• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 8
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la formation des podosomes endothéliaux en réponse au TGFß : rôle essentiel du récepteur de type I, ALK1, et de la fibronectine dans un contexte d’activation de la cellule endothéliale / Study of endothelial podosomes formation induced by TGFβ : central role of type I receptor, ALK1; and of fibronectin in an active background of endothelial cell

Rottiers, Patricia 18 December 2009 (has links)
Le TGFB(bêta) est un facteur clé dans l'homéostasie du réseau vasculaire. Le laboratoire a découvert que le TGFB(bêta) induit des podosomes dans les cellules endothéliales (CE) artérielles in vitro. Ces microdomaines riches en F-actine, sont capables de dégrader localement la matrice extracellulaire. Nous avons mis en évidence des structures de même type dans l’endothélium natif, démontrant la pertinence des observations in vitro. Les CE expriment 2 récepteurs de type I au TGFB(bêta), ALK5 et ALK1, dont les fonctions respectives sur les CE font l’objet de controverses. Nous montrons in vitro, que l’assemblage des podosomes est dépendant de ALK1 et est induit dans un contexte d'activation de la CE. La fibronectine, présente dans la matrice lors de situations d'activation de la CE, est régulée par TGFB(bêta) /ALK1 dans notre modèle et est essentielle à la formation des podosomes. L'ensemble des données obtenues laisse présager un rôle des podosomes endothéliaux dans le remodelage artériel en réponse au TGFB(bêta). / TGFB(beta), a pleiotrop cytokine, acts as an important regulator for the maintenance of vascular homeostasis. Our team has discovered, for the first time, that TGFB(beta) induces podosomes formation in aortic endothelial cells (EC) in vitro. Podosomes are highly dynamic adhesion microdomains formed at the ventral membrane, consisting of a core of F-actin and actin-associated proteins, surrounded by a ring structure which in turn is consisting of plaque proteins as well as signaling proteins. In addition to the presence of specific markers, they are distinguished from other adhesion structures by the presence of metalloproteases, endowing them with the ability to degrade the extracellular matrix locally. We have bringing to light these structures in the endothelium of native arterial vessel exposed to biologically active TGFB(beta), showing relevance of these structures. Endothelial cells express two types I receptors of TGFB(beta), ALK5 and ALK1, which relative function on EC are controversial. We show in our model in vitro, that podosomes formation is ALK1-dependent and are induced when EC are in an active background. Fibronectin, an extracellular matrix component which is present during active situation, is regulated by TGFB(beta)/ALK1 signaling pathway and is essential for podosomes formation. This work open up new avenues to study the role of podosomes in vascular pathophysiology. We propose that podosomes are involved in arterial vessel remodeling.
2

N-linked glycosylation at position ASN98 of the ALK1 receptor protein: relevance for ALK1 function and HHT pathogenesis

