• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • Tagged with
  • 12
  • 12
  • 8
  • 8
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de la principale cible thérapeutique du cytomégalovirus humain l'ADN polymérase UL54

Picard-Jean, Frédéric January 2008 (has links)
Le cytomégalovirus humain (CMV) est un Herpèsvirus causant une infection latente chez 60% à 70% des nords-américains. Sa primo-infection chez les nouveaux-nés et sa réactivation chez les individus immunodéprimés sont associées à de nombreux cas de morbidité et de mortalité. Le traitement des infections au CMV est compliqué par l'absence de vaccin et le nombre restreint de drogues homologuées. Ces dernières sont malheureusement issues de vieilles générations de composés, et sont associées à une activité modérée, à une importante toxicité, et à l'apparition fréquente de résistance au traitement. Ces composés ciblent tous l'ADN polymérase virale, et inhibent ainsi la réplication du virus. Cependant, comparativement aux autres polymérases virales, cette enzyme est bien peu caractérisée, ce qui limite le développement de composés thérapeutiques de seconde génération plus efficaces, moins toxiques et moins sujets à l'apparition de résistance virale. Ayant entendu ce signal d'alarme, nous avons entrepris de caractériser la principale cible thérapeutique du cytomégalovirus humain, son ADN polymérase. Le gène UL54 du CMV code une protéine de 1242 acides aminés et qui est connue pour être la sous-unité catalytique de l'ADN polymérase virale. Malheureusement, sa grande taille a longtemps limité son expression et sa caractérisation. En nous concentrant sur les régions importantes pour son activité, nous avons généré une protéine un peu plus courte, mais toujours catalytiquement active. Nous avons ainsi pu exprimer, pour la première fois, une grande quantité de protéines UL54, ce qui nous a permis de caractériser en détails sa liaison avec ses deux substrats principaux, soit l'ADN et les dNTP. L'emploi de la spectroscopie à fluorescence nous a permis de suivre la liaison de UL54 à ses substrats, en quantifiant l'impact de la liaison de ces derniers sur la fluorescence intrinsèque du tryptophane de UL54. Nous avons ainsi pu établir que les constantes de dissociation de UL54 pour l'ADN et pour les dNTP étaient respectivement de 48[micro]M et de 15[micro]M. Notre étude révèle qu'un substrat d'ADN aussi petit que 6nt peut lier la protéine. Nous avons aussi démontré que UL54 lie aussi bien l'ADNsb que l'ADNdb, et que cette liaison semble séquence indépendante. De plus, la protéine est incapable de discriminer entre un substrat d'ADN et un d'ARN. Le profil thermodynamique de la liaison à l'ADN et aux dNTP a été établi et révèle deux modes de liaison distincts. La liaison de l'ADN est propulsée par l'enthalpie et est fort probablement associée à la relâche de molécules d'eau au solvant. Les interactions hydrophobes et d'empilement représentent les forces majeures stabilisant la liaison, alors que les interactions électrostatiques sont presque négligeables. À l'inverse, la liaison de UL54 au dNTP est propulsée par l'enthalpie, et la stabilisation de la liaison est associée davantage aux interactions électrostatiques, à des ponts hydrogènes et aux forces de van der Waal's. Des essais de dichroïsme circulaire, une seconde technique optique qui peut générer une représentation des structures secondaires et tertiaires d'une protéine, indique que, suite à la liaison de l'ADN, la protéine UL54 opère un changement de conformation, et qu'elle en subit un second suite à la liaison d'un dNTP, ce qui est cohérent avec les changements de conformation observés chez d'autres polymérases mieux caractérisées. Quelques expériences complémentaires sont aussi présentées. Enfin, comme les résistances aux traitements sont un enjeu majeur, et qu'elles sont créées par des erreurs de UL54, l'élaboration d'une démarche expérimentale visant à établir la fidélité de cette protéine est décrite en détail. Nous sommes confiants qu'une telle étude sur la caractérisation biochimique de la principale cible pharmacologique du CMV contribuera au développement rationnel de nouvelles générations de drogues anticytomégaloviriques efficaces.
2

Micro-manipulation de l'ADN Vers une visualisation directe par microscopie de fluorescence

Meglio, Adrien 01 April 2010 (has links) (PDF)
Dans ce travail, nous proposons un nouvel appareillage, destiné à aider à la détermination du mécanisme de certaines protéines. Cet outil, qui combine un appareil de pinces magnétiques, et un microscope de fluorescence en ondes évanescentes, a été conçu pour permettre à la fois la manipulation mécanique et l'observation de l'activité d'ADN translocases à l'échelle de la molécule unique. Nous présentons d'abord ici la conception, la réalisation et l'expérimentation de ce montage. Nous montrons que, d'une part, il se compare favorablement à ses composants séparés (pinces magnétiques et microscope de fluorescence), et que d'autre part leur réunion dans un appareil unique permet d'obtenir des résultats d'un type nouveau. Nous avons orienté l'étude des ADN translocases avec cet appareil sur l'exemple de deux protéines : le moteur FtsK de Escherichia coli et l'ARN Polymérase de T7. Nous détaillons dans cette étude les questions importantes encore en suspens concernant le mécanisme et présentons les expériences que nous avons envisagées pour y répondre. Nous relatons ensuite également la difficulté que nous avons rencontrée à obtenir des substrats protéiques adaptés aux expériences que nous avons envisagées, et les solutions que nous avons mises en oeuvre pour y remédier. Enn, nous analysons les résultats obtenus dans des expériences en volume ou en pinces magnétiques seules, qui ont permis de mettre en valeur de nouveaux comportements et de préparer la réalisation de nouvelles expériences sur notre montage combiné.
3

