• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 8
  • Tagged with
  • 32
  • 32
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Élaboration d'une méthode d'analyse de la capacité de réparation de l'ADN : application à une population exposée à l'arsenic via la consommation d'eau souterraine

Zinflou, Corinne 18 April 2018 (has links)
L'exposition via l'eau potable à des concentrations élevées d'arsenic (>10 ug/L), est mondialement répandue et s'associe à de sévères pathologies dont certains cancers. Un mécanisme sous-jacent implique l'altération de la capacité de réparation de l'ADN (CRA), un important modulateur de la susceptibilité au cancer. Notre but était d'élaborer une méthode d'évaluation de la CRA et d'estimer son applicabilité à l'étude de la CRA de 102 résidents de Chaudière-Appalaches (Québec, Canada) chroniquement exposés à différentes concentrations d'arsenic dans l'eau (0.01-140 ug/L). Deux tests in vitro ont été développés, pour évaluer la réparation par excision/resynthèse d'ADN, de lymphocytes congelés et non-stimulés. Les mesures dans notre échantillon indiquent 42% des individus montrant une activité de réparation in vitro ralentie; l'absorption d'As3+ était négativement corrélée avec la proportion d'individus à l'activité ralentie (p = 0.0155). Nos résultats suggèrent que ces tests permettraient d'évaluer la CRA dans le cadre d'études épidémiologiques de carcinogénèse environnementale.
22

La réparation de l'ADN par la recombinaison homologue et le développement de molécules anticancéreuses

Pauty, Joris 23 April 2018 (has links)
Le cancer est une cause majeure de décès dans le monde. Il est à présent établi que les mutations de l'information génétique des cellules initient et participent à son développement, et que certaines mutations transmises au sein des familles prédisposent à son apparition. C'est le cas notamment des mutations des gènes BRCA1 et BRCA2 qui prédisposent aux cancers du sein et de l'ovaire. Les protéines produites par ces gènes sont directement impliquées dans la protection de l'information génétique puisqu'elles participent à la réparation des cassures se produisant dans le support de cette information : l'ADN. L'ADN peut être endommagé par diverses lésions mais les plus déstabilisatrices de l'information génétique sont les cassures double-brin. Afin de protéger son génome, la cellule possède de nombreux mécanismes de réparation dont la recombinaison homologue qui permet une réparation fidèle, c'est-à-dire sans perte ou modification de l'information génétique, permettant ainsi de prévenir l'apparition du cancer. La recombinaison homologue repose principalement sur l'activité de la protéine RAD51 qui nécessite l'utilisation des médiateurs BRCA2 et PALB2. Tout comme les gènes BRCA1 et BRCA2, PALB2 est un gène suppresseur de tumeur et ses mutations ont été associées avec une susceptibilité aux cancers du sein, de l'ovaire et du pancréas. En plus de la chirurgie, le traitement de ces cancers implique la radiothérapie et la chimiothérapie. Celles-ci font l'objet d'intenses recherches afin de proposer de nouveaux traitements plus efficaces avec moins d'effets secondaires. De nouvelles stratégies chimiothérapeutiques ont notamment émergé et on s'oriente à présent vers le développement de traitements personnalisés qui sont basés sur une meilleure connaissance des spécificités moléculaires des tumeurs. Les travaux présentés dans cette thèse apportent de nouvelles informations concernant le rôle de PALB2 dans la protection du génome lors du stress réplicatif et sur la régulation de ses fonctions par le contrôle de sa localisation cellulaire. Plus précisément, nous montrons que PALB2 et BRCA2 permettent de maintenir la Polymérase η au niveau des fourches de réplication bloquées et stimulent son activité de synthèse de l'ADN pour réinitier la réplication. Grâce à l'analyse de mutations germinales identifiées dans des cancers du sein et de l'ovaire, nous révélons la présence d'une séquence d'export nucléaire qui provoque l'exclusion de PALB2 du noyau vers le cytoplasme. Enfin, nous rapportons le développement d'une nouvelle molécule chimiothérapeutique, SFOM-0046, qui provoque des cassures double-brin de l'ADN en induisant un stress réplicatif et qui potentialise les effets de l'UCN-01, une molécule qui a été étudiée en clinique. Nous proposons l'utilisation de cette nouvelle molécule comme agent d'amélioration de thérapies ciblées existantes ou pour le développement de nouvelles thérapies anticancéreuses personnalisées.
23

