• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 47
  • 23
  • 17
  • 15
  • 14
  • 12
  • 11
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

miRNA Regulation in Development

Kadri, Sabah 01 January 2012 (has links)
microRNAs (miRNAs) are small (20-23 nt), non-coding single stranded RNA molecules that play an important role in post-transcriptional regulation of protein-coding genes. miRNAs have been found in all animal lineages, and have been implicated as critical regulators during development in multiple species. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development due to their well-characterized transcriptional gene networks, ease of working with their embryos in the laboratory and phylogenetic position as invertebrate deuterostomes. Literature on miRNAs in echinoderm embryogenesis is limited. It has been shown that RNAi genes are developmentally expressed and regulated in sea urchin embryos, but no study in the sea urchin has examined the expression of miRNAs. The goal of my work has been to study miRNA regulation in echinoderm developmental gene networks. I have identified developmentally regulated miRNAs in sea urchin and sea star embryos, using a combination of computational and wet lab experimental techniques. I developed a probabilistic model (named HHMMiR) based on hierarchical hidden Markov models (HHMMs) to classify genomic hairpins into miRNA precursors and random stem-loop structures. I then extended this model to make an efficient decoder by introduction of explicit state duration densities. We used the Illumina Genome Analyzer to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of S. purpuratus and P. miniata. We developed a computational pipeline for analysis of these miRNAseq data to reveal the miRNA populations in both species, and study their differential expression. We also used northern blots and whole mount in situ hybridization experimental techniques to study the temporal and spatial expression patterns of some of these miRNAs in sea urchin embryos. By knocking down the major components of the miRNA biogenesis pathway, we studied the global effects of miRNAs on embryo morphology and differentiation genes. The biogenesis genes selected for this purpose are the RNAse III enzyme, Dicer and Argonaute. Dicer is necessary for the processing of mature miRNAs from hairpin structures while Ago is a necessary part of the RISC (RNA interference silencing complex) assembly, which is required for the miRNA to hybridize to its target mRNA site. Knocking down these genes hinders normal development of the sea urchin embryo and leads to loss of the larval skeleton, a novel phenotype not seen in sea stars, as well as abnormal gastrulation. Comparison of differentiation gene marker expression between control and Ago knocked down sea urchin embryos shows interesting patterns of expansion and suppression of adjoining some embryonic territories, while ingression of larval skeletogenesis progenitors does not occur.
32

Thermus thermophilus Argonaute Functions in the Completion of DNA Replication

Jolly, Samson M. 20 May 2020 (has links)
Argonautes (AGOs) are present in all domains of life. Like their eukaryotic counterparts, archaeal and eubacterial AGOs adopt a similar global architecture and bind small nucleic acids. In many eukaryotes, AGOs, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. We find that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15–18 nt DNA guides derived from the chromosomal region where replication terminates, and TtAgo complexed to short DNA guides enhances target finding and prefers to bind targets with full complementarity. Additionally, TtAgo associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of both gyrase and TtAgo activity slows growth and produces long, segmented filaments in which the individual bacteria are linked by DNA. Furthermore, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. Finally, at physiologic temperature in vitro, we find TtAgo possesses highest affinity for fully complementary targets. We propose that terminus-derived guides binding in such a fashion localize TtAgo, and that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.
33

RNA Interference by the Numbers: Explaining Biology Through Enzymology: A Dissertation

Wee, Liang Meng 02 June 2013 (has links)
Small silencing RNAs function in almost every aspect of cellular biology. Argonaute proteins bind small RNA and execute gene silencing. The number of Argonaute paralogs range from 5 in Drosophila melanogaster , 8 in Homo sapiens to an astounding 27 in Caenorhabditis elegans. This begs several questions: Do Argonaute proteins have different small RNA repertoires? Do Argonaute proteins behave differently? And if so, how are they functionally and mechanistically distinct? To address these questions, we examined the thermodynamic, kinetic and functional properties of fly Argonaute1 (dAgo1), fly Argonaute2 (dAgo2) and mouse Argonaute2 (mAGO2). Our studies reveal that in fly, small RNA duplexes sort into Argonaute proteins based on their intrinsic structures: extensively paired siRNA duplex is preferentially sorted into dAgo2 while imperfectly paired miRNA duplex is channeled into dAgo1. The sorting of small RNA is uncoupled from its biogenesis. This is exemplified by mir-277, which is born a miRNA but its extensive duplex structure licenses its entry into dAgo2. In the Argonaute protein, the small RNA guide partitions into functional domains: anchor, seed, central, 3' supplementary and tail. Of these domains, the seed initiates binding to target. Both dAgo2 and mAGO2 (more closely related to and a surrogate for dAgo1 in our studies) bind targets at astonishing diffusion-limited rates (~107–108 M−1s−1). The dissociation kinetics between dAgo2 and mAGO2 from their targets, however, are different. For a fully paired target, dAgo2 dissociates slowly (t½ ~2 hr) but for a seed-matched target, dAgo2 dissociates rapidly (t½ ~20 s). In comparison, mAGO2 does not discriminate between either targets and demonstrates an equivalent dissociation rate (t½ ~20 min). Regardless, both dAgo2 and mAGO2 demonstrate high binding affinity to perfect targets with equilibrium dissociation constants, KD ~4–20 pM. Functionally, we also showed that dAgo1 but not dAgo2 silence a centrally bulged target. By contrast, dAgo2 cleaved and destroyed perfectly paired targets 43-fold faster than dAgo1. In target cleavage, dAgo2 can tolerate mismatches, bulged and internal loop in the target but at the expense of reduced target binding affinities and cleavage rates. Taken together, our studies indicate that small RNAs are actively sorted into different Argonaute proteins with distinct thermodynamic, kinetic and functional behaviors. Our quantitative biochemical analysis also allows us to model how Argonaute proteins find, bind and regulate their targets.
34