Gadaleta, Erick Michael 18 June 2016 (has links)
Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant genetic disorder that results from a mutation of one of two key signaling receptors for the transforming growth factor beta (TGFβ) superfamily: endoglin and activin receptor-like kinase 1 (ALK1). These mutations result in development of HHT Type 1 and HHT Type 2, respectively. Patients suffering from HHT experience spontaneous blood vessel growth that can lead to telangiectasia, arteriovenous malformation (AVM) development, and other related health problems. ALK1 is a serine/threonine kinase receptor found on the cell membrane of endothelial cells. ALK1 and its co-receptor endoglin, are activated by binding to the circulating BMP9 ligand. The ALK1-endoglin-BMP9 complex will then regulate endothelial proliferation by activating the SMAD pathway by phosphorylation. Mutations in the ACVRL1 gene can form a modified ALK1 protein that has a high potential to inhibit this function, causing the hyperproliferation of endothelial cells and the development of AVMs, and ultimately HHT Type 2. It is believed, however unproven, that ALK1 is heavily glycosylated in the extracellular domain. My thesis research was aimed at studying the glycosylation of ALK1 and at exploring the relevance of this glycosylation to the development of HHT. The glycosylation of ALK1 was investigated by using: (i) a computational prediction approach (NetNGlyc 1.0 bioinformatics server), (ii) a glycosylation inhibiting drug (tunicamycin), (iii) an in vitro enzymatic approach of glycosylation breakdown, and (iv) site-directed mutagenesis to identify the ASP residue glycosylated on ALK1. The bioinformatics software NetNGlyc predicted a N-linked glycosylation site on an asparagine (ASN) residue located at position 98 in the extracellular domain of ALK1. I further found that, based on western blot analysis, ALK1 proteins shifted to a lighter molecular weight (5-8 kDa) when treated with tunicamycin, as well as endo H and PNGase F enzymes, which represent two glycosidases able to remove N-linked oligosaccharides on proteins. Western blot analysis also revealed an identical shift in protein size (5-8 kDa) when comparing wild type ALK1 to an asparagine98-to-alanine (N98A) mutant ALK1 construct. The 5-8 kDa shift observed in the drug and enzymatic experiments indicate the removal of a bulky oligosaccharide from the wild type ALK1 protein. This 5-8 kDa shift observed in the mutagenesis experiment indicated that the same oligosaccharide addition could not occur on ALK1 when ASP98 was missing. Thus proving that the asparagine at the 98th position of ALK1 is involved in N-linked glycosylation. These important findings on ALK1 modification offer a greater understanding of the mechanisms behind ALK1 regulation and function, especially its role in controlling angiogenesis. Furthermore, this data provides grounds for further research into the importance of ALK1 glycosylation in the pathogenesis of HHT, as well as the investigation into new treatment regiments.
3

The role of ALK1 and ALK5 receptors, and their cognate Smads, in TGFβ1-mediated podosome-formation in aortic endothelial cells / Le rôle des récepteurs ALK1 et ALK5, et leurs effecteurs Smads, dans la formation des podosomes induits par le TGFβ1 dans les cellules endothéliales aortiques