Implication de PIM1 dans la réparation de l'ADN par la jonction d'extrémités non-homologues en hypertension artérielle pulmonaire

Lampron, Marie-Claude 06 June 2018 (has links)
Introduction : L’hypertension artérielle pulmonaire (HTAP) est une maladie caractérisée par une augmentation des pressions pulmonaires menant à une défaillance cardiaque droite. Les cellules musculaires lisses des artères pulmonaires (CMLAP) sont exposées à un niveau de stress accru notamment dû à l’inflammation des tissus et du milieu pseudo-hypoxique. Malgré cet environnement hostile, elles arrivent à proliférer et à survivre. Toutefois, cela entraine une augmentation anormale du dommage à l’ADN. Il existe, cependant, un équilibre entre les dommages à l’ADN et les mécanismes de réparation. PIM1, une onco-protéine à l’activité kinase, est surexprimée en HTAP. Elle est impliquée dans plusieurs voies de signalisation cellulaire, telles la survie et la prolifération, mais la voie de réparation du dommage à l’ADN n’a jamais été explorée en HTAP. De plus, l’inhibiteur de PIM1, le SGI-1776, a été testé en essai clinique en cancer, ainsi l’évaluation de son efficacité pour les patients HTAP pourrait rapidement être mise en place. Objectifs : Évaluer le potentiel thérapeutique du SGI-1776 et élucider l’implication de PIM1 dans la réparation du dommage à l’ADN en HTAP. Méthodes/Résultats : Nous démontrons premièrement que les poumons de patients HTAP (n=10) ainsi que les CMLAP-HTAP (n=5) présentent une surexpression de PIM1. Sur ces mêmes tissus et lignées cellulaires, le précurseur de la reconnaissance des dommages à l’ADN (γH2AX) est également augmenté comparativement aux sujets sains. Ce précurseur est essentiel à l’initiation de la réparation à l’ADN et l’inhibition de PIM1 par SGI-1776 (1,3 et 5μM) diminue la capacité de la réponse au dommage à l’ADN via la voie de la jonction des extrémités non-homologues (NHEJ) : le traitement cause une diminution des facteurs du NHEJ comme Ku70, DNA-PKcs et γH2AX (n=4). Par essai comet, nous démontrons que les dommages sont toujours présents et que ceci diminue la prolifération (Ki67 n=3; p<0.05) et augmente l’apoptose (AnnexinV n=3; p<0.05). In vivo, le SGI-1776 diminue les pressions pulmonaires (n=30, 30±2mmHg vs 49±5mmHg) et diminue le remodelage des artères pulmonaires distales (H&E, 45% vs 65%), ce qui est principalement dû à la restauration de la balance entre la prolifération (Ki67 n=25; p<0.05) et l’apoptose (TUNEL n=25; p<0.05) des artères pulmonaires distales. Conclusion : Nous avons démontré pour la première fois l’implication de PIM1 dans la réparation du dommage à l’ADN en HTAP et que l’inhibition de son activité améliore in vitro et in vivo l’HTAP. / RATIONALE: Pulmonary Arterial Hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PA) due to vascular remodeling. It is now established that this phenotype is associated with enhanced pulmonary artery smooth muscle cells (PASMC) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMC to survive despite the environmental stresses seen in PAH. PIM1 is an oncoprotein upregulated in PAH and that has been implicated in many pro-survival pathways in cancer, including DNA repair. PIM1 inhibitors, like SGI-1776, are already in clinical trials in cancer and could thus be beneficial to PAH patients. OBJECTIVES: The aim of this study is to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by SGI-1776 in human PAH-PASMC and in rat preclinical model of PAH. METHODS/RESULTS: Using western blot we showed in both human PAH lungs (n=10) and PAH-PASMC (n=5) a significant upregulation of PIM1 compared to control donor (n=5). PIM1 upregulation in PAH was associated with a significant activation of DNA damage sensor (γH2AX), which is critical for DNA repair initiation. We showed that PIM1 inhibition using SGI-1776 (1,3, and 5μM) significantly impaired DNA repair capacity in PASMC (n=4) with a significant repression of Ku70, DNA-PKcs, and γH2AX and decreased ATM expression. We showed no diminution of DNA damage with SGI-1776 treatment (Comet Assay, n=3). As expected, the lack of DNA repair in SGI-1776 treated PAH-PASMC lead to a significant reduction in proliferation (Ki67 n=3; p<0.05) and resistance to apoptosis (AnnexinV assay n=3; p<0.05). In vivo, SGI-1776 10mg*kg-1 given 3 times a week, improves significantly (n=30; p<0.05) monocrotaline-induced PH (decreased RVSP, mean PA pressures and vascular remodeling). CONCLUSION: We demonstrated for the first time that PIM1 is implicated in DNA repair signaling in PAH-PASMC and that repressing its activity everses PAH both in vitro and in vivo.
24