The different roles of RNA Polymerases II and V during the initiation of DNA methylation

Sigman, Meredith J. January 2021 (has links)
No description available.
35

Transposable element RNAi goes beyond post-transcriptional silencing: mRNA-derived small RNAs both regulate genes and initiate DNA methylation

McCue, Andrea D. 02 October 2015 (has links)
No description available.
36

Function of Argonaute proteins in Dictyostelium discoideum

Mazurek, Aleksander Józef January 2024 (has links)
Argonaute proteins play substantial roles in post-transcriptional regulation of gene expression within RNA interference (RNAi) pathways, making them crucial subjects for research, aimed at understanding their interactions with small non-coding RNAs (ncRNAs) and other RNAi components. This study focuses on investigating these properties of Argonaute proteins, particularly Argonaute protein A (AgnA), in the social amoeba Dictyostelium discoideum that is renowned for its broad genetic toolbox and unique life cycle. While previous studies have examined the disruption of three Argonaute genes (agnB, agnC, agnE) and their effect on mRNA levels and small ncRNA expression, this study extends to agnA gene, which remains less studied. Key questions surrounding the influence of AgnA on the cellular processes such as the cell growth rate, development, gene expression, as well as potential targets and small ncRNA binding, remain unanswered. A well-established approach that could provide the necessary answers is the disruption of the gene through traditional homologous recombination, by insertion of a drug-resistance cassette flanked by homology arms complementary to the target locus. However, the emerging CRISPR/Cas9 gene editing tool on contrary offers straightforward protocols for disruption of gene expression through efficient induction of genomic knockouts, point mutations and deletions. In this study, both approaches were applied in parallel to knockout the agnA gene, enabling comparison of knockout efficiency and further study of the growth rate, development and gene expression in the knockout strains. Moreover, important information regarding the growth patterns of both wild-type and agnE knockout strains were also elucidated, complementing the previous growth rate analyses. The obtained data from this research could provide valuable insights for future studies ofthe RNAi machinery components and particularly the function of Argonaute proteins in D. discoideum.
37

Biochemical Mechanism of Gene Expression Silencing by piRNA-directed PIWI-Clade Argonautes

Arif, Amena 10 August 2021 (has links)
Argonaute proteins are small DNA/RNA-guided endonucleases found in all domains of life. In animals, small RNAs of length 21–35 nucleotides direct the PIWI-clade of Argonautes to silence complementary target RNAs; these are called PIWI-interacting RNAs (piRNAs). During spermatogenesis in mice, piRNA-guided PIWI proteins, MIWI2, MILI, and MIWI, silence transposons, regulate expression of protein-coding genes and are necessary for fertility. A working endonuclease activity of MIWI and MILI is essential to complete spermatogenesis. Yet, both MIWI and MILI produce weak and slow target cleavage in vitro, thwarting biochemical examination of the silencing step. Here, we find that PIWI proteins require an auxiliary protein to efficiently cleave their targets, unlike any other known Argonaute. Gametocyte Specific Factor 1 (GTSF1) is a conserved zinc-finger protein essential for fertility and piRNA-directed silencing. We show GTSF1 accelerates the pre-steady-state rate of target cleavage by MIWI and MILI; this role of GTSF1 is also preserved in insects. A critical step in GTSF1 mechanism entails binding RNA. GTSF1 allowed detailed kinetic analyses of catalytic PIWIs: they require extensive 3′ complementarity between the guide and target to efficiently cleave them, but this base-pairing also limits turnover. Interestingly, within a species, different PIWI proteins have unique kinetic properties. In sum, our findings provide molecular mechanisms of GTSF1 function and target silencing by PIWIs as well as a useful method for future studies.
38

Single-Molecule Imaging Reveals that Argonaute Re-Shapes the Properties of its Nucleic Acid Guides: A Dissertation