Réplication de l'ADN mitochondrial : identification d’une seconde activité ADN polymérase dans la mitochondrie de S.cerevisiae et Contribution à l’étude du réplisome mitochondrial

Velours, Christophe 21 December 2009 (has links)
Au cours de la croissance des levures, la cellule doit dupliquer sont génome nucléaire et mitochondrial, le processus de réplication est bien moins étudié dans les mitochondries. Néanmoins, si de multiples ADN polymérases sont impliquées dans les processus de réplication et de réparation dans le noyau, il est considéré jusqu’à aujourd’hui qu’une seule ADN polymérase est impliquée dans ces processus dans la mitochondrie. Des résultats récents mettent en exergue le fait que la situation est bien plus compliquée qu’il n’y apparait au départ. Pour élucider le processus de réplication dans la mitochondrie de levure, j’ai focalisé mon intérêt à tenter de purifier et de caractériser le complexe de réplication. Ce travail était important à développer étant donné la découverte au laboratoire d’une seconde ADN polymérase supplémentaire à la polymérase gamma, dans les mitochondries de levure. Une première partie de ma thèse a été de m’investir afin d’obtenir suffisamment de protéines dans le but d’une identification par spectrométrie de masse, compte tenu de la faible proportion des ADN polymérases dans la cellule et en particulier dans la mitochondrie. Nous avons démontré que cette polymérase est codée par le gène unique POL1. Par des techniques d’ultracentrifugation et d’analyse biochimiques, j’ai réussi à isoler et caractériser un complexe de réplication mitochondrial. Des techniques d’exclusion chromatographiques ont permis d’attribuer une masse native à ce complexe. Sa composition a été étudiée grâce à des colonnes ioniques et hydrophobes, une autre méthode d’analyse repose sur l’utilisation de colonnes d’affinité afin de reconstituer in-vitro les interactions existant entre plusieurs protéines présumées impliquées. Ainsi, un réseau d’interactions impliquant les deux ADN polymérases mitochondriales avec cinq autres protéines a été reconstitué. La masse native de différentes formes stables de ce complexe se situent à 500 kDa ou au-delà de 1 MDa. / During yeast growth, cells must duplicate their nuclear and mitochondrial DNA. The replication process involved is less studied in mitochondria. Nevertheless, if multiple DNA polymerases are implicated in the nuclear replication and repair mechanisms, until now it is believed that only one DNA polymerase is involved in these processes in mitochondria. Recent results pointed out that the situation is more complicated than preliminary believed. To elucidate the replication process in yeast mitochondria I focused my interest in attempts to purify and characterize the replication complexes. This work was important to develop in accord with the discovery in the laboratory of a second DNA polymerase in addition to the polymerase gamma in yeast mitochondria. One first part of my thesis was to hardly purify enough of this enzyme to be allowed to identify it by mass spectrometry as the DNA polymerase alpha, encoded by the unique POL1 gene. By ultracentrifugation and biochemical techniques, I succeeded to purify the complex. Exclusion chromatographies were managed to elucidate the native mass of this complex. In addition ionic and hydrophobic chromatographic columns were carried out to determine its composition. Another way to study the complex was the reconstitution in vitro of the interactions happening with some usual suspect proteins with the help of chromatographic affinity columns. I reconstituted partly an interactions model network, including the two mitochondrial DNA polymerases and 5 others proteins implicated in replication. I determined the mass of different stable forms of the isolated complexes, around 500 kDa and over 1 MDa
4

Etude des voies de silencing transciptionnel indépendantes de la méthylation ADN chez Arabidopsis thaliana / Study of transcriptional gene silencing pathways independent of DNA methylation