Dos Santos Curado, Filipa 12 July 2013 (has links)
Le TGF-β (Transforming growth factor-β) régule de nombreux processus cellulaires et la dérégulation de la signalisation du TGF-β est associée à divers troubles vasculaires. Dans le laboratoire du Dr Génot, le TGF-β a été découvert comme étant le facteur capable d’induire la formation de podosomes organisés en superstructures, appelées rosettes, dans les cellules endothéliales aortiques. Les podosomes sont des structures à base d’actine, formées de façon transitoire, capables de dégrader la matrice extracellulaire (MEC). Dans ce projet, nous avons étudié les récepteurs du TGF-β et les mécanismes moléculaires associés, impliqués dans la formation des podosomes en réponse au TGF-β dans le modèle des cellules endothéliales aortiques bovines primaires (BAEc). Deux types de récepteurs du TGF-β de type I (TβRI), ALK5 et ALK1, régulent les réponses au TGF-β dans les cellules endothéliales, ALK5 étant un récepteur ubiquitaire et ALK1 étant un récepteur dont l’expression est restreinte aux cellules endothéliales. Ces deux récepteurs contrôlent l'activation de protéines Smads distinctes et réagissent à la stimulation par le TGF-β. ALK5 active Smad2/3 et ALK1 active Smad1/5/8. BMP9 est un autre ligand d’ALK1. ALK1 n'active pas Smad2/3 dans les BAEc et BMP9 inhibe la formation des podosomes induite par le TGF-β. La stimulation de Smad1/5/8 par le traitement au TGF-β est induite par la signalisation du complexe ALK1/ALK5. En utilisant une approche à base de siRNA ciblant l’un ou l’autre des TβRI, l’induction des podosomes par le TGF-β est supprimée. Cependant, la transfection des TβRI constitutivement actifs (CA) a montré que l’expression du CA-ALK5 se substitue au TGF-β pour induire des podosomes alors que l'expression du CA-ALK1 est inefficace. Concernant la signalisation en aval des TβRI, l'implication des protéines Smads a également été étudiée dans la régulation du processus. La diminution d’expression de Smad3 abolit complètement la formation des podosomes induite par le TGF-β alors que la déplétion des protéines Smad1 ou Smad5 augmente leur formation. La surexpression des protéines Smad2 ou Smad3, elles aussi, dans une certaine mesure, se substituent aux signaux du TGF-β, alors que la surexpression de Smad1 diminue la formation des podosomes en réponse au TGF-β. Le TGF-β est également capable de moduler la formation d'un autre type de structure d'actine appelée étoiles d’actine. Le nombre de cellules présentant des étoiles d'actine diminue avec le traitement au TGF-β. Cependant, dans les cellules déficientes en Smad3, la formation de ces étoiles d’actine semble être stimulée par le TGF-β. Dans les BAEc, la rigidité ainsi que les protéines de la MEC semblent aussi moduler la formation des podosomes et des étoiles d'actine. Ces travaux démontrent que, bien que le TGF-β stimule à la fois ALK5 et ALK1, la signalisation d’ALK5 induit la formation des podosomes et la signalisation d’ALK1 atténue ce signal. Les voies canoniques, par l’intermédiaire de la régulation des protéines Smads, contribuent à la formation des podosomes induits par le TGF-β dans les BAEc. / Transforming growth factor-β (TGF-β) regulates a wide array of cellular processes and deregulation of TGF-β signalling is associated with various vascular disorders. In the Lab of Dr. Génot it was discovered that TGF-β induces the formation of podosomes organised in superstructures called rosettes, in aortic endothelial cells. Podosomes are transient actin-based structures able to degrade the extracellular matrix (ECM). In this project we have studied TGF-β receptors and associated molecular mechanisms underlying podosome formation in response to TGF-β in primary bovine aortic endothelial cells (BAEc). Two types of TGF-β type I receptors (TβRI), ALK5 and ALK1, regulate TGF-β responses in endothelial cells. ALK5 being an ubiquitous receptor and ALK1 being endothelial cell specific. Both ALK5 and ALK1 receptors control the activation of distinct Smad proteins, and both are responsive to TGF-β stimulation. ALK5 activates Smad 2/3 and ALK1 activates Smad 1/5/8. BMP9 is another ligand for ALK1. ALK1 doesn’t activate Smad2/3 in BAEc and ALK1 inhibits TGFβ-induced podosome formation. Smad1/5/8 stimulation by TGF-β treatment is induced through ALK1/ALK5 complex signalling. Using a knockdown approach, at the TβRI level, TGF-β induction of podosomes was inhibited. However, transfection of constitutively active (CA) TβRI showed that CA-ALK5 expression bypassed the TGF-β requirement for podosome induction whereas CA-ALK1 expression was ineffective. Looking downstream of TβRI signalling, the involvement of Smad proteins was also analysed in terms of podosome formation. Smad3 depletion completely abolished TGFβ-induced podosome formation whereas depletion of Smad1 or Smad5 proteins enhanced the TGFβ-induced podosome response. When overexpressed, Smad2 or Smad3, to some extent, bypassed TGFβ signals, whereas Smad1 overexpression diminished the TGFβ-induced podosome response. TGF-β also modulated the formation of another type of actin structure named actin-stars. The number of cells presenting actin-stars decreased with TGF-β treatment. However, in Smad3 depleted cells the formation of these actin-stars seemed to be stimulated by TGF-β. In BAEc stiffness and ECM proteins also seemed to modulate podosome and actin star formation. This project establishes that although TGF-β stimulates both ALK5 and ALK1, ALK5 signalling triggers podosome formation and ALK1 mitigates this signal. The canonical pathways through Smad protein regulation are important for TGF-β induced podosome in BAEc.
4

ALK1 et BMP9 dans le remodelage vasculaire de la génétique humaine aux modèles murins / ALK1 / BMP9 and vascular remodeling From human genetics to murin models

