Spelling suggestions: "subject:"detrain"" "subject:"1strain""
51 |
Train surfing: the Soweto pastimeMoroke, Mapule Sheena 08 April 2016 (has links)
A Research Report submitted in partial fulfilment of the requirements for the Degree of
Masters in Community Based-Counselling Psychology in the Faculty of Humanities at
the University of the Witwatersrand / Train surfing or staff riding has been a part of the South African working-class economic
fabric since the initiation of segregation under apartheid. Now within contemporary society
the activity has gained great media attention due to the fatalities that are so commonly
associated with it. Despite it being a globally and locally longstanding activity it is still an
area that is under-researched. The current study was aimed at exploring the growing
phenomenon and how it is constructed by youth in Soweto. A total of 32 adolescent boys and
girls between the ages of 18 and 21 were recruited from a public secondary school in Orlando
West, Soweto, to take part in one of four focus groups. The participants’ responses from the
focus group discussions were recorded then analysed using thematic content analysis.
Emerging themes, including what it means to be an adolescent living in Soweto postapartheid,
what adolescents now consider having fun, and what they consider to be risky
behaviour, were explored in the data analysis. In addition, alternative growing phenomena
within Soweto were identified, namely biking and drag-racing. Evident from the analysis was
the pressure felt and experienced by adolescents, especially by male adolescents within
society and the school environment to fit in to popular constructions of a growing adult and
the constructions of hegemonic masculinity in contemporary South Africa. It was also found
that the train surfing participants used the practice as a means to define their identity as
young, black males living in South Africa. However, as much as some of the accounts of the
reasons behind risky behaviours were in line with hegemonic constructions of masculinity,
also revealed were the alternative and opposing voices which appeared to be tense with
emotional, personal and social sacrifices. This fluidity of identity was explored through the
various components of identity such as race, class and gender that all interact within the
context of Soweto and results in differing adolescent identity constructions, such as, the
ambitious and inspired, as well as the risk-taking train surfers who are described as being ‘in
limbo’. The research concludes by shifting contemporary understanding of the phenomenon
from one of thrill seeking to a performance of identity and masculinity that is influenced by
race, class, and gender.
|
52 |
Modelling the role of SuDS management trains to minimise the flood risk of new-build housing developments in the UKLashford, C. January 2016 (has links)
In a changing climate with an increasing risk of flooding, developing a sustainable approach to flood management is paramount. Sustainable Drainage Systems (SuDS) present a change in thinking with regards to drainage; storing water in the urban environment as opposed to rapidly removing it to outflows. The Non-Statutory Standards for SuDS (DEFRA 2015a) presented a requirement for all developments to integrate SuDS in their design to reduce runoff. This research models the impact on water quantity of combining different SuDS devices to demonstrate their success as a flood management system, as compared to conventional pipe based drainage. The research uses MicroDrainage®, the UK industry standard flood modelling tool which has an integrated SuDS function, to simulate the role of SuDS in a management train. As space is often cited as the primary reason for rejecting SuDS, determining the most effective technique at reducing runoff is critical. Detention basins were concluded as being highly effective at reducing peak flow (150 l/s when combined with swales), however Porous Pavement Systems (PPS) was nearly twice as effective per m3, reducing peak flow by up to 0.075 l/s/m3 compared to 0.025 l/s/m3. This therefore suggests that both detention basins and PPS should be high priority devices when developing new sites, but that no matter what combination of modelled SuDS are installed a reduction in runoff in comparison to conventional drainage can be achieved. A SuDS decision support tool was developed to assist design in MicroDrainage® by reducing the time spent determining the number of SuDS required for a site. The tool uses outputs from MicroDrainage® to rapidly predict the minimum and maximum peak flow for a site, in comparison to greenfield runoff, based on the site parameters of area, rainfall rate, infiltration, combined with the planned SuDS. The tool was underpinned by a model analysis for each site parameter and each SuDS device, which produced r2 values >0.8, with 70% above 0.9. This ensured a high level of confidence in the outputs, enabling a regression analysis between runoff and each site parameter and SuDS device at the 99% confidence level, with the outputs combined to create the tool. The final aspect of the research validated MicroDrainage® to analyse the accuracy of the software at predicting runoff. Using field data from Hamilton, Leicester, and laboratory data for PPS and filter drains, a comparison could be made with the output from MicroDrainage®. The field data created a Nash-Sutcliffe Efficiency (NSE) of 0.88, with filter drains and PPS providing an NSE of 0.98 and 0.94 respectively. This demonstrates the success with which MicroDrainage® predicts runoff and provides credibility to the outputs of the research. Furthermore, it offers SuDS specialists the confidence to use MicroDrainage® to predict runoff when using SuDS.
