• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 14
  • 14
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 26
  • 18
  • 15
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Rôle du dimère Gbetagamma dans l’organisation des systèmes de signalisation cellulaire

Robitaille, Mélanie 11 1900 (has links)
Selon le modèle classique, le signal reçu par les récepteurs couplés aux protéines G (RCPG) se propage suite à des interactions transitoires et aléatoires entre les RCPGs, les protéines G et leurs effecteurs. Par les techniques de transfert d’énergie de résonance de bioluminescence (BRET), de complémentation bimoléculaire de protéines fluorescentes (BiFC) et de co-immunoprécipitation, nous avons observé que les récepteurs, les protéines G et les effecteurs forment un complexe stable, avant et après l’activation des récepteurs. L’interaction entre l’effecteur Kir3 et le dimère Gbetagamma se produit initialement au réticulum endoplasmique et est sensible à un agoniste liposoluble des récepteurs beta2-adrénergiques. Bien que peu de spécificité pour les nombreux isoformes des sous-unités Gbetagamma ait été observée pour l’activation du canal Kir3, les interactions précoces au RE sont plus sensibles aux différentes combinaisons de Gbetagamma présentes. En plus de son rôle dans la régulation des effecteurs, le dimère Gbetagamma peut interagir avec de nombreuses protéines possédant des localisations cellulaires autres que la membrane plasmique. Nous avons identifié une nouvelle classe de protéines interagissant avec la sous-unité Gbeta, autant en système de surexpression que dans des extraits de cerveaux de rats, soit les protéines FosB et cFos, qui forment le complexe de transcription AP-1, suite à leur dimérisation avec les protéines de la famille des Jun. La coexpression du dimère Gbetagamma réduit l’activité transcriptionnelle du complexe AP-1 induit par le phorbol 12-,myristate 13-acetate (PMA), sans toutefois interférer avec la formation du complexe Fos/Jun ou son interaction avec l’ADN. Toutefois, le dimère Gbetagamma colocalise au noyau avec le complexe AP-1 et recrute les protéines histones déacétylases (HDAC) afin d’inhiber l’activité transcriptionnelle du complexe AP-1. / Based on the classical model of G protein activation, signal transduction occurs by transient and random interactions between the receptor, the G protein and the effectors. Bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation assay (BiFC) and co-immunoprecipitation experiments revealed that receptor, heterotrimeric G proteins and effectors were found in stable complexes that persisted during signal transduction. Kir3 channel and Gbetagamma dimer interacts first in the endoplasmic reticulum (ER) and this interaction can be modulated by the membrane-permeable beta2-adrenergic agonist cimaterol. Little specificity has been reported for several isoforms of the Gbetagamma dimer in the activation of the Kir3 channel. However, we found that the “precocious” interaction in the ER is sensitive to the presence of different combination of Gbeta and Ggamma subunits. Recently, a number of new proteins, which are not classical effectors at the plasma membrane have been shown to interact with GbetagammaThese include histone deacetylases 4 and 5 (HDAC)[1, 2] and the glucocorticoid receptor. We identified a novel interaction between Gbetagamma subunit and the Fos proteins, which form the transcription factor AP-1 following their dimerization with Jun proteins. Gbetagamma and Fos interactions can be detected in HEK 293 cells overexpressing the two proteins as well as in brains from rats pre-treated with amphetamine. Gbetagamma/Fos interaction favours the nuclear translocation of Gbetagamma dimer and inhibits AP-1 transcriptional activity. Gbetagamma did not block Fos/Jun dimerization or the interaction of AP-1 with DNA but recruited HDACs to the AP-1 complex.
52

Mechanisms of synaptic plasticity mediated by Clathrin Adaptor-protein complexes 1 and 2 in mice

Mishra, Ratnakar 14 May 2019 (has links)
No description available.
53

Rôle du dimère Gbetagamma dans l’organisation des systèmes de signalisation cellulaire