Rôles des paralogues de RAD51 humains dans la recombinaison homologue et le maintien de la stabilité du génome en mitose

Rodrigue, Amélie 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / De toutes les lésions qui menacent l'intégrité du génome, les cassures double-brin (CDBs) de l'ADN sont l'une des plus délétères, puisque toute cassure mal réparée suffit à induire des mutations et des translocations chromosomiques pouvant mener au cancer. La recombinaison homologue (RH) est un processus permettant aux cellules de réparer les CDBs de façon fidèle sans créer de mutations. Chez les eucaryotes supérieurs, ce mode de réparation repose en grande partie sur les fonctions catalytiques de la recombinase RAD51 et des évidences génétiques démontrent que ses paralogues, RAD51B, RAD51C, RAD51D, XRCC2 et XRCC3, sont également des acteurs clés dans ce processus. Jusqu'à présent, les paralogues de RAD51 n'ont été que très peu caractérisés sur le plan cellulaire et moléculaire si bien que leurs fonctions précises demeurent mal définies. Dans cette étude, nous apportons des évidences implicant les paralogues de RAD51 humains dans les étapes précoces de la RH. Plus précisément, nous démontrons que le paralogue RAD51C interagit avec la recombinase RAD51 et qu'il est requis pour l'assemblage de cette dernière en foyers de réparation. De plus, nous établissons par des immunoprécipitations de chromatine que les paralogues sont recrutés à proximité d'une CDB unique en phase S-G2 du cycle cellulaire et nous montrons par immunofluorescence que RAD51C s'y accumule en foyers, une signature des enzymes de réparation. Par ailleurs, nous avons découvert que les paralogues de RAD51 jouent un rôle crucial dans la progression du cycle cellulaire. Tandis que l'inhibition par ARN interférence de RAD51B ou RAD51C provoque un arrêt prolongé en G2-M, celle de XRCC3 favorise l'entrée en mitose par le phénomène d'adaptation. La microscopie en temps réel a démontré que la perte de XRCC3 engendre un délai mitotique qui s'accompagne d'une fréquence élevée d'anomalies de centrosomes et de défauts de ségrégation chromosomique (micronoyaux et ponts anaphases). Des phénotypes mitotiques comparables sont obtenus suivant la depletion de la résolvase GEN1. Conséquemment, nous proposons qu'une fonction tardive de XRCC3 et de GEN1 dans la RH, soit au niveau de la résolution des jonctions de Holliday, puisse être à l'origine de ces aberrations mitotiques. L'ensemble de ces données permet d'éclaircir les fonctions distinctes et communes des paralogues de RAD51 lors de la RH ainsi que leur rôle dans le maintien de la stabilité du génome en mitose.
25

Rôle de la poly(ADP-ribose) polymérase 1 dans la reconnaissance et la réparation des dommages directs induits à l'ADN par les radiations ultraviolettes

