• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 3
  • 2
  • Tagged with
  • 23
  • 23
  • 18
  • 11
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modulation of arterial stiffness by angiotensin receptors and nitric oxide in the insulin resistance syndrome

Brillante, Divina Graciela, Clinical School - St George Hospital, Faculty of Medicine, UNSW January 2008 (has links)
The insulin resistance syndrome [INSR] is associated with increased cardiovascular risk and affects up to 25% of the Australian population. The mechanism underlying the relationship between the INSR and increased cardiovascular risk is controversial. We postulated that perturbations in the renin-angiotensin system [RAS] and endothelium-derived NO may be implicated in the development of early vascular changes in the INSR. Repeated measurements of arterial stiffness [using digital photoplethysmography] and haemodynamic parameters in response to vasoactive medications were used to demonstrate the functional expression of angiotensin II [Ang II] receptors and NO synthase [NOS]. Ang II acts via two main receptor sub-types: the Ang II type 1 [AT1] and Ang II type 2 [AT2] receptors. The AT1 receptor is central to the development of arterial stiffness and endothelial dysfunction. The role of AT2 receptors in humans is controversial but is postulated to counter-act AT1 receptor mediated effects in diseased vascular beds. We demonstrated increased AT1 and AT2 receptor-mediated effects in small to medium-sized arteries of subjects with early INSR [Chapter 6]. In addition, functional expression of AT2 receptors in adult insulin resistant humans [Chapter 5], but not in healthy volunteers [Chapter 4] was demonstrated. AT1 receptor blockade in subjects with early INSR resulted in improvements in vascular function, with a consequent functional down-regulation of AT2 receptors [Chapter 7]. Functional NOS expression was demonstrated to be increased in subjects with early INSR compared with healthy controls [Chapter 6]. This was postulated to be a homeostatic response to counteract early vascular changes in subjects with early INSR. AT1 receptor blockade in these subjects reduced functional NOS expression [Chapter 8]. In conclusion, patients with early INSR represent a model of early disease where early intervention may be able to reverse the process incited by the initial exposure to multiple cardiovascular risk factors. Early vascular changes in these individuals are mediated at least in part, by increased AT1 receptor activity and/or expression, and may be detected by changes in arterial stiffness indices and non-invasive vascular reactivity studies. There is a compensatory increase in AT2 receptor and NOS expression/activity to counter-act these vascular changes.
12

Modulation of arterial stiffness by angiotensin receptors and nitric oxide in the insulin resistance syndrome

Brillante, Divina Graciela, Clinical School - St George Hospital, Faculty of Medicine, UNSW January 2008 (has links)
The insulin resistance syndrome [INSR] is associated with increased cardiovascular risk and affects up to 25% of the Australian population. The mechanism underlying the relationship between the INSR and increased cardiovascular risk is controversial. We postulated that perturbations in the renin-angiotensin system [RAS] and endothelium-derived NO may be implicated in the development of early vascular changes in the INSR. Repeated measurements of arterial stiffness [using digital photoplethysmography] and haemodynamic parameters in response to vasoactive medications were used to demonstrate the functional expression of angiotensin II [Ang II] receptors and NO synthase [NOS]. Ang II acts via two main receptor sub-types: the Ang II type 1 [AT1] and Ang II type 2 [AT2] receptors. The AT1 receptor is central to the development of arterial stiffness and endothelial dysfunction. The role of AT2 receptors in humans is controversial but is postulated to counter-act AT1 receptor mediated effects in diseased vascular beds. We demonstrated increased AT1 and AT2 receptor-mediated effects in small to medium-sized arteries of subjects with early INSR [Chapter 6]. In addition, functional expression of AT2 receptors in adult insulin resistant humans [Chapter 5], but not in healthy volunteers [Chapter 4] was demonstrated. AT1 receptor blockade in subjects with early INSR resulted in improvements in vascular function, with a consequent functional down-regulation of AT2 receptors [Chapter 7]. Functional NOS expression was demonstrated to be increased in subjects with early INSR compared with healthy controls [Chapter 6]. This was postulated to be a homeostatic response to counteract early vascular changes in subjects with early INSR. AT1 receptor blockade in these subjects reduced functional NOS expression [Chapter 8]. In conclusion, patients with early INSR represent a model of early disease where early intervention may be able to reverse the process incited by the initial exposure to multiple cardiovascular risk factors. Early vascular changes in these individuals are mediated at least in part, by increased AT1 receptor activity and/or expression, and may be detected by changes in arterial stiffness indices and non-invasive vascular reactivity studies. There is a compensatory increase in AT2 receptor and NOS expression/activity to counter-act these vascular changes.
13