|
53 |
Aerodynamic Drag On Intermodal Rail CarsKinghorn, Philip Donovan 01 June 2017 (has links)
The freight rail industry is essential to the US infrastructure and there is significant motivation to improve its efficiency. The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between containers that often occurs and the resulting pressure drag resulting from the separated flow that results due to their non-streamlined shape. This thesis reports on research that has been done to characterize the aerodynamic drag on intermodal train builds and allow their builds to be optimized for fuel efficiency. Data was obtained through wind tunnel testing of G-scale (1/29) models. Drag on these models was measured using a system of isolated load cell balances and the wind tunnel speed was varied from 20 to 100 mph. Several common intermodal scenarios were explored and the aerodynamic drag for each was characterized. These scenarios were the partial loading of containers on rail cars, the influence of the gap between containers, the use of a streamlined container near the front of the train, and the inclusion of semi-trailers on railcars. For each case multiple build configurations were tested and the drag results were compared to determine the optimal build for each scenario.
|
54 |
Contribution au développement d’une nouvelle plateforme de caractérisation non linéaire pour amplificateurs de puissance hyperfréquences pour les applications radar / Contribution to the development of a new non linear characterization platform for radar power amplifierBridier, Vincent 20 November 2014 (has links)
L’amplificateur haute puissance d’un radar, qui est l’un des éléments définissant les performances du système, est un sujet constant de rechecherche afin d’améliorer sa puissance et son rendement. Des améliorations des performances peuvent être apportées par la combinaison d’une technologie relativement nouvelle, le HEMT GaN et de classes de fonctionnement d’amplificateur à haut rendement telles les classes de commutation. Ces dernières faisant usage des harmoniques du signal complexe émis par l’amplificateur en compression, une caracterisation non linéaire est requise. Ce type de caractérisation existe déjà en mode CW et pulsé périodique. Cependant, le mode pulsé périodique n’apporte qu’une approximation du train d’impulsions radar réel excitant l’amplificateur, négligeant les effets causés par le train de pulse. Cela concerne particulièrement la technologie HEMT GaN qui est susceptible à des effets thermique et de mémoire. Ce travail propose une nouvelle technique de mesure reposant sur un prototype de NVNA basé sur des mélangeurs capable de mesurer trois fréquences simultanément, permettant la caractérisation non linéaire d’un amplificateur en condition radar réelle en terme de train d’impulsions. Cet instrument a été validé par des mesures CW et pulsée périodique en utilisant un appareil type LSNA et un VNA disponible sur le marché. La technique mesure, optimisée dans ce travail jusqu’à 12GHz, permet de visualiser des effets causés par le train d’impulsions sur l’amplificateur de puissance tout en mesurant les trois premiers tons du signal complexe au meilleur rapport signal à bruit disponible grâce à l’architecture de l’instrument. / Radar high power amplifier, that is one of the performance defining elements of a radar system, is under constant investigation to improve its power and efficiency. Improvement can be provided through the combination of relatively new transistor technology such as HEMT GaN and the use of high efficiency functioning class such as commutation classes. Commutation classes making use of harmonic tones of the complex signal of the amplifier at compression, non- linear characterization is required. Such characterization already available for CW and periodic pulse signal. However periodic pulse only provide an approximation of the actual radar pulse train the amplifier will be submitted to, overlooking effects cause by the pulse train. This affect especially on HEMT GaN which is prone to thermal and memory effects. This work propose a new measurement technique relying on a developed mixer based NVNA prototype able to measure three frequencies simultaneously, allowing the non linear characterization of a power amplifier in actual non periodic radar pulse train. The instrument was validated in CW and periodic pulse condition using commercially available NVNA and a LSNA. The measurement technique, optimized in this work to be performed up to 12GHz, allowed to see effects caused by the radar pulse train on a power amplifier performance while recording all three tones at best signal to noise ratio available thanks to the instrument architecture.