Ricard, Nicolas 23 September 2011 (has links)
ALK1 est un récepteur de la famille du TGF-β, principalement exprimé dans les cellules endothéliales. Le ligand physiologique et circulant d'ALK1, BMP9, a été découvert par notre laboratoire en 2007, ce qui a ouvert des possibilités d'étude de la fonction d'ALK1. La première partie de ma thèse a été consacrée à l'analyse fonctionnelle de mutants d'ALK1, retrouvés sur des patients atteints de la maladie de Rendu-Osler de type 2, en réponse à BMP9. Cette étude a permis de : 1) proposer l'haploinsuffisance fonctionnelle comme modèle de la maladie ; 2) développer un test diagnostique pour discriminer les mutations pathogènes des polymorphismes rares, basé sur leur réponse à BMP9 ; 3) d'avoir une meilleure connaissance des acides aminés d'ALK1 importants dans la réponse à BMP9. Un second travail a consisté en la production de la forme mature de BMP9 et du domaine extracellulaire d'ALK1 en vue de l'étude de la structure cristallographique du complexe. L'expression des protéines et leur purification sont en phase d'optimisation. Enfin, un troisième projet consistait en l'analyse du rôle de BMP9 dans l'angiogenèse in vivo. La neutralisation de BMP9 par deux stratégies distinctes induit une augmentation de la densité vasculaire dans la rétine de la souris. Le mécanisme est en cours d'investigation. / ALK1 is a TGF-β family receptor, mainly expressed on endothelial cells. The physiologic and circulating ligand of ALK1, BMP9, was discovered by our laboratory in 2007, which opened opportunities for studying the function of ALK1. The first part of my thesis was on the functional analysis of ALK1 mutants from HHT-2 patients in response to BMP9. This study allowed us to: 1) propose functional haploinsufficiency as a model for HHT-2; 2) develop a diagnostic tool to discriminate pathogenic mutations from rare polymorphisms, based on their BMP9 response; 3) increase our knowledge of important amino acids in ALK1 for the BMP9 response. A second work was on the production of the mature form of BMP9 and of the extracellular domain of ALK1 in order to study the crystallographic structure of the complex. The expression of these proteins and their purification are in optimization phase. Lastly, a third project was on the analysis of the role of BMP9 in angiogenesis in vivo. Neutralization of BMP9 using two strategies induces an increase of the vascular density of the retina in mouse. Mechanism of action is under investigation.
5

Neuronal phenotypes in human hippocampus and neocortex in late-onset Alzheimer's disease: protein expression of novel genes implicated in pathogenesis

Adams, Stephanie Lynn 12 June 2018 (has links)
Genetic factors involved in late-onset Alzheimer’s disease (AD), affecting the majority of AD patients, are largely unknown. Genome-wide association studies implicated genes associated with increased risk of AD, including BIN1 (Bridging Integrator 1), and MSRB3 (methionine sulfoxide reductase-B3), also associated with low hippocampal volume. In an effort to find effective therapies, animal studies using intracerebralventricular administration of neurotrophic factor bone morphogenetic protein-9 (BMP9) decreased pathological burden and preserved cholinergic phenotype in AD mouse model hippocampus. To examine the potential role of BIN1, MSRB3, and ALK1, the BMP9 receptor, in human hippocampal AD-associated pathology, we examined their protein expression in postmortem human hippocampi using automated immunohistochemistry, and correlated the data with neuropathological reports and clinical dementia ratings. In elderly control subjects, BIN1 protein was expressed in white matter, glia, and neuropil along axons. CA1 quantitative analysis of BIN1 signal during AD progression revealed expression decreased in neuropil and increased in the cytoplasm of pyramidal neurons. The number of CA1 BIN1-immunoreactive pyramidal neurons correlated with the hippocampal CERAD neuritic plaque score while BIN1 neuropil signal was absent at neuritic plaque sites. MSRB3 was differentially expressed in hippocampal pyramidal layers. Controls exhibited MSRB3 signal as distinct but rare (≤2) puncta in CA1 pyramidal neuron somata. MSRB3 immunoreactivity in CA3 was found in the pyramidal layer neuropil. MSRB3 signal was also observed in rodent hippocampi where ultrastructural and immunohistofluorescent analysis revealed MSRB3 associates with synaptic vesicles (SV) and colocalizes with SV and mossy fiber markers respectively. In AD patients the population of CA1 pyramidal neurons with frequent (≥5), rather than rare, MSRB3-immunoreactive somatic puncta increased in comparison to controls and correlated positively with AD pathological hallmarks. Finally, cholinergic neurons of human and rodent basal forebrain were ALK1-immunoreactive. In healthy CA1, ALK1 was expressed prominently in neuropil and in GABAergic interneurons, while CA2, CA3, and CA4 showed ALK1-immunoreactive neuropil and pyramidal somata. The intensity of ALK1-immunoreactivity in CA3 decreased in moderate and late AD patients compared to non-AD subjects. These data show that neuronal, glial, and hippocampal subfield-specific changes in protein expression of potential AD modulators are associated with AD progression and its diagnostic hallmarks. / 2020-06-12T00:00:00Z
6