Robu, Mihaela 24 May 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2017-2018 / La poly(ADP-ribose) polymérase 1 (PARP1) est une enzyme nucléaire très abondante chez les eucaryotes supérieurs, humains compris, mais néanmoins absente chez les bactéries et les levures. En réponse aux dommages à l’ADN, elle utilise le substrat nicotinamide adénine dinucléotide (NAD+) pour former des polymères d’ADP-ribose (PAR) sur elle-même et sur d’autres protéines cibles. L’enzyme PARP1 et son activité catalytique sont impliquées dans la réparation des dommages à l’ADN contenant des cassures simple et double brin. Cependant, l’hypothèse que l’enzyme PARP1 joue un rôle dans la réparation de dommages sans cassures de brin a toujours rencontré des réticences. Par exemple, la PARP1 est activée rapidement par ces dommages, comme ceux induits par les radiations ultraviolettes (UV), mais son rôle dans leur réparation par excision de nucléotides (NER) n’était pas accepté généralement. Ainsi, ce projet de doctorat consiste à déterminer le mécanisme exact par lequel la PARP1 et son activité catalytique contribuent à la NER. Cette voie de réparation utilise plus de 30 protéines pour réparer une très grande variété de dommages. Bien que nous ayons une bonne connaissance des étapes de la NER grâce aux études in vitro chez les bactéries et les levures, les facteurs qui influencent le fonctionnement de la NER chez les eucaryotes supérieurs ne sont pas tous connus. Cependant, de récentes études ont montré que des complexes de remodelage de la chromatine et des modifications post-traductionnelles facilitent la NER dans la chromatine. Dans ce contexte, l’implication de la modification posttraductionnelle effectuée par la PARP1, dite PARylation, est encore inconnue dans la NER. Dans la NER, l’étape cruciale de la réparation globale du génome est la reconnaissance des quelques bases endommagées qui sont entourées de nombreuses bases non modifiées par la protéine «Xeroderma pigmentosum C» (XPC). Un autre facteur clé de cette phase est le facteur «UV-damaged DNA binding protein 2» (DDB2) qui fait partie du complexe ubiquitine-ligase UV-DDB. Ici, nous avons démontré que, après irradiation aux UVC, la PARP1 se lie asymétriquement à la photolésion et elle interagit avec le facteur DDB2. Ce dernier stimule l’activité catalytique de la PARP1 et est à son tour PARylé par la PARP1. Les polymères formés autour de la photolésion agissent comme signal de recrutement pour le complexe PARP1-XPC déjà présent dans le nucléoplasme. La confluence de ces facteurs de réparation au site de dommage assure la séparation de la protéine XPC de ce complexe suivi de son transfert et de sa stabilisation autour du dommage. Ainsi, la PARP1 n'est pas seulement l'une des premières protéines recrutées aux lésions induites par les UV, mais son activation rapide par ces dommages joue un rôle clé dans les étapes situées en aval de la phase de reconnaissance des dommages de la NER. En effet, nous avons montré que l’inhibition ou la déplétion de la PARP1 ralentit radicalement la réparation par la NER des dommages directs induits à l’ADN par les UV. Cette étude montre que la PARP1, en coopération avec les protéines DDB2 et XPC augmente l’efficacité de la voie NER dans les cellules des mammifères. / Poly(ADP-ribose) polymerase 1 (PARP1) is a highly abundant nuclear enzyme which is present in higher eukaryotes but absent in bacteria and yeasts. In response to DNA damage, it uses the nicotinamide adenine dinucleotide (NAD+) to form polymers of ADPribose (PAR) on itself and other target proteins. PARP1 and its catalytic activity are involved in the repair of DNA damages comprising of single and double strand breaks. However, the role of PARP1 in repairing DNA damage without strand breaks has not been readily accepted. For example, although PARP1 is rapidly activated in response to such damages caused by ultraviolet radiation (UV), its role in their repair by nucleotide excision repair pathway (NER) was not generally recognized. Thus, the project of my doctoral work is to determine the exact mechanism by which PARP1 and its catalytic activity influence NER. This pathway uses more than 30 proteins to repair a wide variety of DNA damages. Although we have a good understanding of NER steps through studies in vitro, bacteria and yeasts, we still do not know all the factors that influence the functioning of the NER in higher eukaryotes including humans. Recent studies have shown that chromatin remodelling complexes and post-translational modifications facilitate NER in the context of chromatin. However, the contribution of PARylation, the post-translational modification carried out by PARP1, in NER remains largely unknown. Xeroderma pigmentosum C protein (XPC) plays a crucial role in NER by recognizing the few UV induced lesions in the vast undamaged chromatin. Another key factor in damage recognition is the UV- damaged DNA binding protein (DDB2), which is part of the UV-DDB ubiquitin-ligase complex. Here, we have demonstrated that after UVC irradiation, PARP1 binds asymmetrically to the photolesions and interacts with DDB2. DDB2 stimulates the catalytic activity of PARP1 and in turn it is PARylated. The polymers formed around the photolesion act as recruitment signal for the PARP1-XPC complex already present in the nucleoplasm. The confluence of these repair factors at the damage site ensures the separation of the XPC protein from its complex with PARP1 followed by its transfer and stabilization at the site of damage. Thus, PARP1 is not only one of the first proteins to respond to UV induced DNA damage, but also its early rapid activation plays a key role in the downstream events of NER. Indeed, we have shown that both inhibition and depletion of PARP1 significantly delays the repair of these lesions. This study demonstrates that PARP1 increases the efficiency of NER in cooperation with the DDB2 and XPC proteins in mammalian cells.
26