Bourguet, Pierre 07 December 2018 (has links)
Le silencing transcriptionnel limite la transcription des gènes et des éléments transposables dont l’expression pourrait être délétère à la cellule. Il dépend d’une diversité de modifications de la chromatine comme la méthylation ADN ou les marques répressives des histones. De façon à mieux comprendre les mécanismes moléculaires à l’origine du silencing transcriptionnel, nous avons mené une approche de génétique directe à l’aide d’un transgène soumis au silencing dans la plante modèle Arabidopsis thaliana. Cette stratégie nous a permis d'isoler à la fois des mutants déficients pour le maintien du silencing transcriptionnel et des mutations qui empêchent la réactivation transcriptionnelle des éléments transposables en réponse à un stress thermique. Nous avons caractérisé les défauts provoqués par ces mutations en combinant des approches de biologie moléculaire, de cytologie et de génomique.Nous montrons ainsi que MED14, la sous-unité centrale du complexe Mediator, et UVH6, composant du complexe TFIIH, sont requis pour la transcription de l'hétérochromatine en stress thermique. MED14 stimule aussi la transcription de l'hétérochromatine en l'absence de stress, mais ne semble fonctionner qu'en présence de la méthylation ADN. En plus de cette fonction originale, nous identifions un nouveau rôle de MED14 dans le maintien de la méthylation ADN, possiblement via la voie de méthylation ADN dirigée par les petits ARN.Par ailleurs, nos résultats nous ont permis d’identifier le rôle des protéines MAIN et MAIL1, qui définissent une voie de silencing transcriptionnelle indépendante des voies connues jusqu'alors. De façon intéressante, MAIN et MAIL1 possèdent un domaine protéique partagé avec les éléments transposables, qui aurait successivement été capturé par les éléments transposables et leur hôte au cours de l’histoire évolutive des plantes à fleurs.Enfin, en isolant une nouvelle mutation du gène POL2A, nous confirmons le rôle de l’ADN polymérase epsilon dans le silencing transcriptionnel et caractérisons les propriétés chromatiniennes qui dépendent de POL2A. Nous montrons que les défauts de silencing des mutants pol2a corrèlent avec une désorganisation importante de l’hétérochromatine sans diminution drastique des marques qui y sont associées. Au contraire, nous détectons une hyperméthylation ADN prononcée dans le mutant, et explorons différentes hypothèses pour expliquer ce phénotype particulier. Nos données suggèrent que plusieurs mécanismes moléculaires sont à l’origine des défauts des mutants pol2a. Elles confirment le rôle prépondérant de la chromométhylase CMT3 dans la régulation de la méthylation ADN, et suggèrent qu’un stress réplicatif pourrait causer une hyperméthylation de l’ADN.Dans l’ensemble, ces travaux de thèse proposent des pistes de travail dont l’exploration pourrait permettre d’expliquer les effets des déficiences réplicatives dans le maintien du silencing transcriptionnel et de l’homéostasie de la méthylation ADN. Ils suggèrent en outre que MED14 a une fonction dédiée à la transcription de l’hétérochromatine qui pourrait stimuler le maintien de la méthylation ADN. / Transcriptional gene silencing hinders deleterious transcription of some genes and transposable elements. Silencing is maintained by numerous chromatin modifications such as DNA methylation and repressive histone marks. To better understand the molecular mechanisms of silencing, we conducted a forward genetic screen using a transgene reporter system targeted by transcriptional gene silencing in the model plant Arabidopsis thaliana. We isolated a first type of mutants with diminished maintenance of silencing and a second category that displayed deficient release of transgene silencing upon heat stress. We then combined molecular, cytological and genomic methods to characterize the defects associated with these mutations.First, we show that the Mediator subunit MED14 and the TFIIH complex subunit UVH6 are required for heat-stress-induced release of silencing. We further show that MED14, but not UVH6, promotes transcriptional activation of transposable elements in mutant contexts where silencing is defective. Importantly, MED14 is only required when DNA methylation is not affected, suggesting that MED14 has a specialized function to promote transcription of heterochromatin. Furthermore, we show that MED14 promote DNA methylation at targets regulated by RNA-directed DNA methylation.Characterizing mutants from the first category, we unveil the contribution of the MAIN and MAIL1 proteins into transcriptional gene silencing, and show that they likely act through a pathway independent of known silencing factors. Interestingly, MAIN and MAIL1 bear a protein domain that is shared with transposable elements, and that has been captured by transposable elements and genes throughout the evolutionary history of flower plants.Additionally, we confirm the involvement of the DNA polymerase epsilon in transcriptional gene silencing by isolating a new mutation of the POL2A gene among mutants of the first category. We characterize the effects of the pol2a mutation on several heterochromatin properties, and show that the pol2a mutant retains high levels of heterochromatin marks despite having highly disorganized heterochromatin. We actually detect a strong elevation of DNA methylation in the pol2a mutant and explore different hypothesis to explain this unusual phenotype. We show that increased expression of the CMT3 chromomethylase is a likely cause, but that additional molecular mechanisms are probably involved. Further exploration suggests that constitutive replicative stress occurring in pol2a mutants could be an additional cause of DNA hypermethylation.To summarize, this work provide putative causes for DNA hypermethylation and silencing defects in a situation of replicative deficiency. Further investigation will be required to identify the molecular components involved in the mechanism. Our data further suggest that MED14 has a function dedicated to heterochromatin transcription that could promote DNA methylation maintenance.
5

Étude du mécanisme moléculaire de résistance antivirale du cytomégalovirus humain et des mutations de l’ADN polymérase UL54 qui lui sont associées

