lysosomal localisation to autophagic vesicles, FYCO1 promoted retrograde trafficking of axonal lysosomal vesicles, by a so far unresolved mechanism. As increasing transport of lysosomes toward the neuronal soma can be connected to the upregulation of autophagy, I hypothesise FYCO1 to be a mediator in autophagy induction signalling. Nevertheless, such an effect needs to be verified in future studies. Conclusively, with this work, I contributed to the understanding of FYCO1’s role in enhancing neuronal autophagic processes but further studies in more advanced PD models are required to evaluate whether this could contribute to an increased clearance of α-synuclein aggregates.
7

Heart-Fatty Acid Binding Protein und α-Synuklein im Serum als mögliche Markerkandidaten für Parkinson und Demenz / Heart-fatty acid binding protein and α-synuclein in blood serum as possible biomarker candidates for Parkinson's disease and dementia

Willner, Markus 07 March 2018 (has links)
No description available.
8

Analysis of Neuronal Diseases in the Model Organism <i>Aspergillus nidulans</i> / Die Analyse neuronaler Krankheiten im Modellorganismus <i>Aspergillus nidulans</i>

Laubinger, Karen 29 October 2008 (has links)
No description available.
9

Charakterisierung der myopathologischen Veränderungen bei der Kamptokormie des Morbus Parkinson / Characterization of the myopathological alterations in camptocormia of Parkinson's disease

Wrede, Arne 29 February 2012 (has links)
No description available.

Page generated in 0.0285 seconds