Régulation de l’hélicase FBH1 et conséquences sur le maintien de la stabilité génétique chez l’homme / Regulation of FBH1 helicase and consequences on human genome stability

Bacquin, Agathe 19 October 2012 (has links)
Bien que la recombinaison homologue (RH) soit requise, notamment, pour la réparation fidèle des cassures double brins et la prise en charge des fourches de réplication bloquées, une mauvaise régulation de ce mécanisme peut provoquer des réarrangements chromosomiques importants et des pertes d’hétérozygoties. Chez la levure S. cerevisiae, la forme SUMOylée du facteur de processivité des polymérases réplicatives, PCNA, recruterait l’hélicase Srs2 au niveau des fourches de réplication bloquées afin de prévenir les évènements de RH inappropriés via la dissociation du nucléofilament de Rad51. Préalablement à ce projet, notre équipe a montré que la SUMOylation de PCNA sur la lysine 164 existe chez l’homme et qu’elle est présente en particulier dans les cellules déficientes en polymérase translésionnelle η (Pol η). Au cours de cette thèse, nous avons d’abord examiné la localisation de cette forme SUMOylée et montrons qu’elle s’accumule au niveau des dommages induits par une irradiation aux ultra-violets (UV), ce qui suggère son implication dans la réponse à ce type de lésions.Dans le but de préciser la fonction de cette forme modifiée, nous nous sommes demandé si celle-ci était impliquée dans le recrutement d’une hélicase anti-recombinogène.L’hélicase humaine FBH1 a été proposée récemment comme homologue fonctionnel potentiel de Srs2 : elle complémente partiellement les levures déficientes en Srs2, possède une activité anti-recombinogène et s’accumule aux sites de cassures double brins ou de stress réplicatif. Afin de caractériser plus précisément la fonction et le mode de régulation de l’hélicase FBH1 dans les cellules humaines, nous avons examiné sa localisation subcellulaire en l’absence de dommage et après traitement aux UV et à un agent méthylant l’ADN. Nous montrons que FBH1 est recrutée au niveau des foyers de réplication où elle est colocalisée avec PCNA. Après traitement génotoxique, FBH1 s’accumule aux sites de dommages de l’ADN de façon précoce et transitoire. Nous montrons que PCNA contrôle l’accumulation de FBH1 pendant la réplication et en réponse à des dommages via une interaction directe par le biais de deux motifs distincts d’interaction à PCNA : PIP et APIM. FBH1 n’interagit cependant pas de façon préférentielle avec PCNA-SUMO.De plus, nous montrons que le recrutement de FBH1 est suivi de sa polyubiquitination et de sa dégradation par la voie du protéasome. Cette dégradation dépend de l’action conjuguée de PCNA et du complexe ubiquitine-ligase CRL4Cdt2. Elle est nécessaire au recrutement optimal de Pol η.Notre hypothèse est donc que FBH1 serait recrutée sur l’ADN via une interaction avec PCNA au moment de la réplication ou en réponse à un stress génotoxique, afin de limiter les événements de recombinaison non programmés dépendant de RAD51. Par la suite, PCNA et CRL4Cdt2 provoqueraient la dégradation de FBH1 afin de limiter le temps de résidence de l’hélicase qui pourrait interférer avec la prise en charge des dommages par le mécanisme de synthèse translésionnelle. / Although Homologous Recombination (HR) is required for error-free repair of double-strand breaks and stalled or collapsed replication forks, it has to be highly regulated to prevent unscheduled genome rearrangements and loss of heterozygosity. In yeast S. cerevisiae, the SUMOylated form of