Salomon, William E. 07 December 2015 (has links)
Small RNA silencing pathways regulate development, viral defense, and genomic integrity in all kingdoms of life. An Argonaute (Ago) protein, guided by a tightly bound, small RNA or DNA, lies at the core of these pathways. Argonaute uses its small RNA or DNA to find its target sequences, which it either cleaves or stably binds, acting as a binding scaffold for other proteins. We used Co-localization Single-Molecule Spectroscopy (CoSMoS) to analyze target binding and cleavage by Ago and its guide. We find that both eukaryotic and prokaryotic Argonaute proteins re-shape the fundamental properties of RNA:RNA, RNA:DNA, and DNA:DNA hybridization: a small RNA or DNA bound to Argonaute as a guide no longer follows the well-established rules by which oligonucleotides find, bind, and dissociate from complementary nucleic acid sequences. Counter to the rules of nucleic acid hybridization alone, we find that mouse AGO2 and its guide bind to microRNA targets 17,000 times tighter than the guide without Argonaute. Moreover, AGO2 can distinguish between microRNA-like targets that make seven base pairs with the guide and the products of cleavage, which bind via nine base pairs: AGO2 leaves the cleavage products faster, even though they pair more extensively. This thesis presents a detailed kinetic interrogation of microRNA and RNA interference pathways. We discovered sub-domains within the previously defined functional domains created by Argonaute and its bound DNA or RNA guide. These sub-domains have features that no longer conform to the well-established properties of unbound oligonucleotides. It is by re-writing the rules for nucleic acid hybridization that Argonautes allow oligonucleotides to serve as specificity determinants with thermodynamic and kinetic properties more typical of RNA-binding proteins than that of RNA or DNA. Taken altogether, these studies further our understanding about the biology of small RNA silencing pathways and may serve to guide future work related to all RNA-guided endonucleases.
39

Functions of Argonaute Proteins in Self Versus Non-Self Recognition in the C. elegans Germline: A Dissertation

Seth, Meetu 18 August 2016 (has links)
Organisms employ sophisticated mechanisms to silence foreign nucleic acid, such as viruses and transposons. Evidence exists for pathways that sense copy number, unpaired DNA, or aberrant RNA (e.g., dsRNA), but the mechanisms that distinguish “self” from “non-self” are not well understood. Our studies on transgene silencing in C. elegans have uncovered an RNA surveillance system in which the PIWI protein, PRG-1, uses a vast repertoire of piRNAs to recognize foreign transcripts and to initiate epigenetic silencing. Partial base pairing by piRNAs is sufficient to guide PRG-1 targeting. PRG-1 in turn recruits RdRP to synthesize perfectly matching antisense siRNAs (22G-RNAs) that are loaded onto worm-specific Argonaute (WAGO) proteins. WAGOs collaborate with chromatin factors to maintain epigenetic silencing (RNAe). Since mismatches are allowed during piRNA targeting, piRNAs could—in theory— target any transcript expressed in the germline, but germline genes are not subject to silencing by RNAe. Moreover, some foreign sequences are expressed and appear to be adopted as “self.” How are “self” transcripts distinguished from foreign transcripts? We have found that another Argonaute, CSR-1, and its siRNAs—also synthesized by RdRP—protect endogenous genes from silencing by RNAe. We refer to this pathway as RNA-mediated gene activation (RNAa). Reducing CSR-1 or PRG-1 or increasing piRNA targeting can shift the balance towards expression or silencing, indicating that PRG-1 and CSR-1 compete for control over their targets. Thus worms have evolved a remarkable nucleic acids immunity mechanism in which opposing Argonaute pathways generate and maintain epigenetic memories of self and non-self nucleotide sequences.
40

Expression of FLAG-tagged argonautes in Dictyostelium discoideum

Abdul Rahman, Zozek January 2022 (has links)
Argonautes are conserved RNA-binding proteins that can regulate gene expression post transcriptionally through a process known as RNA interference (RNAi). This is done through the use of small RNAs, e.g. sRNAs that act as a guide for the argonautes, allowing for sequence-specific binding to the target site. This interaction has been studied in many organisms, one of which is the model organism Dictyostelium discoideum. D. discoideum is an amoeba that has been used extensively in genetic experiments due to its unique lifestyle, and ease of use. Being a eukaryotic, unicellular organism, it proves to be a great tool for the study of regulatory systems in eukaryotes, allowing us to study this argonaute-sRNA interaction in detail. By analysing which RNAs bind to the argonautes, we can better understand which genes these proteins regulate and what role RNAi has in the organisms as a whole.  In this study, I investigate three of the five argonautes found in D. discoideum, namely agnA, agnC and agnE. By transforming FLAG-tagged versions of these genes into the amoeba, I successfully express two of these modified proteins in D. discoideum and verified expression by using antibodies designed specifically to recognise the FLAG-tags. This opens up the possibility for the characterisation of the argonaute proteins to better understand their role and function in the regulation of genes. / <p>The Biology Education Centre (IBG) is the responsible department. </p><p></p><p>Presentation has been made through Zoom. </p>

Page generated in 0.0193 seconds