11 |
Conception portable d'une ADPLL pour des applications TVAltabban, Wissam 04 December 2009 (has links) (PDF)
Dans un système radio communication pour les applications hautes fréquences (>300 mhz), la partie frontal RF est généralement analogique et alors moins compatible avec la partie numérique bande de base. La consommation d'énergie, la surface et le cout de la partie analogique sont importants par rapport a la partie numérique. La migration vers des systèmes numériques apporte plusieurs avantages des conceptions numériques comme la possibilité d'utiliser des outils de CAD computer aided design, de plus les circuits numériques sont plus faciles a tester, plus petit en surface et leur temps de conception est plus court contrairement aux circuits analogiques qui demande plusieurs itérations de fabrication avant leur commercialisation. Une PLL est un composant dont les signaux sont analogiques ou mixtes. Alors qu'une ADPLL est une boucle dont tous les signaux d'entrées/sorties sont numériques. Une ADPLL est plus facilement intégrée sur un soc qu'une boucle analogique et plus robuste au bruit qui vient de la partie numérique bande de base. Dans ce mémoire on propose dans le premier chapitre un modèle comportemental de l'ADPLL pour les applications radio autour de 2ghz comme le GSM et le bluetooth. Le modèle linéaire variant en temps (LTV) du bruit de phase de l'oscillateur est intègre dans un modèle haut niveau de l'ADPLL en utilisant VHDL-AMS. Dans le deuxième chapitre on propose une conception portable de l'ADPLL pour les applications TV. L'ADPLL conçue contient un oscillateur en anneau interpolateur contrôle numériquement et un convertisseur temps en numérique TDC base sur le DCO pour une réduction de la consommation de puissance.
|
12 |
Frequency Synthesis in Wireless and Wireline SystemsTurker, Didem 1981- 14 March 2013 (has links)
First, a frequency synthesizer for IEEE 802.15.4 / ZigBee transceiver applications that employs dynamic True Single Phase Clocking (TSPC) circuits in its frequency dividers is presented and through the analysis and measurement results of this synthesizer, the need for low power circuit techniques in frequency dividers is discussed.
Next, Differential Cascode Voltage-Switch-Logic (DCVSL) based delay cells are explored for implementing radio-frequency (RF) frequency dividers of low power frequency
synthesizers. DCVSL ip- ops offer small input and clock capacitance which makes the power consumption of these circuits and their driving stages, very low. We perform a delay analysis of DCVSL circuits and propose a closed-form delay model that predicts the speed of DCVSL circuits with 8 percent worst case accuracy. The proposed
delay model also demonstrates that DCVSL circuits suffer from a large low-to-high propagation delay ( PLH) which limits their speed and results in asymmetrical output
waveforms. Our proposed enhanced DCVSL, which we call DCVSL-R, solves this delay bottleneck, reducing PLH and achieving faster operation.
We implement two ring-oscillator-based voltage controlled oscillators (VCOs) in 0.13 mu m technology with DCVSL and DCVSL-R delay cells. In measurements, for the same oscillation frequency (2.4GHz) and same phase noise (-113dBc/Hz at 10MHz), DCVSL-R VCO consumes 30 percent less power than the DCVSL VCO. We also use the
proposed DCVSL-R circuit to implement the 2.4GHz dual-modulus prescaler of a low power frequency synthesizer in 0.18 mu m technology. In measurements, the synthesizer exhibits -135dBc/Hz phase noise at 10MHz offset and 58 mu m settling time with 8.3mW power consumption, only 1.07mWof which is consumed by the dual modulus prescaler and the buffer that drives it. When compared to other dual modulus prescalers with similar division ratios and operating frequencies in literature, DCVSL-R dual modulus prescaler demonstrates the lowest power consumption.