Proliferating Cell Nuclear Antigen (PCNA) recruits the DNA helicase Srs2 at stalled replication forks to prevent unscheduled HR events by disrupting Rad51 nucleoprotein. In our laboratory, previous results showed that PCNA is also SUMOylated in human on lysine 164, especially in translesion polymerase η (Pol η) deficient cells.During my phD, I first studied the localization of SUMO-PCNA and showed that it accumulates at UV-induced DNA damage. It suggests that PCNA is involved in the DNA damage response to this kind of lesions. To characterize the function of this modified form of PCNA, we wondered whether it could recruit an anti-recombinogenic helicase.The human FBH1 helicase was recently thought to act as a functional homolog of Srs2, since it can partially complement Srs2-deficient S. cerevisiae strains. Besides, hFBH1 has an anti-recombinogenic activity and accumulates at sites of DNA breaks or replication stress.To further characterize the function and regulation of hFBH1 in human cells, we examined its subcellular localization in response to several DNA damaging agents. Our results showed that, without external treatment, FBH1 accumulates into replication foci where it colocalizes with PCNA. After genotoxic treatment, FBH1 accumulates early ant transiently to DNA damage. We show that PCNA coordinates the accumulation of FBH1 during replication and after DNA damage through direct interaction via two distinct PCNA interaction motifs: PIP and APIM. However, FBH1 does not interact preferentially with SUMO-PCNA.We also show that FBH1 recruitment is followed by its polyubiquitination and degradation by the proteasome. This degradation depends on PCNA and the ubiquitin-ligase CRL4Cdt2 and is required for Pol η proper recruitment to UV-induced DNA damage. These findings suggest that PCNA recruits FBH1 at stalled replication forks or in response to DNA damage to limit unscheduled RAD51-dependent recombination. Then, PCNA and CRL4Cdt2 would promote FBH1 degradation to enable translesion synthesis.
27

La méthylation des arginines : impact sur la fonction de la protéine MRE11 dans le maintien de la stabilité du génome

Déry, Ugo 13 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2007-2008. / Le complexe MRN (MRE11-RAD50-NBS1) est essentiel au maintien de la stabilité du génome chez les eucaryotes supérieurs. Il a été démontré que la sous-unité MRE11 du complexe MRN, qui possède une activité nucléase nécessaire aux mécanismes de réparation des cassures double-brin (CDBs). est méthylée sur les arginines de façon asymétrique. Cette méthylation est effectuée par la protéine PRMT1 et survient sur les arginines du motif GAR (Glycine-Arginine Rich) de la protéine MRE11. Cet événement arrive apparemment avant l'incorporation de MRE11 dans le complexe MRN. Le motif GAR de MRE11 influence la relocalisation in vivo de MRN en réponse aux CDBs. en plus d'affecter la réponse de signalisation des CDBs. De plus, une analyse des mutants ponctuels sur les arginines du motif GAR de MRE11 montre que ces arginines normalement méthylées influencent l'activité nucléase de MRE11 in vitro. Finalement, nous montrons que le domaine GAR de MRE11 permet la liaison de la protéine SMN par son domaine tudor, in vivo et in vitro. Cette interaction suggère la participation de SMN au niveau de la réparation des CDBs, ce qui est supporté par la sensibilité aux CDBs des cellules mutantes pour le gène smnl. Nos résultats démontrent, pour la première fois, une implication possible de SMN dans la réparation de l'ADN.
28