Allaire, Andréa January 2017 (has links)
Le cytomégalovirus humain (HCMV), un membre de la famille des Herpesviridae, cause des infections latentes chez plus de la moitié (60 %) de la population dans les pays développés. Cette proportion peut atteindre jusqu’à la totalité (100%) de la population dans les pays en voie de développement. Sa primo-infection chez le foetus en développement ou chez le nouveau-né ainsi que sa réactivation chez les individus immunodéprimés sont associés à de nombreux cas de morbidité et de mortalité. L’infection congénitale est l’infection à HCMV la plus importante et engendre un coût économique de plus de 2 milliards de dollars américains chaque année. Aucun vaccin n’est approuvé à ce jour pour la prévention de l’infection à HCMV. Cependant, des antiviraux sont disponibles pour le traitement de cette infection. Parmi ceux-ci, on retrouve trois types d’analogues : un analogue nucléosidique (ganciclovir), un analogue nucléosidique monophosphaté (cidofovir) et un analogue du pyrophosphate inorganique (foscarnet). Ces antiviraux ont tous comme cible commune l’ADN polymérase virale. Toutefois, de nombreuses souches résistantes à ces antiviraux sont retrouvées chez certains individus infectés. Ces souches résistantes présentent de nombreuses mutations au niveau du gène viral qui encode pour l’ADN polymérase UL54 du cytomégalovirus. Jusqu’à présent dans la littérature, seule l’association entre les mutations et la résistance antivirale a été proposée. Les travaux présentés dans ce mémoire visent à mieux comprendre l’effet des mutations sur la liaison des antiviraux à la polymérase et donc éventuellement élucider le mécanisme moléculaire de résistance aux antiviraux chez ce pathogène. Cette recherche a permis de déterminer que les mutations, associées à la résistance antivirale, affectent la liaison optimale des désoxynucléotides (dNTPs) et bloquent la liaison de l’antiviral (foscarnet) à l’ADN polymérase virale UL54. Toutefois, ces mutations n’affectent pas la liaison de l’ADN simple brin à celle-ci. De plus, selon l’étude présentée ici, les mutations n’affectent pas le repliement global de l’ADN polymérase virale. Le mécanisme de résistance moléculaire semble donc avoir un impact très local sur la protéine. Peu d’informations sur la structure de cette polymérase virale sont disponibles à ce jour dans la littérature. Il serait donc pertinent d’élucider la structure cristallographique de cette polymérase pour éventuellement étudier l’effet structural des mutations sur la polymérase et ainsi élucider le ou les mécanismes moléculaires de résistance aux antiviraux.
6

Etude de l'effondrement rapide des fourches de réplication lors d'un stress réplicatif / Identification and study of rapid replication fork collapse during replicative stress

Goullet de Rugy, Théo 27 September 2016 (has links)
Le Stress Réplicatif est caractérisé par une accumulation de fourches bloquées et est connu pour être une source majeure d'instabilité génétique dans les cellules humaines. Le Stress Réplicatif et l'instabilité génétique sont des marqueurs précoces de la tumorigenèse. Il est connu que les fourches de réplication bloquées peuvent dégénérer en cassures double brin. En effet, après un stress réplicatif prolongé (24h) induit par l'hydroxyurée (HU), l'endonucléase MUS81-EME1 peut promouvoir l'effondrement des fourches de réplication. Cette endonucléase prévient l'accumulation de régions sous-répliquées en G2 et des défauts de ségrégation chromosomique en mitose. Dans cette étude, en suivant l'apparition de cassures double brin (CDB) par les techniques sensibles d'essai comète neutre et de QIBC (Quantitative Image-Based Cytometry), nous avons pu mettre en évidence que l'effondrement des fourches est un événement qui peut être visualisé rapidement suite au stress réplicatif (dès 2h après HU). Nous avons pu caractériser cet effondrement rapide comme étant un mécanisme indépendant de MUS81, sous unité catalytique du complexe MUS81-EME1. De plus, en réalisant des extinctions de l'expression de gènes par siARN, nous avons identifié deux nucléases, Artémis et XPF, comme étant impliquées dans ce mécanisme d'effondrement rapide des fourches de réplication. Nos résultats suggèrent un rôle de ce mécanisme d'effondrement rapide dans la prévention d'intermédiaires mitotiques et de la transmission de lésions aux cellules filles. Nous avons également identifié l'ADN polymérase alternative, Pol theta comme étant un facteur impliqué dans la prévention de la mort cellulaire induite par ce mécanisme. L'exploration de données de qPCR sur des prélèvements de tissus cancéreux nous a permis d'identifier la surexpression de Pol theta comme étant corrélée à des gènes de la HR. Ceci suggère un potentiel mécanisme d'adaptation pour prévenir de l'accumulation de fourches effondrées dans les cellules cancéreuses. L'ensemble de ces données révèle que les cellules humaines ont acquis au cours de l'évolution la capacité de cliver rapidement des fourches bloquées qui pourrait s'avérer importante pour la stabilité du génome, notamment en contexte de stress réplicatif. / Replicative stress is characterized by an accumulation of stalled replication forks and is known to be a major source of genetic instability in human cells. Replicative stress and genetic instability are early markers of tumorigenesis. It is known that stalled replication forks can degenerate into double strand breaks (DSB), a process called replication fork collapse. Indeed, after an extended replicative stress (24h) induced by hydroxyurea (HU), the endonuclease MUS81-EME1 can promote the collapse of replication forks. This endonuclease prevents accumulation of under replicated regions in G2 and mitotic segregation defects. Here, by monitoring DSB with sensitive neutral comet assay and QIBC (Quantitative Image-Based Cytometry) approaches, we found that replication forks can also collapse rapidly after replicative stress (as early as 2 hours after HU). We characterised this rapid replication fork collapse as a MUS81-independent mechanism. Moreover, by performing siRNA based knock down, we identified two nucleases, Artemis and XPF, involved in rapid replication fork collapse mechanism. Our results point toward a role of this rapid collapse mechanism in preventing mitotic intermediates and lesion transmission to daughter cells. Also, we identified the role of an alternative DNA polymerase Pol theta as a molecular factor involved in preventing this mechanism to induce cell death. Data mining of expression data from tumour samples allowed us to identify Pol theta verexpression as correlated with HR genes, underpinning a potential adaptation mechanism to prevent collapsed fork accumulation in cancer cells. Collectively, these data reveal that human cells have evolved a quick cleavage response to stalled forks that might be important for genome stability notably in cells undergoing replicative stress.
7