Robitaille, Mélanie 11 1900 (has links)
Selon le modèle classique, le signal reçu par les récepteurs couplés aux protéines G (RCPG) se propage suite à des interactions transitoires et aléatoires entre les RCPGs, les protéines G et leurs effecteurs. Par les techniques de transfert d’énergie de résonance de bioluminescence (BRET), de complémentation bimoléculaire de protéines fluorescentes (BiFC) et de co-immunoprécipitation, nous avons observé que les récepteurs, les protéines G et les effecteurs forment un complexe stable, avant et après l’activation des récepteurs. L’interaction entre l’effecteur Kir3 et le dimère Gbetagamma se produit initialement au réticulum endoplasmique et est sensible à un agoniste liposoluble des récepteurs beta2-adrénergiques. Bien que peu de spécificité pour les nombreux isoformes des sous-unités Gbetagamma ait été observée pour l’activation du canal Kir3, les interactions précoces au RE sont plus sensibles aux différentes combinaisons de Gbetagamma présentes. En plus de son rôle dans la régulation des effecteurs, le dimère Gbetagamma peut interagir avec de nombreuses protéines possédant des localisations cellulaires autres que la membrane plasmique. Nous avons identifié une nouvelle classe de protéines interagissant avec la sous-unité Gbeta, autant en système de surexpression que dans des extraits de cerveaux de rats, soit les protéines FosB et cFos, qui forment le complexe de transcription AP-1, suite à leur dimérisation avec les protéines de la famille des Jun. La coexpression du dimère Gbetagamma réduit l’activité transcriptionnelle du complexe AP-1 induit par le phorbol 12-,myristate 13-acetate (PMA), sans toutefois interférer avec la formation du complexe Fos/Jun ou son interaction avec l’ADN. Toutefois, le dimère Gbetagamma colocalise au noyau avec le complexe AP-1 et recrute les protéines histones déacétylases (HDAC) afin d’inhiber l’activité transcriptionnelle du complexe AP-1. / Based on the classical model of G protein activation, signal transduction occurs by transient and random interactions between the receptor, the G protein and the effectors. Bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation assay (BiFC) and co-immunoprecipitation experiments revealed that receptor, heterotrimeric G proteins and effectors were found in stable complexes that persisted during signal transduction. Kir3 channel and Gbetagamma dimer interacts first in the endoplasmic reticulum (ER) and this interaction can be modulated by the membrane-permeable beta2-adrenergic agonist cimaterol. Little specificity has been reported for several isoforms of the Gbetagamma dimer in the activation of the Kir3 channel. However, we found that the “precocious” interaction in the ER is sensitive to the presence of different combination of Gbeta and Ggamma subunits. Recently, a number of new proteins, which are not classical effectors at the plasma membrane have been shown to interact with GbetagammaThese include histone deacetylases 4 and 5 (HDAC)[1, 2] and the glucocorticoid receptor. We identified a novel interaction between Gbetagamma subunit and the Fos proteins, which form the transcription factor AP-1 following their dimerization with Jun proteins. Gbetagamma and Fos interactions can be detected in HEK 293 cells overexpressing the two proteins as well as in brains from rats pre-treated with amphetamine. Gbetagamma/Fos interaction favours the nuclear translocation of Gbetagamma dimer and inhibits AP-1 transcriptional activity. Gbetagamma did not block Fos/Jun dimerization or the interaction of AP-1 with DNA but recruited HDACs to the AP-1 complex.
54

Understanding the basis of 5-Bromo-2'-deoxuridine teratogen specificity in organogenesis stage mouse embryos

Gnanabakthan, Naveen. January 2008 (has links)
5-Bromo-2'-deoxyuridine (BrdU), a thymidine analogue, is genotoxic and teratogenic. The exposure of mouse embryos to BrdU at doses that cause malformations induces oxidative stress and an embryonic stress response characterized by an increase in c-Fos dependent AP-1 DNA binding. The goal of this thesis was to test the hypothesis that development is disturbed at sites where BrdU is incorporated into DNA, triggering oxidative stress and c-Fos induction. Gestation day 9 CD-1 mice were treated with BrdU and embryos were obtained for immunolocalization of BrdU, 8-oxoguanine, a biomarker for oxidative stress, and c-Fos. BrdU incorporation into DNA was dispersed throughout the embryo. In contrast, the staining for 8-oxoguanine and c-Fos were highest in the neuroepithelium. BrdU incorporation was not affected by the pre-administration of N-acetyl-cysteine (NAC), an anti-oxidant, although both 8-oxoguanine and c-Fos staining were decreased. Thus, the response of the embryo to insult is tissue specific.
55