An all digital phase locked loop (ADPLL) that operates for a wide range of frequencies to serve as a multi-protocol compatible PLL for microprocessor and serial
link applications, is presented. The proposed ADPLL is truly digital and is implemented in a standard complementary metal-oxide-semiconductor (CMOS) technology
without any analog/RF or non-scalable components. It addresses the challenges that come along with continuous wide range of operation such as stability and phase frequency detection for a large frequency error range. A proposed multi-bit bidirectional smart shifter serves as the digitally controlled oscillator (DCO) control and tunes the DCO frequency by turning on/off inverter units in a large row/column matrix that constitute the ring oscillator. The smart shifter block is completely digital, consisting of standard cell logic gates, and is capable of tracking the row/column unit availability
of the DCO and shifting multiple bits per single update cycle. This enables fast frequency acquisition times without necessitating dual loop fi lter or gear shifting
mechanisms.
The proposed ADPLL loop architecture does not employ costly, cumbersome DACs or binary to thermometer converters and minimizes loop filter and DCO control
complexity. The wide range ADPLL is implemented in 90nm digital CMOS technology and has a 9-bit TDC, the output of which is processed by a 10-bit digital loop filter
and a 5-bit smart shifter. In measurements, the synthesizer achieves 2.5GHz-7.3GHz operation while consuming 10mW/GHz power, with an active area of 0.23 mm2.
|
13 |
Système de contrôle pour microscope à force atomique basé sur une boucle à verrouillage de phase entièrement numériqueBouloc, Jeremy 29 May 2012 (has links)
Un microscope à force atomique (AFM) est utilisé pour caractériser des matériaux isolant ou semi-conducteur avec une résolution pouvant atteindre l'échelle atomique. Ce microscope est constitué d'un capteur de force couplé à une électronique de contrôle pour pouvoir correctement caractériser ces matériaux. Parmi les différents modes (statique et dynamique), nous nous focalisons essentiellement sur le mode dynamique et plus particulièrement sur le fonctionnement sans contact à modulation de fréquence (FM-AFM). Dans ce mode, le capteur de force est maintenu comme un oscillateur harmonique par le système d'asservissement. Le projet ANR Pnano2008 intitulé : ”Cantilevers en carbure de silicium à piézorésistivité métallique pour AFM dynamique à très haute fréquence" a pour objectif d'augmenter significativement les performances d'un FM-AFM en développant un nouveau capteur de force très haute fréquence. Le but est d'augmenter la sensibilité du capteur et de diminuer le temps nécessaire à l'obtention d'une image de la surface du matériau. Le système de contrôle associé doit être capable de détecter des variations de fréquence de 100mHz pour une fréquence de résonance de 50MHz. Etant donné que les systèmes présents dans l'état de l'art ne permettent pas d'atteindre ces performances, l'objectif de cette thèse fut de développer un nouveau système de contrôle. Celui-ci est entièrement numérique et il est implémenté sur une carte de prototypage basée sur un FPGA. Dans ce mémoire, nous présentons le fonctionnement global du système ainsi que ses caractéristiques principales. Elles portent sur la détection de l'écart de fréquence de résonance du capteur de force. / An atomic force microscope (AFM) is used to characterize insulating materials or semiconductors with a resolution up to the atomic length scale. The microscope includes a force sensor linked to a control electronic in order to properly characterize these materials. Among the various modes (static and dynamic), we focus mainly on the dynamic mode and especially on the frequency modulation mode (FM-AFM). In this mode, the force sensor is maintained as a harmonic oscillator by the servo system. The research project ANR Pnano2008 entitled: "metal piezoresistivity silicon carbide cantilever for very high frequency dynamic AFM" aims to significantly increase the performance of a FM-AFM by developing new very high frequency force sensors. The goal is to increase the sensitivity of the sensor and to decrease the time necessary to obtain topography images of the material. The control system of this new sensor must be able to detect frequency variations as small as 100mHz for cantilevers with resonance frequencies up to 50MHz. Since the state-of-the-art systems doe not present these performances, the objective of this thesis was to develop a new control system. It is fully digital and it is implemented on a FPGA based prototyping board. In this report, we present the system overall functioning and its main features which are related to the cantilever resonant frequency detection. This detection is managed by a phase locked loop (PLL) which is the key element of the system.
|
Page generated in 0.0154 seconds