Complexité des maladies mitochondriales : à partir de deux exemples / Complexity of mitochondrial diseases : from two examples

Gilleron, Mylène 30 June 2014 (has links)
Les maladies mitochondriales représentent un ensemble très divers de pathologies. Au cours de ce travail, j’ai abordé leur complexité dans deux situations différentes : les déficits humains en complexe III de la chaîne respiratoire mitochondriale et l’analyse des relations génotype/phénotype dans une cohorte de patients suspects de mutations sur un même gène nucléaire (POLG). Le complexe III joue un rôle central au sein de la chaîne respiratoire mitochondriale. Contrairement à sa caractérisation biochimique très complète, son rôle physiologique a été relativement mal établi. D'une cohorte de 2000 patients dont les activités de la chaîne respiratoire mitochondriale avaient été mesurées sur tissu hépatique ou musculaire, nous avons sélectionné 15 patients avec un déficit en complexe III pour lesquels nous disposions de fibroblastes exprimant un déficit respiratoire. L’origine génétique était initialement connue pour quatre des déficits (UQCRB, BCS1L x2, MT-CYB) et, au cours de ce projet, nous avons pu en identifier trois autres (CYC1, MT-CYB, LYRM7). Nous avons cherché à évaluer l'existence d'un lien entre le phénotype et les caractéristiques du déficit : gène impliqué, distribution tissulaire et profil des réponses cellulaires au déficit. Notre population de fibroblastes, hétérogène sur le plan génétique, s’est également révélée très variée quant aux conséquences biochimiques et cellulaires du déficit. Il ne semble donc pas exister de « profil type » des déficits en complexe III. Les atteintes liées à une mutation du gène POLG sont souvent considérées comme les maladies mitochondriales les plus fréquentes chez l’adulte. Elles sont associées à des présentations cliniques très diverses. Nous avons étudié la spécificité et la sensibilité des différents signes cliniques et biologiques considérés comme évocateurs et conduisant donc au séquençage de POLG. A cette fin, nous avons analysé rétrospectivement le phénotype clinique et les investigations mitochondriales chez 154 patients dont le séquençage du gène POLG avait été effectué révélant des mutations touchant les deux allèles du gène chez 34 patients, une seule mutation chez 10 patients et une séquence normale chez 110 patients. L’étude clinique a inclus les signes/symptômes cliniques, les données électrophysiologiques et l'imagerie cérébrale. Les investigations mitochondriales englobaient l’histologie musculaire, le dosage du lactate sanguin, la mesure des activités de la chaîne respiratoire et la recherche de délétions multiples de l’ADN mitochondrial musculaire. Cette étude a montré que les mutations du gène POLG étaient responsables de signes cliniques et paracliniques récurrents présentant donc une sensibilité et une spécificité, notamment en association, permettant de proposer un arbre décisionnel pour l’indication du séquençage du gène POLG. Cette étude a également permis d’établir l’histoire naturelle des maladies de l’adulte dues à des mutations délétères de POLG. En conclusion, la classification des maladies mitochondriales par une anomalie biochimique commune, un déficit en complexe III dans le cas présent, conduit à regrouper des atteintes très différentes, aussi bien sur le plan clinique que biochimique et cellulaire. Au contraire, même dans des affections réputées comme extrêmement diverses comme celles dues aux mutations du gène POLG, la classification par le gène atteint permet d’identifier des présentations récurrentes dans la classe d’âge étudiée, patients adultes dans le cas présent… / Mitochondrial diseases represent a very diverse set of pathologies. With this work, I approached their complexity in two different situations: phenotypic analysis of fibroblasts derived from patients with defects of the respiratory complex III and phenotypic analysis of a cohort of patients, the POLG gene of whom had been sequenced. The complex III plays a central role in the mitochondrial respiratory chain. Contrary to its complete biochemical characterization, its physiological role has been relatively poorly established. We selected 15 patients with complex III defect in liver and/or muscle and with fibroblasts expressing a respiratory defect. The genetic origin was initially known for four of these defects (UQCRB, BCS1L x2, MT- CYB) and during this project, we were able to identify three additional cases (CYC1, MT- CYB, LYRM7). We sought to assess the existence of a link between the disease phenotype and the defect characteristics: gene involved, tissue expression and cellular responses. Our population of fibroblasts, genetically heterogeneous, turned also to be diverse with respect to the biochemical and cellular consequences of the defect. A "typical" profile of complex III defect therefore does not seem to exist. Pathologies related to POLG mutations are often considered the most common mitochondrial diseases in adults. Their clinical presentation is very diverse. We have investigated the specificity and sensitivity of different clinical and biological signs considered as suggestive for POLG mutations and therefore leading to POLG sequencing. To that purpose, we retrospectively analyzed the clinical phenotype and mitochondrial investigations in 154 patients for which POLG had been sequenced revealing mutations affecting two alleles of the gene in 34 patients, one allele for 10 patients and a normal sequence for 110 patients. This study has shown that POLG mutations were responsible of recurrent clinical and paraclinical signs, whose sensitivity and specificity when considered in association allowed to propose a diagnostic flowchart for POLG sequencing. This study has also permitted to establish the natural story of diseases associated with deleterious POLG mutations in adults. In conclusion, classification of mitochondrial diseases by a common biochemical abnormality, a complex III defect in the present case, leads to group very different diseases that differ from their clinical, biochemical and cellular patterns. On the contrary, even in diseases considered highly diverse as those due to POLG mutations, classification by the affected gene allows to identify recurrent presentations in a population of adult patients with neurological presentation.
8