PI(4)-dependent recruitment of clathrin adaptors to the trans-Golgi Network

Wang, Jing. January 2005 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Vita. Bibliography: 106-116.
56

Wnt-11 signalling, its role in cardiogenesis and identification of Wnt/β-catenin pathway target genes

Railo, A. (Antti) 30 March 2010 (has links)
Abstract Wnt genes encode secreted signalling molecules that control embryonic development including organogenesis, while dysregulated Wnt signalling is connected to many diseases such as cancer. Specifically, Wnts control a number of cellular processes such as proliferation, adhesion, differentiation and aging. Many Wnt proteins activate the canonical β-catenin signalling pathway that regulates transcription of a still poorly characterized set of target genes. Wnts also transduce their signaling in cells via β-catenin-independent “non-canonical” pathways, which are not well understood. In this study, Wnt-11 signalling mechanisms in a mammalian model cell line and roles of Wnt-11 in heart development were analyzed in detail. In addition the aim was to identify new Wnt target genes by direct chromatin immunoprecipitation and Affymetrix GeneChip assays in the model cells exposed to Wnt-3a. Our studies reveal that Wnt-11 signalling coordinates the activity of key cell signalling pathways, namely the canonical Wnt/β-catenin, the JNK/AP-1, the NF-κB and PI3K/Akt pathways in the CHO cells. Analysis of the Wnt-11-deficient embryos revealed a crucial role in heart organogenesis. Wnt-11 signalling coordinates cell interactions during assembly of the myocardial wall and Wnt-11 localizes the expression of N-cadherin and β-catenin to specific cellular domains in the embryonic ventricular cardiomyocytes. Collectively these studies reveal that the mammalian Wnt-11 behaves as a non-canonical Wnt and that it is a critical factor in the coordination of heart development. Specifically, it controls components of the cell adhesion machinery. Analysis of the Wnt target genes revealed a highly context-dependent profile in the Wnt-regulated genes. Several new putative target genes were discovered. Out of the candidate Wnt target genes, Disabled-2 was identified as a potential new direct target for Wnt signalling.
57