Role of the BMP9/ALK1 pathway in the regulation of pathological and VEGF-mediated angiogenesis

Ntumba, Kalonji 01 1900 (has links)
L’angiogenèse est définie comme la formation de nouveaux capillaires à partir des vaisseaux sanguins pré-existants. Elle contribue à l’extension du réseau vasculaire et assure ainsi l’efficacité des échanges gazeux et du transport des cellules, nutriments, métabolites et molécules de signalisation vers les tissus. L’angiogenèse par bourgeonnement passe par la spécification d’une cellule endothéliale en cellule meneuse et la formation d’un réseau de cellules suiveuses à la base du bourgeon vasculaire. Toute perturbation de ce mode de néovascularisation génère des vaisseaux fortement tortueux, immatures et non-étanches qui soit affectent les fonctions physiologiques des organes en causant ainsi des pathologies potentiellement fatales, ou accélèrent la progression des conditions telles que le cancer. Dans l’oeil, l’angiogenèse pathologique des vaisseaux choroïdiens et rétiniens cause une perte de la vue. Particulièrement, la dégénérescence maculaire liée à l’âge (DMLA) de type néovasculaire, une maladie oculaire caractérisée par le bourgeonnement anormal de la choroïde dans l’espace sous-rétinien, représente la cause majeure de cécité au sein des populations des pays industrialisés. Les thérapies conventionnelles contre la DMLA humide reposent sur l’usage des médicaments qui ciblent la signalisation du facteur de croissance de l’endothélium vasculaire (VEGF). Bien que démontrant des résultats cliniques, ces traitements anti-VEGFs sont invasifs et présentent multiples effets secondaires. Par ailleurs, ils n’induisent aucun effet chez une portion des patients traités. De ces faits, il existe présentement un grand besoin de thérapies alternatives aux anti-VEGFs. De façon intéressante, la protéine de morphogénèse osseuse 9 (BMP9), qui active son récepteur “activin receptor-like kinase 1” (ALK1), régule l’angiogenèse développementale des vaisseaux rétiniens de l’oeil de la souris. Par ailleurs, les mutations au sein du BMP9, de son récepteur ALK1 ou de ses intermédiaires de signalisation sont associées à la morphogénèse anormale des vaisseaux qui contribue ultimement à la pathogénèse de diverses maladies néovasculaires. De façon additionnelle, le récepteur ALK1 au BMP9 est restreint à la cellule endothéliale; contrairement à ceux des ligands angiogéniques tels que le VEGF, exprimés par une diversité de cellules. Par ailleurs, au sein de cette cellule, le BMP9 contribue à la régulation des phénotypes meneur et suiveur qui sont induits par le VEGF et requis pour le déroulement de l’angiogenèse par bourgeonnement. De ces faits qui précèdent, nous avons émis l’hypothèse du rôle du BMP9 dans la régulation de la néovascularisation pathologique relative à la DMLA humide. Ainsi, les travaux de la présente thèse déterminent spécifiquement l’effet du BMP9 sur l’angiogenèse pathologique à l’aide des modèles oculaires pertinents à la DMLA humide et examine aussi sa base mécanistique. Les travaux de cette thèse démontrent l’effet anti-angiogénique du BMP9 sous les conditions expérimentales de néovascularisation choroïdienne induite au laser (CNV) et de rétinopathie induite par l’oxygène (OIR). Ils montrent aussi les effets régulateurs de la signalisation du BMP9 sur les voies de signalisation endothéliales du VEGF et de Notch, respectivement de façon dépendante de VEGFR1 et de JAG1. En somme, les présentes études démontrent les effets anti-angiogéniques du BMP9 sur la néovascularisation pathologique relative à la DMLA humide et identifient les facteurs moléculaires qui contribuent à son action inhibitrice du bourgeonnement vasculaire induit par le VEGF. / Angiogenesis is defined as the formation of new capillaries from existing blood vessels. It extends the vasculature and thereby sustains the efficient exchange of gases and transport of cells, nutrients, metabolites and signalling molecules to tissues. Sprouting angiogenesis proceeds through the selective specification of an endothelial cell into a leading tip cell and the formation of stalk cells at the base of the sprout. A disturbance in this modality of neovascularisation leads to highly tortuous, immature and leaky vessels that either impair the physiological functions of organs, thereby causing life-threatening diseases, or accelerate the progression of conditions such as cancer. In the eye, the pathological angiogenesis of choroidal and retinal vessels specifically results in vision loss. Particularly, the neovascular form of the age-related macular degeneration (AMD), an ocular disease characterized by the abnormal sprouting of the choroidal network into the subretinal space, represents the leading cause of blindness in populations of industrialized countries. Conventional therapies against wet AMD are based on drugs that target the signaling of the vascular endothelium growth factor (VEGF). Despite their clinical achievements, the anti-VEGFs treatments are invasive and show multiple adverse effects. Moreover, they are not effective in a portion of treated patients. Thus, there currently is a substantial need of therapy alternatives to anti-VEGFs. Interestingly, the bone morphogenetic protein 9 (BMP9), that activates its activin receptor-like kinase 1 (ALK1) transducer, regulates the developmental angiogenesis of the mouse eye retina vasculature. Moreover, mutations in BMP9, its receptor ALK1 or its signaling mediators correlate with the abnormal vessel morphogenesis that ultimately drives the pathogenesis of various neovascular diseases. Additionally, the BMP9-specific receptor ALK1 is restricted to endothelial cells; in contrast to those of neovascularisation-inducing ligands such as VEGF, expressed by a range of cells. Particularly within these cells, BMP9 contributes to regulate the VEGF-induced tip/stalk phenotypes required for sprouting angiogenesis. Given the aforementioned, we hypothesized the role of BMP9 in regulating the pathological angiogenesis associated with wet AMD. Thus, the studies from the current thesis specifically determine the effect of BMP9 on pathological NV using ocular models relevant to AMD and further investigate its mechanical basis. The current work demonstrates the antiangiogenic effects of BMP9 under experimentally induced oxygen-induced retinopathy (OIR) and laser-induced choroid neovascularisation (CNV) conditions. Moreover, this thesis shows the regulatory effects of BMP9 signaling on the VEGF and Notch endothelial pathways, respectively in VEGFR1 and JAG1 -dependent manners. Collectively, the current studies demonstrate the anti-angiogenic effects of BMP9 on pathological NV associated with wet AMD and identify the molecular players that mediate its inhibitory action on VEGF-mediated sprouting.
7