Etude d’un réseau génétique intégrant métabolisme central carboné et réplication de l’ADN chez la bactérie Bacillus subtilis / A genetic network integrating central carbon metabolism and DNA replication in Bacillus subtilis

Nouri, Hamid 18 June 2013 (has links)
La réplication de l’ADN est une fonction cellulaire responsable de la duplication du matériel génétique. Elle est assurée par un complexe protéique appelé réplisome. Ce processus est hautement régulé en fonction des conditions de croissance cellulaire. Durant cette thèse je me suis intéressé principalement au contrôle de la réplication par le Métabolisme Central Carboné (MCC) et, dans une moindre mesure, au fonctionnement du réplisome chez la bactérie modèle Bacillus subtilis. J’ai analysé la réplication de l’ADN dans des mutants métaboliques, par deux techniques ; la QPCR et la cytométrie en flux. Mes analyses révèlent que la réplication de l’ADN est dérégulée dans des cellules mutées dans les cinq dernières réactions de la glycolyse et dans celles affectées dans des réactions connectant cette petite région du métabolisme aux autres réactions du MCC (haut de la glycolyse, voie des pentoses phosphate et cycle de Krebs) et au milieu extérieur (voies overflow qui éliminent les métabolites du MCC produits en excès). J’ai constaté que dans ces mutants la réplication commence plutôt et dure plus longtemps que dans une souche sauvage. L’ensemble de ces résultats montre que les réactions situées au cœur du MCC sont importantes pour assurer un bon contrôle temporel de la réplication. J’ai aussi établi que le ppGpp, une petite molécule fonctionnant comme une alarmone de l’état nutritionnelle des cellules, ne joue pas un rôle déterminant dans le contrôle de la réplication par le métabolisme dans des cellules à l’état d’équilibre. L’ensemble de nos connaissances actuelles sur les réplisomes repose essentiellement sur les données accumulées à partir de la dissection du réplisome de la bactérie modèle Escherichia coli et des phages T4 et T7. Chez Bacillus subtilis, deuxième modèle bactérien le mieux connu et représentant des Gram+ à faible GC%, il existe deux ADN polymérases essentielles à la réplication : PolC et DnaE. Nous avons montré que DnaE, comme PolC, fait partie du réplisome. Nos études fournissent une explication moléculaire à la spécialisation de DnaE dans la synthèse du brin d’ADN discontinu. En conclusion, nos résultats montrent que les réplisomes bactériens ont beaucoup plus évolué qu’attendu tant dans leur composition protéique que dans leur organisation et leur fonctionnement. Ils montrent également, et pour la première fois, que le contrôle temporel de la réplication dépend de réactions situées au cœur du MCC chez B. subtilis. Ces données et d’autres de la littérature suggèrent que cette propriété pourrait être universelle et pourrait jouer un rôle important dans la carcinogenèse. / DNA replication is a central cellular function for the duplication of the genetic material. A protein complex that is called replisome carries out this function. The process of replication is highly regulated with respect to cell growth conditions. During my thesis I was primarily interested in the control of replication by the central carbon metabolism (CCM) and to a lesser extent, to the functioning of the replisome in the bacterium Bacillus subtilis. The thesis studied the DNA replication in metabolic mutants by employing two techniques; QPCR and flow cytometry. The analyses showed that DNA replication is deregulated in cells that carry the following mutations: First, cells with mutations in the last 5 reactions of glycolysis. Second, cells with mutations in the reactions that connect the last part of glycolysis to the other parts of CCM (upper part of glycolysis pathway, pentose phosphate and Krebs cycle). Third, cells mutated in the overflow genes (channels that eliminate overflow metabolites produced in excess in CCM). The results demonstrate that in these mutants the replication begins and lasts longer than in the wild strain. All of these results show that the reactions that are centrally located to the CCM are important to ensure a correct control of replication timing. I also found that the ppGpp, a small molecule that functions as an alarmone of nutritional state in the cells, does not play a decisive role in the control of replication by metabolism in cells in steady state. The current knowledge of replisomes is mainly based on accumulated data from the dissection of the replisome of the model bacterium Escherichia coli and the phages T4 and T7. Bacillus subtilis is the second well studied bacterial model, a representative of Gram+ low GC%, it carries –unlike E. coli- two essential DNA polymerases for replication: PolC and DnaE. The thesis showed that DnaE as PolC form a part of the replisome in B. subtilis and provide a molecular explanation to the specialization of DnaE in the synthesis of the DNA lagging strand. In conclusion, the results show that there is much more diversity in the protein composition, organization and functioning of replisomes in bacteria than it is expected. In addition, the thesis concluded for the first time that the temporal control of replication depends on reactions located in the heart of CCM in B. subtilis. This property, in combination with other data from the literature, suggests that it could be universal and play an important role in carcinogenesis.
9