Role of the JNK Signal Transduction Pathway in Cell Survival: a Dissertation

Lamb, Jennifer A. 15 December 2004 (has links)
The c-Jun NH2-terminal kinases (JNK) are evolutionarily conserved serine/threonine protein kinases that are activated by proinflammatory cytokines, environmental stress, and genotoxic agents. These kinases play key regulatory roles within a cell by coordinating signals from the cell surface to nuclear transcription factors. JNK phosphorylates the amino terminal domain of all three Jun transcription factors (JunB, c-Jun and JunD) all members of the AP-1 family. The activated transcription factors modulate gene expression to generate appropriate biological responses, including cell migration, proliferation, differentiation and cell death. The role of the JNK signaling pathway in cell death/apoptosis is controversial, both pro-apoptotic and pro-survival roles have been attributed to JNK. The mechanism that enables the JNK signaling pathway to mediate both apoptosis and survival is unclear. The aim of this study is to examine the role of TNF-stimulated JNK activation on cell survival. The proinflammatory cytokine TNF, is known to activate JNK and induce apoptosis. To test whether the JNK signaling pathway contributes to TNF-induced apoptosis, the response of wild type and Jnk1-/- Jnk2-/- (JNK deficient fibroblasts) fibroblasts to TNF was examined. JNK deficient fibroblasts are more sensitive to TNF-induced apoptosis than wild-type fibroblasts. The TNF-sensitivity cannot be attributed to altered expression of TNF receptors or defects in the NF-кB or AKT pathways, known anti-apoptotic signal transduction pathways. (In fact, TNF stimulated NF-кB activation provides a major mechanism to account for survival in both wild-type and JNK deficient cells.) However this increased TNF-sensitivity can be attributed to JNK deficiency. Apoptosis is suppressed in JNK deficient cells when transduced with JNK1 retrovirus. These data implicate the JNK signaling pathway in cell survival. The AP-1 family of transcription factors is a target of the JNK signal transduction pathway. In addition JNK is required for the normal expression of the AP-1 family member, JunD. Previous studies have indicated that JunD can mediate survival. Interestingly, JNK deficient and JunD null cells display similar phenotypes: premature senescence and increased sensitivity to TNF induced apoptosis. In fact, the TNF-sensitivity is also suppressed in JNK deficient fibroblasts transduced with JunD retrovirus. Although JunD can replace the survival signaling role of JNK, phosphorylation of JunD is essential to inhibit TNF induced apoptosis. JNK deficient cells transduced with phosphomutant JunD retrovirus maintain TNF-sensitivity. Activated transcription factors modulate gene expression. It is most likely that JunD functions by regulating the expression of key molecules that act to inhibit TNF-stimulated apoptosis. Microarray analysis comparing wild-type with JNK deficient fibroblasts revealed that the expression of the survival gene, cIAP-2, was induced by TNF in only wild-type fibroblasts. Furthermore, protein expression of cIAP-2 was induced by TNF in only wild-type fibroblasts. Analysis of the cIAP-2 promoter revealed two critical NF-кB binding sites and one AP-1 binding site. Luciferase reporter assays indicated key roles for both NF-кB and the AP-1 component, JunD in TNF-induced cIAP-2 gene expression. These experiments establish that the JNK/JunD pathway collaborates with NF-кB pathway to increase the expression of the anti-apoptotic protein cIAP-2 in TNF treated cells. Without this collaboration, the JNK pathway mediates apoptosis. The integration of JNK signaling with other signaling pathways represents a mechanism to account for the dual ability of the JNK pathway to mediate either survival or apoptosis. The dynamic coordination of signals within and between pathways is critical. The future challenge will be to fit the details of individual signaling pathways into the context of signaling networks.
58

Understanding the basis of 5-Bromo-2'-deoxuridine teratogen specificity in organogenesis stage mouse embryos

Gnanabakthan, Naveen. January 2008 (has links)
No description available.
59

Signals Delivered By Interleukin-7 Regulate The Activities Of Bim And Jund In T Lymphocytes