Implication de la poly (ADP-ribose) polymérase-1 dans la réparation de l'ADN par excision de nucléotides : caractérisation d'une interaction fonctionnelle avec la protéine DDB2

Petitclerc, Nancy 20 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / Le dommage à l'ADN provoqué par le rayonnement ultraviolet est réparé par excision de nucleotides (NER). La vitesse de ce mécanisme est réduite lorsque la PARP-1, une enzyme impliquée dans plusieurs autres voies de réparation de l'ADN, est inhibée ou réduite par interférence stable à l'ARN. Ce travail vise à déterminer si cette implication de la PARP-1 transite par la première protéine de reconnaissance du NER : DDB2. Nous avons démontré une augmentation de l'interaction entre la PARP-1, son produit le poly(ADP-ribose) et DDB2 suite à l'irradiation aux UVC, et une quasi abolition de l'interaction entre DDB2 et la PARP-1 suite à l'inhibition catalytique de celle-ci. Cette inhibition, sans affecter le recrutement aux lésions de DDB2, affecte plutôt celui de XPC, la seconde protéine de reconnaissance du NER. Ces résultats suggèrent une coopération entre la PARP-1 et DDB2 dans le NER possiblement impliquée dans le recrutement de XPC aux dommages.
29

Un microarn au coeur de l'hypertension artérielle pulmonaire

Courboulin, Audrey 20 April 2018 (has links)
L’hypertension artérielle pulmonaire (HTAP) est caractérisée par l’obstruction des artères pulmonaires, principalement due au phénotype pro-prolifératif/anti-apoptotique des cellules musculaires lisses de la paroi des artères pulmonaires (CMLAP). L’augmentation progressive des résistances vasculaires pulmonaires aboutit à une élévation de la pression pulmonaire qui va induire rapidement une insuffisance cardiaque droite et conduire au décès des patients à moyen terme. Plusieurs études ont démontré l’implication du facteur de transcription NFAT (nuclear factor of activated T cell) dans le maintien du phénotype pro-prolifératif/anti-apoptotique des CMLAP-HTAP. Cependant les voies de signalisation responsables de l’activation constitutive d’NFAT restent peu connues. Durant mon doctorat, j’ai étudié les mécanismes responsables de l’activation d’NFAT dans l’HTAP. Nous nous sommes intéressés au rôle des microARN et notamment à miR-204. Ainsi, les facteurs circulants augmentés dans HTAP, diminue l’expression de miR-204 via l’activation du facteur de transcription STAT3. Par un mécanisme de rétro-action positive, la diminution de miR-204 induit une suractivation de STAT3 aboutissant au phénotype pathologique. Ainsi, l’augmentation exogène de miR-204 permettrait de soigner l’HTAP in vitro et in vivo. Nous avons montré que miR-204 va également moduler l’expression de Runx2, facteur de transcription connu pour être impliqué dans la calcification. Dans les CMLAP-HTAP, la diminution de miR-204 est associée à une augmentation de l’expression de Runx2, connu comme un régulateur positif de l’activation du facteur de transcription HIF-1 impliqué dans l’HTAP. Ainsi la modulation de miR-204 affecte la prolifération et l’apoptose des CMLAP-HTAP par plusieurs axes de signalisation. Enfin, nous avons démontré l’implication du facteur de transcription Krüppel Like Factor 5 (KLF5) dans l’HTAP. La surexpression de KLF5 dans l’HTAP est secondaire à l’activation de STAT3, tandis que son inhibition diminue la prolifération et favorise l’apoptose des CMLAP-HTAP. In vivo, l’administration de siKLF5 renverse l’HTAP en diminuant les pressions pulmonaires, l’hypertrophie ventriculaire droite, la prolifération et augmentant l’apoptose des CMLAP des artères pulmonaires distales. Finalement, j’ai étudié différents aspects du développement de l’HTAP et notamment de l’activation de l’axe STAT3/NFAT. Nous avons pu mettre en évidence que cibler cette voie de signalisation par différents moyens (mimic miR-204, siRunx2, siSTAT3, siKLF5) semble une bonne stratégie pour traiter l’HTAP. Mots clés : l’hypertension artérielle pulmonaire, thérapeutique, prolifération, apoptose, microARN, facteur de transcription, réparation à l’ADN. / Pulmonary arterial hypertension (PAH) is characterized by the obstruction of the pulmonary arteries, mainly due to the pro-proliferative and anti-apoptotic phenotype of the pulmonary artery smooth muscle cells (PASMC). The progressive increase of pulmonary vascular resistance first leads to an increase of pulmonary pressure and then leads to a right heart failure, which generates patient’s death within few years. Many studies demonstrated the implication of the transcription factor NFAT (nuclear factor of activated T cell), which maintains the pro-proliferative and anti-apoptotic phenotype in PAH-PASMC. However, pathways that lead to the constitutive NFAT activation remain unclear. During my doctorate, I studied mechanisms responsible for the activiation of NFAT in HTAP. We study the role of the microRNA and more exactly to miR-204. Thus, the circulating factors, which are increased in PAH and which decreased miR-204 expression in PAH, via the transcription factor STAT3 activation. Through a positive regulation loop mechanism, the decrease of miR-204 induces an overactivation sustain of STAT3 leading to the pathologique phenotype. Thus, the exogenous increase of miR-204 could treat PAH in vitro as well as in vivo. We demonstrated that miR-204 is able to modulate the expression of the transcription factor Runx2 known to be implicated in calcification. In PAH-PASMC, the decrease of miR-204 is associated to an increase of Runx2 expression, known as positive regulator of the HIF-1 activation implicated in PAH. Thus miR-204 modulations affected the proliferation and apoptosis of PAH-PASMC through many molecular axes. Finaly we reveal the implication of the transcription factor Kruppel Like Factor 5 (KLF5) in PAH. The KLF5 overexpressed in PAH is associated to the STAT3 activation, wherease its inhibition decreased the proliferation and promoted apoptosis in PAH-PASMC. In vivo, si KLF5 reversed PAH by decreasing pulmonary pressures, right ventricular hypertrophy, proliferation and increasing apoptosis in PASMC from distal PA. Finally, I studied many aspects implicated in PAH development and especially the STAT3/NFAT axis activation. We showed that targeting this pathway using many technics (mimic miR-204, siRunx2, siSTAT3, siKLF5) seem to be an interesting strategy to treat PAH. Key words: Pulmonary arterial hypertension, therapeutic, proliferation, apoptosis, microRNA, and transcription factor.
30

Cartographie des dimères cyclobutyliques de pyrimidines (DCP) induits par les UVA et étude des effets de certains gènes de réparation des mésappariements et du gène P53 muté sur la réparation par excision de nucléotides des DCP

Rochette, Patrick January 2005 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2004-2005 / Les cancers cutanés sont associés à la formation des dimères cyclobutyliques de pyrimidine (DCP) générés par les ultraviolets (UV) du soleil. Nos résultats indiquent que les transversions T-->G retrouvées suite aux UVA sont dues aux DCP formés majoritairement sur les TT. Nous avons également démontré que, contrairement au dogme établi, les protéines réparant les mésappariements n'influencent pas la réparation des DCP. p53 a indéniablement une influence sur la réparation des DCP. Cependant, la lignée SW480, contenant un gène p53 double-muté, est fonctionnelle en réparation par excision de nucléotides des DCP. Normalement, un stress est nécessaire à l'activation des effecteurs de p53. Cependant, la protéine p53 double-mutée des SW480 active constitutivement p21, un effecteur de p53. L'activation des protéines réparant les DCP par p53 se fait probablement de la même façon que p21. L'éclaircissement de ces mécanismes a amené une meilleure compréhension de l'induction des cancers.

Page generated in 0.1252 seconds