Identification de nouveaux mécanismes de régulation temporelle des origines de réplication dans les cellules humaines / Identification of new mechanisms of temporal regulation of DNA replication origins in human cells

Guitton-Sert, Laure 11 December 2015 (has links)
La duplication de l'ADN au cours de la phase S est initiée à partir de l'activation de plusieurs dizaines de milliers d'origines de réplication. La mise en place des origines a lieu au cours de la phase G1 sous la forme de complexe de pré-réplication (pré-RC) et leur activation est orchestrée par un programme spatio-temporel. La régulation spatiale détermine les origines qui seront activées et la régulation temporelle, ou timing de réplication, détermine le moment de leur activation. En effet, toutes ces origines ne sont pas activées en même temps durant la phase S : certaines origines seront activées en début de phase S, d'autre en milieu, ou d'autre à la fin. Ce programme est établi en tout début de phase G1, au " point de décision du timing ". C'est un programme très robuste qui signe l'identité d'une cellule, son état de différenciation et le type cellulaire à laquelle elle appartient. Il a aussi été montré qu'il est altéré dans des situations pathologiques, en particulier le cancer, sans qu'on ne comprenne très bien les raisons mécanistiques. De manière générale, les mécanismes moléculaires qui régulent le timing de réplication sont méconnus. Le premier volet de ma thèse a permis l'identification d'un nouveau régulateur du timing de réplication : il s'agit de l'ADN polymérase spécialisée Thêta. Recrutée à la chromatine très tôt en phase G1, elle interagit avec des composants du pré-RC, et régule le recrutement des hélicases réplicatives à la chromatine. Enfin, sa déplétion ou sa surexpression entraîne une modification du timing de réplication à l'échelle du génome. Dans la deuxième partie de ma thèse, j'ai exploré les mécanismes qui régulent ce programme temporel d'activation des origines suite à un stress réplicatif. J'ai identifié un mécanisme de régulation transgénérationnel inédit : la modification du timing de réplication de domaines chromosomiques ayant subi un stress réplicatif au cycle cellulaire précédent. Des cellules-filles issues d'une cellule ayant subi des problèmes de réplication dans des domaines fragiles (riches en AT, et donc potentiellement structurés, et pauvres en origines) présentent un timing plus précoce de l'activation des origines au niveau de ces domaines. Ce nouveau processus biologique d'adaptation est particulièrement intéressant dans un contexte tumoral de haut stress réplicatif chronique car ce pourrait être un moyen pour la cellule tumorale de survivre à son propre stress réplicatif mais aussi aux thérapies antitumorales qui sont nombreuses à cibler la réplication de l'ADN. / DNA duplication in S phase starts from thousands of initiation sites called DNA replication origins. These replication origins are set in G1 as pre-replication complexes (pre-RC) and fired in S phase following a spatio-temporal program of activation. This program determines which origins will be fired and when. Indeed, all the origins are not fired in the same time and we can distinguish early, middle and late replication origins. This temporal regulation is called "replication timing" and is determined at the "timing decision point" (TDP) in early G1. It's a robust program, which participates to the definition of cell identity, in term of differentiation state or cell type. However, the precise molecular mechanisms involved are poorly understood. Defective timing program has been evidenced in pathological contexts, in particular in cancers, but the mechanisms of this deregulation remain unclear. In the first part of my PhD, I contributed to the discovery of a new regulator of the origin timing program: the specialized DNA polymerase Theta (Pol Theta). Pol Theta is loaded onto chromatin in early G1, coimmunoprecipitates with pre-RC components and modulates the recruitment of Mcm helicases at TDP. Moreover, depletion or overexpression of Pol Theta modifies the timing of replication at a fraction of chromosomal domains. The second part of my work aimed at exploring the mechanisms that regulates replication timing after a replicative stress. I identified a totally new transgenerational adaptive mechanism of DNA replication timing regulation: the modification of the timing of origin activation at chromosomal domains that have suffered from a replicative stress during the previous cell cycle. Daughter cells from a cell that has experienced replication stress at particular domains (late replicating domains, AT rich so they can form structured DNA, and poor in origin density) shows advanced origin activation within these regions. This new biological process in response to replicative stress could be of particular interest in the context of cancer since, tumor cells are characterized by high level of intrinsic chronic replicative stress. This new mechanism may favor cancer cell survival despite replication stress, particularly upon treatments with anti-tumor agents that target DNA.
10

Etude des mécanismes moléculaires impliquant l'ADN polymérase Kappa dans le checkpoint de phase S / Molecular insights into the replication checkpoint to the DNA polymerase kappa