|
55 |
Jet and Droplet Impingement on Superhydrophobic SurfacesStoddard, Jonathan Glenn 01 August 2015 (has links)
The effect of superhydrophobicity on liquid water impingement on a flat horizontal surface was explored. The surfaces combined a hydrophobic surface chemistry with a patterned microstucture in order to produce high contact angles with water. Three sets of experiments were performed, one for jet impingement and two for droplet impingement, which advance previous work in characterizing the interaction of water and superhydrophobic surfaces.Jet impingement experiments were performed to characterize a transitional regime between an unsubmerged and a completely submerged superhydrophobic surface by varying an imposed downstream depth. For low downstream depths, the surface remained unsubmerged and displayed only break up of the thin film, while at high downstream depths, the surface was completely submerged and only a hydraulic jump occurred. Within the transition, the surface was partially submerged and both thin film breakup and a hydraulic jump were observed. Experiments were performed for three Reynolds numbers, Re, ranging from 1.9 x 104 to 2.2 x 104 (based on the volume flow rate). For all Re, the transition was characterized by a reduction in the hydraulic jump radius as downstream depth increased. Also, as Re increased, the downstream depths over which the transition occurred was greater. When a droplet impinges on a surface covered with a liquid film, a thin liquid wall, or crown, forms and propagates outward. Here a comparison of this crown dynamic was made for smooth hydrophilic surfaces and superhydrophobic (SH) surfaces patterned with post or rib microfeatures. Due to the high contact angle of the SH surfaces, a relatively thick film (h ≈ 5 mm) of water was required to maintain a film. This resulted in negligible differences between the surfaces utilized. Droplet train impingement on the same post and rib SH surfaces was also investigated. When each individual droplet impinged on the surface, a crown formed which spread out radially until reaching a semi-stable or regularly oscillating breakup diameter. At this point, the water would either build up or breakup into droplets or filaments and then continue radially outward. In some cases the crown would break up, causing splashing. A comparison to previous experiments on hydrophilic surfaces shows a distinct difference in splashing at low frequency. The breakup diameter was measured over a Weber number range of 72-2800. The data was collapsed as a function of a combination of the Reynolds number (Re), Capillary number (Ca), and Strouhal number (St), resulting in Re0.7CaSt. The rib SH surface displayed an elongated breakup due to the anisotropic surface features. The breakup diameter for the droplet train was compared to the breakup diameter which has been shown to occur with a jet impinging on a SH surface.
|
56 |
Fundamental Scheme for Train SchedulingFukumori, Koji 01 September 1980 (has links)
Traditionally, the compilation of long-term timetables for high-density rail service with multiple classes of trains on the same track is a job for expert people, not computers. We propose an algorithm that uses the range-constriction search technique to schedule the timing and pass-through relations of trains smoothly and efficiently. The program determines how the timing of certain trains constrains the timing of others, finds possible time regions and pass-through relations and then evaluates the efficiency of train movement for each pass-through relation.
|
57 |
Storing and reading sensor data from battery assisted passive RFIDZherdev, Filip January 2011 (has links)
Radio Frequency Identification (RFID) technology is an electronic labeling technique.These electronic labels are called tags and read wirelessly. In this thesis a battery and amicroprocessor are connected to the tag. The work consisted of programming themicroprocessor to transfers sensor data into the tags memory. The tags are placed ontrains and data is collected from sensors at the train's axle. That way sensor data can betransmitted from a train to readers stationed along the railroad tracks.The aim of the project is to predict service intervals. There is currently no possibility tosee wear in real time and stop a train before it breaks. At present, there is a form of heatdetectors located along the railroad tracks to measure temperatures of wheels and axlesof passing trains. These are expensive and have the disadvantage of being able to detecterrors that have already occurred, they can not detect errors that do not radiate heat.The thesis aims to provide a solution for this. By programming a microprocessor totransmit sensor data to the tags memory it is possible for an RFID reader to read thesensor data from the tag. Ensuring that data and identity can be read from the tag atspeeds up to 250 km/h, you can get the status of a trains wagon before it breaks.