ALK1 et BMP9 dans le remodelage vasculaire de la génétique humaine aux modèles murins

Ricard, Nicolas 23 September 2011 (has links) (PDF)
ALK1 est un récepteur de la famille du TGF-β, principalement exprimé dans les cellules endothéliales. Le ligand physiologique et circulant d'ALK1, BMP9, a été découvert par notre laboratoire en 2007, ce qui a ouvert des possibilités d'étude de la fonction d'ALK1. La première partie de ma thèse a été consacrée à l'analyse fonctionnelle de mutants d'ALK1, retrouvés sur des patients atteints de la maladie de Rendu-Osler de type 2, en réponse à BMP9. Cette étude a permis de : 1) proposer l'haploinsuffisance fonctionnelle comme modèle de la maladie ; 2) développer un test diagnostique pour discriminer les mutations pathogènes des polymorphismes rares, basé sur leur réponse à BMP9 ; 3) d'avoir une meilleure connaissance des acides aminés d'ALK1 importants dans la réponse à BMP9. Un second travail a consisté en la production de la forme mature de BMP9 et du domaine extracellulaire d'ALK1 en vue de l'étude de la structure cristallographique du complexe. L'expression des protéines et leur purification sont en phase d'optimisation. Enfin, un troisième projet consistait en l'analyse du rôle de BMP9 dans l'angiogenèse in vivo. La neutralisation de BMP9 par deux stratégies distinctes induit une augmentation de la densité vasculaire dans la rétine de la souris. Le mécanisme est en cours d'investigation.
8

