• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 104
  • 87
  • 55
  • 47
  • 45
  • 40
  • 29
  • 26
  • 20
  • 17
  • 15
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Quantitative Susceptibility Mapping (QSM) Reconstruction from MRI Phase Data

Gharabaghi, Sara January 2020 (has links)
No description available.
82

Arnoldi-type Methods for the Solution of Linear Discrete Ill-posed Problems

Onisk, Lucas William 11 October 2022 (has links)
No description available.
83

Preconditioned Newton methods for ill-posed problems / Vorkonditionierte Newton-Verfahren für schlecht gestellte Probleme

Langer, Stefan 21 June 2007 (has links)
No description available.
84

Inverse Problems and Self-similarity in Imaging

Ebrahimi Kahrizsangi, Mehran 28 July 2008 (has links)
This thesis examines the concept of image self-similarity and provides solutions to various associated inverse problems such as resolution enhancement and missing fractal codes. In general, many real-world inverse problems are ill-posed, mainly because of the lack of existence of a unique solution. The procedure of providing acceptable unique solutions to such problems is known as regularization. The concept of image prior, which has been of crucial importance in image modelling and processing, has also been important in solving inverse problems since it algebraically translates to the regularization procedure. Indeed, much recent progress in imaging has been due to advances in the formulation and practice of regularization. This, coupled with progress in optimization and numerical analysis, has yielded much improvement in computational methods of solving inverse imaging problems. Historically, the idea of self-similarity was important in the development of fractal image coding. Here we show that the self-similarity properties of natural images may be used to construct image priors for the purpose of addressing certain inverse problems. Indeed, new trends in the area of non-local image processing have provided a rejuvenated appreciation of image self-similarity and opportunities to explore novel self-similarity-based priors. We first revisit the concept of fractal-based methods and address some open theoretical problems in the area. This includes formulating a necessary and sufficient condition for the contractivity of the block fractal transform operator. We shall also provide some more generalized formulations of fractal-based self-similarity constraints of an image. These formulations can be developed algebraically and also in terms of the set-based method of Projection Onto Convex Sets (POCS). We then revisit the traditional inverse problems of single frame image zooming and multi-frame resolution enhancement, also known as super-resolution. Some ideas will be borrowed from newly developed non-local denoising algorithms in order to formulate self-similarity priors. Understanding the role of scale and choice of examples/samples is also important in these proposed models. For this purpose, we perform an extensive series of numerical experiments and analyze the results. These ideas naturally lead to the method of self-examples, which relies on the regularity properties of natural images at different scales, as a means of solving the single-frame image zooming problem. Furthermore, we propose and investigate a multi-frame super-resolution counterpart which does not require explicit motion estimation among video sequences.
85

Inverse Problems and Self-similarity in Imaging

Ebrahimi Kahrizsangi, Mehran 28 July 2008 (has links)
This thesis examines the concept of image self-similarity and provides solutions to various associated inverse problems such as resolution enhancement and missing fractal codes. In general, many real-world inverse problems are ill-posed, mainly because of the lack of existence of a unique solution. The procedure of providing acceptable unique solutions to such problems is known as regularization. The concept of image prior, which has been of crucial importance in image modelling and processing, has also been important in solving inverse problems since it algebraically translates to the regularization procedure. Indeed, much recent progress in imaging has been due to advances in the formulation and practice of regularization. This, coupled with progress in optimization and numerical analysis, has yielded much improvement in computational methods of solving inverse imaging problems. Historically, the idea of self-similarity was important in the development of fractal image coding. Here we show that the self-similarity properties of natural images may be used to construct image priors for the purpose of addressing certain inverse problems. Indeed, new trends in the area of non-local image processing have provided a rejuvenated appreciation of image self-similarity and opportunities to explore novel self-similarity-based priors. We first revisit the concept of fractal-based methods and address some open theoretical problems in the area. This includes formulating a necessary and sufficient condition for the contractivity of the block fractal transform operator. We shall also provide some more generalized formulations of fractal-based self-similarity constraints of an image. These formulations can be developed algebraically and also in terms of the set-based method of Projection Onto Convex Sets (POCS). We then revisit the traditional inverse problems of single frame image zooming and multi-frame resolution enhancement, also known as super-resolution. Some ideas will be borrowed from newly developed non-local denoising algorithms in order to formulate self-similarity priors. Understanding the role of scale and choice of examples/samples is also important in these proposed models. For this purpose, we perform an extensive series of numerical experiments and analyze the results. These ideas naturally lead to the method of self-examples, which relies on the regularity properties of natural images at different scales, as a means of solving the single-frame image zooming problem. Furthermore, we propose and investigate a multi-frame super-resolution counterpart which does not require explicit motion estimation among video sequences.
86

Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators

Hofmann, B., Fleischer, G. 30 October 1998 (has links) (PDF)
In this paper we deal with the `strength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according_to_M. Z. Nashed [15] the ill-posedness of type I if A is not compact, but we have R(A) 6= R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in general `less' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in [10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions specific measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of sufficient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.
87

The impact of a curious type of smoothness conditions on convergence rates in l1-regularization

Bot, Radu Ioan, Hofmann, Bernd 31 January 2013 (has links) (PDF)
Tikhonov-type regularization of linear and nonlinear ill-posed problems in abstract spaces under sparsity constraints gained relevant attention in the past years. Since under some weak assumptions all regularized solutions are sparse if the l1-norm is used as penalty term, the l1-regularization was studied by numerous authors although the non-reflexivity of the Banach space l1 and the fact that such penalty functional is not strictly convex lead to serious difficulties. We consider the case that the sparsity assumption is narrowly missed. This means that the solutions may have an infinite number of nonzero but fast decaying components. For that case we formulate and prove convergence rates results for the l1-regularization of nonlinear operator equations. In this context, we outline the situations of Hölder rates and of an exponential decay of the solution components.
88

Conditional stability estimates for ill-posed PDE problems by using interpolation

Tautenhahn, Ulrich, Hämarik, Uno, Hofmann, Bernd, Shao, Yuanyuan 06 September 2011 (has links) (PDF)
The focus of this paper is on conditional stability estimates for ill-posed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical background of this method and show that optimal conditional stability estimates are obtained. The capability of our method is illustrated by a comprehensive collection of different inverse and ill-posed PDE problems containing elliptic and parabolic problems, one source problem and the problem of analytic continuation.
89

Problèmes de contrôle optimal du type bilinéaire gouvernés par des équations aux dérivées partielles d’évolution / Analysis of bilinear optimal control problems governed by evolution partial differential equations

Clérin, Jean-Marc 18 November 2009 (has links)
Cette thèse est une contribution à l’étude de problèmes de contrôle optimal dont le caractère non linéaire se traduit par la présence, dans les équations d’état, d’un terme bilinéaire relativement à l’état et au contrôle. Malgré les difficultés liées à la non linéarité, nous obtenons des propriétés spécifiques au cas bilinéaire. L’introduction générale constitue la première partie. La seconde partie est consacrée à l’étude des équations d’état ; ce sont des équations aux dérivées partielles d’évolution. Nous établissons des estimations a priori sur les solutions à partir des inégalités de Willett et Wong et nous démontrons que les équations d’états sont bien posées. Dans le cas où les contrôles subissent une contrainte liée aux états, ces estimations permettent de déduire l’existence de solutions dans le cadre des inclusions différentielles. Les troisième et quatrième parties de ce mémoire sont dévolues à la démonstration de l’existence de contrôles optimaux, puis à l’analyse de la sensibilité relative à une perturbation qui intervient de façon additive dans l’équation d’état. Le caractère bilinéaire permet de vérifier des conditions suffisantes d’optimalité du second ordre. Nous fournissons sur des exemples, une formule explicite des dérivées directionnelles de la fonction valeur optimale / This thesis is devoted to the analysis of nonlinear optimal control problems governed by an evolution state equation involving a term which is bilinear in state and control. The difficulties due to nonlinearity remain, but bilinearity adds a lot of structure to the control problem under consideration. In Section 2, by using Willet and Wong inequalities we establish a priori estimates for the solutions of the state equation. These estimates allow us to prove that the state equation is well posed in the sense of Hadamard. In the case of a feedback constraint on the control, the state equation becomes a differential inclusion. Under mild assumptions, such a differential inclusion is solvable. In Section 3, we prove the existence of solutions to the optimal control problem. Section 4 is devoted to the sensitivity analysis of the optimal control problem. We obtain a formula for the directional derivative of the optimal value function. This general formula is worked out in detail for particular examples
90

Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators

Hofmann, B., Fleischer, G. 30 October 1998 (has links)
In this paper we deal with the `strength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according_to_M. Z. Nashed [15] the ill-posedness of type I if A is not compact, but we have R(A) 6= R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in general `less' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in [10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions specific measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of sufficient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.

Page generated in 0.0633 seconds