Pierini, Laura 28 September 2015 (has links)
La réplication de l'ADN est un évènement majeur pour la cellule car elle permet la duplication fidèle du matériel génétique. Il s'agit d'une étape critique du cycle cellulaire, car les fourches de réplication rencontrent fréquemment des barrières naturelles ou des lésions d'origine endogènes (lésions oxydatives) ou exogènes (agents physiques ou chimiques), sources de cassures chromosomiques et donc d'instabilité génétique. Une des réponses à ces fourches bloquées est l'activation du point de contrôle (checkpoint) de la phase S du cycle cellulaire. Nous avons montré que l'ADN polymérase Kappa (pol Kappa), polymérase dite translesionnelle en raison de ses capacité à franchir des lésions sur l'ADN, s'avère être aussi un acteur du point de contrôle de phase S. En effet, la déplétion de pol Kappa par ARN interférence dans différentes lignées cellulaires ou par immunodépletion d'un extrait de Xénope, entraîne un défaut de phosphorylation de Chk1. Pol Kappa est impliquée dans la synthèse de brins naissant d'ADN au niveau des fourches bloquées, ce qui facilite le recrutement du complexe 9-1-1 composé des protéines Rad9, Rad1 et Hus1et permet alors, une activation correcte du checkpoint de phase S. Afin de décrypter le rôle de pol kappa, nous avons construits différents mutants et nous avons analysé leur capacité à former des foyers, à être recrutés à la chromatine et à interagir avec différents partenaires dans des conditions d'activation du point de contrôle de phase S. Nous avons pu constater que le mutant du domaine d'interaction à PCNA était incapable de former des foci foyers ?. Nous avons ensuite observé, qu'en condition de stress réplicatif, pol Kappa était recruté à la chromatine grâce à son domaine d'interaction à PCNA et par différentes approches biochimiques, nous avons pu voir que pol kappa interagissait avec Rad9 et Chk1. Nous avons également mis en évidence que le défaut d'activation de Chk1 en l'absence de pol kappa reflétait d'une diminution de son taux dans le noyau, suggérant une régulation commune entre Chk1 et pol Kappa. En effet, nous avons observé que pol Kappa, comme Chk1, était régulés par l'ubiquitine hydrolase USP7. En effet, l'interaction entre pol Kappa et USP7 est augmentée en condition de stress. Nous avons pu voir, qu'à l'instar de Chk1, l'absence de USP7 entrainait une baisse du niveau de pol kappa dans le noyau. Ainsi nous proposons qu'en réponse à un stress réplicatif, pol Kappa et Chk1 soient stabilisés via leur dé-ubiquitination par USP7, permettant leur recrutement à la chromatine et une activation correcte du checkpoint de phase S. Parallèlement à ces travaux, des publications récentes montrent une implication possible de pol Kappa au niveau des séquences répétées. Nous avons pu mettre en évidence une interaction entre pol Kappa et Cenpb, protéine centromérique reconnaissant une séquence de 17 paires de bases dans l'ADN a-satellite. Ces résultats préliminaires suggèrent que le rôle de pol Kappa dans le checkpoint de phase S s'adresse notamment aux régions d'hétérochromatine. L'ensemble des résultats obtenus montre l'importance de pol Kappa dans le maintien de la stabilité génomique, par son rôle dans le checkpoint de phase S, et par son implication dans la régulation de Chk1 en condition de stress réplicatif. / DNA replication is a major event for cells which allow the faithful duplication of genetic material. It is a critical step of cell cycle, because replication forks encounters frequently naturals barriers (non B-DNA structures), exogenous barriers (chemicals agents), or endogenous barriers (oxydatives lesions). These different barriers can be at the origin of chromosomes breaks and lead to genetic instability. To overcome the stalled forks, cells have evolved two major mechanisms: the induction of ATR replication checkpoint pathway and the recruitment of specialized DNA polymerase to perform the translesion synthesis. This two pathways are essential to maintain genomic stability. Human DNA polymerase Kappa (pol Kappa), the most conserved specialized DNA polymerase, is best known to participate to translesion synthesis. Recently, we have shown that pol kappa has a crucial role in the S-phase checkpoint activation. Indeed, pol Kappa is implicated in the synthesis of short DNA intermediates at the stalled forks, facilitating the recruitment of 9-1-1 clamp, and is required for an optimal phosphorylation of Chk1, the main effector of the S-phase checkpoint. Durant my PhD thesis, I explored the molecular mechanisms underlying this newly identified role. We have constructed several pol kappa mutants, and we have observed that for the mutation in the PCNA binding domain impeded pol kappa to form foci in response to replication stress. We also showed the requirement of this domain for pol Kappa recruitment on chromatin. By different experimental approaches, we have described a complex in which pol Kappa interacts with Rad9 and Chk1, two proteins required for the S-phase checkpoint activation. The Chk1 phosphorylation defect observed in absence of Kappa could also be the consequence of the Chk1 protein level decreased in the nucleus, meaning a potential common regulation between pol Kappa and Chk1. Based on this observation, we have studied how pol Kappa is regulated upon a replication stress and like Chk1, pol Kappa seems to be regulated by ubiquitination. We focused our attention on USP7 an ubiquitin hydrolase known to regulate Chk1. We have demonstrated an interaction between pol Kappa and USP7, which is stimulated after replication stress. Moreover, USP7 depletion leads to a decrease of pol Kappa level in the nucleus, suggesting that de-ubiquination of pol Kappa could to be a prerequisite for its checkpoint function and its stability.

Page generated in 0.0412 seconds