|
58 |
A Study on the Creative Design Methodology of the Multi-Speed Drive Hub for BicyclesShu, Jiun-jung 02 July 2007 (has links)
The multi-speed internal gear hub of a bicycle is a well-closed gear shifting system that works perfectly under any challenging riding environment, and is developed specifically to improve fragile chain-drive derailleur using planetary gear trains. In recent years, bicycle internal hub gears have been developed toward multi-speed transmission, and in the development process of internal gear hubs, the structure of speed changing mechanism has changed from a single planetary gear train to multiple planetary gear trains, and is becoming more complex. The primary purpose of this Study aims to establish a systemized and efficient design process, and develop an effective theory and method for designing multiple-speed internal gear hubs with the design concept and common features of multiple-speed internal gear hub products developed in recent years, to favor the innovation and development of internal gear hubs. First, existing multiple speed internal hub products are analyzed and summarized for their basic features, limitations, and demands as the reference for the design of multiple speed internal gear hubs, and a catalog of usable planetary structures is systematically established with the coupling and connection of basic high and low ratio speed changing modules. Secondly, usable planetary structures that offer best performance of geometric progression speed ratio distribution of gear hub are matched with gear positions, and a table of gear sequence is confirmed; third, based on the maximum external diameter required by design, tooth numbers for every gear in a hub are defined according to the relationship between tooth number and speed ratio, as well as the gear sequences; and finally, the systematic design process above is applied to the development of an easy-to-use computer aided design software with the lowest possible number of variables using Visual Basic 6.0 for designers, in order to favor the innovation and development of internal gear hubs.
|
59 |
Rigid Modeling of MRT Propulsion And Load Flow AnalysisLiao, Jung-Ting 12 June 2001 (has links)
The main goal of this thesis is to improve the efficiency of power consumption for single train and propose the effects of the voltage variation to AC/DC power flow. This thesis establishes a simplified mathematic model for motor drivers with the magnetic vector control laws. Furthermore, it designs the framework of the motor drives model with the power system blockset of the MATLAB/SIMULINK. The mass rapid transit(MRT) power system framework are also introduced in the thesis. Besides the power and propelment system model are developed. Due to the differences of the load pattern for the MRT system and the other customers, the analysis can be separated into static station load and dynamic load during the train operations. Static station load is constant and easy to measure. But dynamic load leads to some extent of variation depended on the MRT network characteristics and the headway of trains. The power consumption for dynamic load is about 60-70% of the whole MRT power consumption. The whole process of starting, acceleration, coasting and stopping are realistically concerned for the simulation of MRT operation. In this thesis, the DC system is composed of a 12 pulse rectifying transformer, a conductor rail, motor-driven induction drive control, VVVF inverter, and a 3-phase motor-driven induction electric power model. The performance for single train can be obtained very efficiently with the rate curves.
To perform the MRT power system simulation, an AC/DC load flow analysis has been developed with Matlab. The power system model of an simulation for Taipei MRT system has been created, the AC/DC load flow analysis is executed to analyze the effects of traction substation, voltage fluctuation, and various load under the dynamic operation for multiple trains. The efficiency of proposed methodology to solve the optimal MRT operation is verified by comparing to the results of Train Performance Simulator (TPS), which has been used by Taipei MRT project. It is suggested that the proposed rigid modeling of propulsion driving system can enhance the accuracy of system simulation and provide the tool to achieve better planing of MRT operation.
|
60 |
Constant Speed Mechanism of Planetary Gear TrainLin, Feng-Tien 12 September 2007 (has links)
In current years, searching for substitute energy such as the wind and ocean power of renewable energy is an important subject due to the petroleum shortage. The gear box is the key mechanism in the system of
wind and ocean power. Moreover, the main function of the system is to generate electricity by speeding up the rotative velocity. However, the power of environment changes momentarily and makes the turbine a variable input. In order to improve the efficiency of generating electricity, it should get the constant input to keep the high quality of generating electricity. First of all, the study focuses on the gear box and synthesizes a constant speed mechanism of planetary gear train which degrees of freedom is two. In the mechanism, inputs are the variable speed turbine and a constant speed motor. When they input the mechanism, a constant speed output will be made to supply the generator. Secondly, it is necessary to set up the real object of the constant speed mechanism of planetary gear train. Finally, observing the real condition from the experiment to prove the theory is correct.
|
Page generated in 0.0451 seconds