Étude du rôle du récepteur ALK1 dans l’infiltration leucocytaire dans l’endothélium

Forget, Arthur 08 1900 (has links)
Le recrutement des leucocytes dans les tissus est un processus courant dans toutes les maladies inflammatoires de l'adulte. Celui-ci est médié par des interactions de haute affinité entre les molécules d'adhésion endothéliales à la surface des vaisseaux sanguins et leurs ligands sur les cellules immunitaires circulantes. Ce processus implique une multitude de molécules telles que ICAM1, VCAM1 et les sélectines pour soutenir la « capture » des cellules immunitaires et leur extravasation à travers les cellules endothéliales vasculaires. Nos résultats préliminaires suggèrent que le récepteur ALK1, exprimé spécifiquement sur les cellules endothéliales, pourrait réguler l'expression de ces molécules d'adhésion. Pour examiner l'impact de la signalisation ALK1 sur le recrutement des cellules immunitaires, nous avons utilisé des lignées de cellules endothéliales siALK1 (HUVECs) traitées avec du lipopolysaccharide (LPS) pour induire un processus inflammatoire. Tout d'abord, l'expression des gènes, examinée par Ampliseq, a montré une diminution significative de l'expression de ICAM1, VCAM1 et E-sélectine dans les HUVECs siALK1 par rapport au contrôle. De plus, l'analyse par cytométrie en flux a démontré que l'expression des protéines d'adhésion augmentent dans les cellules traitées avec du LPS, mais que cet effet est atténué dans les cellules endothéliales dépourvues d'ALK1. De plus, nous avons observé que le p38 phosphorylé, un facteur qui joue un rôle clé dans le processus inflammatoire, est diminué dans les cellules siALK1. Enfin, pour étudier les conséquences fonctionnelles de la délétion d'ALK1 sur les interactions leucocytes/cellules endothéliales, un test d'adhésion en flux est réalisé, dans lequel les leucocytes circulent sur les cellules endothéliales et l'extravasation des cellules immunitaires est observée au microscope. Les résultats ont montré une diminution de l'infiltration des leucocytes dans les HUVECs siALK1 par rapport aux témoins. En conclusion, nos données démontrent qu'ALK1 a un impact majeur sur le recrutement des leucocytes vers l'endothélium par l'expression de protéines d'adhésion ainsi que par la normalisation vasculaire. Ce projet contribue à une meilleure compréhension de l'interaction entre les leucocytes et l'endothélium vasculaire. / Leukocyte recruitment into tissues is a common process in all adult inflammatory diseases. This is mediated by high affinity interactions between endothelial adhesion molecules and their counter receptor ligands on circulating immune cells. This process involves a multitude of molecules such as ICAM1, VCAM1 and selectins to support the "capture’’ of immune cells and their extravasation through vascular endothelial cells. Our preliminary results suggest that ALK1 receptor, expressed specifically on endothelial cells, could regulate the expression of these adhesion molecules. To examine the impact of ALK1 signaling on immune cells recruitment, we used siALK1 endothelial cell lines (HUVECs) treated with LPS (Lipopolysaccharide) to induce an inflammatory process. First, gene expression, examined by Ampliseq, showed a significant decrease in ICAM1, VCAM1 and E-selectin expression in siALK1 HUVECs compared to control. Furthermore, flow cytometry analysis demonstrated that adhesion protein expression increases in control cells treated with LPS, but that this effect is lessened in endothelial cells lacking ALK1. Moreover, we observed that phosphorylated p38, a factor that plays a key role in inflammatory process, is decreased in siAlk1 cells. Finally, to study the functional consequences of ALK1 deletion on leukocyte/endothelial cells interactions, a flow adhesion assay is performed, in which leukocytes circulate on endothelial cells and extravasation of immune cells is observed under a microscope. The results showed decreased leukocyte infiltration in siALK1 HUVECs compared to controls. In conclusion, our data demonstrate that ALK1 has a major impact on leukocyte recruitment to the endothelium through the expression of adhesion proteins and the vascular normalization. This project contributes to a better understanding of the interaction of leukocytes and the vascular endothelium.

Page generated in 0.0264 seconds