Ruppert, Shannon Moore 01 January 2012 (has links)
Interleukin-7 (IL-7) is an essential cytokine for lymphocyte growth that has the potential for promoting proliferation and survival. While the survival and proliferative functions of IL-7 are well established, the identities of IL-7 signaling components in pathways other than JAK/STAT, that accomplish these tasks remain poorly defined. To this end, we used IL-7 dependent T-cells to examine those components necessary for cell growth and survival. Our studies revealed two novel signal transducers of the IL-7 growth signal: BimL and JunD. IL-7 promoted the activity of JNK (Jun N-terminal Kinase), and that JNK, in turn, drove the expression of JunD, a component of the Activating Protein 1 (AP-1) transcription factors. Inhibition of JNK/JunD blocked glucose uptake and HXKII gene expression, indicating that this pathway was responsible for promoting HXKII expression. After a bioinformatics survey to reveal possible JunD-regulated genes activated early in the IL-7 signaling cascade, our search revealed that JunD could control the expression of proteins involved in signal transduction, cell survival and metabolism, including Pim-1. Pim-1, an IL-7 induced protein, was inhibited upon JNK or JunD inhibition. Our hypothesis that JunD positively regulated proliferation was confirmed when the proliferation of primary CD8+ T-cells cultured with IL-7 was impaired upon treatment with JunD siRNA. These results show that the IL-7 signal is more complex than the JAK/STAT pathway, activating JNK and JunD to induce rapid growth through the expression of metabolic factors like HXKII and Pim-1. When metabolic activities are inhibited, cells undergo autophagy, or cell scavenging, to provide essential nutrients. Pro-apoptotic Bim was evaluated for its involvement in autophagy. Bim is a BH3-only member of the Bcl-2 family that contributes to T-cell death. Partial rescue of iv T-cells occurs when Bim and the interleukin-7 receptor are deleted, implicating Bim in IL-7- deprived T-cell apoptosis. Alternative splicing results in three different isoforms: BimEL, BimL, and BimS. To study the effect of Bim deficiency and define the function of the major isoforms, Bim-containing and Bim-deficient T-cells, dependent on IL-7 for growth, were used. Loss of Bim in IL-7-deprived T-cells delayed apoptosis, but blocked the degradative phase of autophagy. The conversion of LC3-I to LC3-II was observed in Bim-deficient T-cells, but p62, which is degraded in autolysosomes, accumulated. To explain this, BimL, was found to support acidification of lysosomes associated with autophagic vesicles. Key findings showed that inhibition of lysosomal acidification accelerated death upon IL-7 withdrawal only in Bimcontaining T-cells, indicating that in these cells autophagy was protective. IL-7 dependent Tcells lacking Bim were insensitive to inhibition of autophagy or lysosomal acidification. BimL co-immunoprecipitated with dynein and Lamp1-containing vesicles, indicating BimL could be an adaptor for dynein to facilitate loading of lysosomes. In Bim deficient T-cells, lysosometracking probes revealed vesicles of less acidic pH. Over-expression of BimL restored acidic vesicles in Bim deficient T-cells, while other isoforms, BimEL and BimS, associated with intrinsic cell death. These results reveal a novel role for BimL in lysosomal positioning that may be required for the formation of functional autolysosomes during autophagy
60

Identification of New, Functionally Relevant Mutations in the Coding Regions of the Human Fos and Jun Proto-Oncogenes in Rheumatoid Arthritis Synovial Tissue

Huber, René, Augsten, Sandra, Kirsten, Holger, Zell, Roland, Stelzner, Axel, Thude, Hansjörg, Eidner, Thorsten, Stuhlmüller, Bruno, Ahnert, Peter, Kinne, Raimund W. 18 April 2023 (has links)
In rheumatoid arthritis (RA), the expression of many pro-destructive/pro-inflammatory proteins depends on the transcription factor AP-1. Therefore, our aim was to analyze the presence and functional relevance of mutations in the coding regions of the AP-1 subunits of the fos and jun family in peripheral blood (PB) and synovial membranes (SM) of RA and osteoarthritis patients (OA, disease control), as well as normal controls (NC). Using the non-isotopic RNAse cleavage assay, one known polymorphism (T252C: silent; rs1046117; present in RA, OA, and NC) and three novel germline mutations of the cfos gene were detected: (i) C361G/A367G: Gln121Glu/Ile123Val, denoted as “fos121/123”; present only in one OA sample; (ii) G374A: Arg125Lys, “fos125”; and (iii) C217A/G374A: Leu73Met/Arg125Lys, “fos73/125”, the latter two exclusively present in RA. In addition, three novel somatic cjun mutations (604–606ΔCAG: ΔGln202, “jun202”; C706T: Pro236Ser, “jun236”; G750A: silent) were found exclusively in the RA SM. Tansgenic expression of fos125 and fos73/125 mutants in NIH-3T3 cells induced an activation of reporter constructs containing either the MMP-1 (matrix metalloproteinase) promoter (3- and 4-fold, respectively) or a pentameric AP-1 site (approximately 5-fold). Combined expression of these two cfos mutants with cjun wildtype or mutants (jun202, jun236) further enhanced reporter expression of the pentameric AP-1 construct. Finally, genotyping for the novel functionally relevant germline mutations in 298 RA, 288 OA, and 484 NC samples revealed no association with RA. Thus, functional cfos/cjun mutants may contribute to local joint inflammation/destruction in selected patients with RA by altering the transactivation capacity of AP-1 complexes.

Page generated in 0.0324 seconds