Análise comparativa de perfis de sinalização do receptor AT1 ativado por agonistas seletivos para a via de -arrestinas / Comparative analysis of AT1 receptor signaling profiles activated by -arrestin biased agonists pathway

Geisa Aparecida dos Santos 08 August 2013 (has links)
Os receptores acoplados à proteína G (GPCRs), também chamados de receptores 7TM, são conhecidos por regular virtualmente todos os processos fisiológicos em mamíferos e cerca de 40% de todas as drogas comerciais agem através destes receptores. A sinalização mediada por eles é classicamente atribuída à proteína G, que é ativada pela troca de GDP por GTP, promovendo a separação das subunidades G e G, e leva à produção de mensageiros secundários como cAMP, Ca2+ e DAG. Após a resposta os GPCRs são fosforilados pelas quinases de GPCRs (GRKs), sinalizando para recrutamento das -arrestinas citoplasmáticas, que por sua vez desencadeiam a formação de endossomos internalizando e dessensibilizando o receptor. Entretanto, estudos mostram que este endossomo, contendo o complexo ligante-receptor--arrestina, pode interagir com proteínas sinalizadoras no citoplasma desencadeando vias de sinalização independentes de proteína G. Recentemente foram descritos para diferentes receptores, ligantes capazes de ativar seletivamente uma das duas vias, proteína G ou -arrestina, chamados agonistas seletivos. O receptor AT1 é um GPCR particularmente interessante no estudo do agonismo seletivo, tanto por sua vasta expressão em tecidos quanto pelo conhecimento de agonistas seletivos já estabelecidos, tais como os ligantes SII e TRV120027. O objetivo deste trabalho foi analisar comparativamente os perfis de sinalização decorrente da ativação de AT1 por SII ou TRV120027 através do uso de arranjos de quinases e da modulação de genes relacionados a sinalização de GPCRs. Ang II que é ligante natural e total (ativa via dependente de proteína G e de -arrestina) neste receptor foi usada como controle para fins de comparação. Nossos dados mostraram que o perfil da sinalização mediada pelo receptor AT1 varia não só entre AngII e os agonistas seletivos, mas também entre os dois ligantes seletivos SII e TRV120027, mostrando que a interação receptor-ligante pode influenciar a sinalização em um grau mais refinado, além da ativação dependente de -arrestina ou proteína G. Estes dados mostram que existem perspectivas para o desenvolvimento futuro de ligantes com ainda maior grau de seletividade. / G protein coupled receptors (GPCRs), also known as 7TM receptors, are known to regulate virtually all physiological processes in mammals and approximately 40% of all current clinical drugs act by modulating such receptors. The signaling mediated by them is classically by coupling to G protein, which is activated by exchanging bound GDP for GTP, dissociation of G and G subunits, then leading to production of second messengers such as cAMP, Ca2+, and DAG. After the signal transduction, GPCR are phosphorylated by GPCR kinases (GRKs), followed by recruitment of cytoplasmic -arrestins, which initiate the endosome formation with consequent internalization and desensitization of the receptor. However, is has been demonstrated that the endosome assembling the ligand-receptor--arrestin complex can interact with cytoplasmic signaling proteins, therefore activating signaling pathways independently of G protein coupling. Recently, for different receptors, it has been described ligands capable of selectively activating one of these signaling pathways, G protein or -arrestin, called biased agonists. The AT1 receptor is a particularly interesting GPCR for the study of biased agonism, either due to its wide tissue expression as well as also due the existence of known and established biased ligands, such as SII and TRV120027. The aim of our study was to comparatively analyze the AT1 receptor signaling pathways profiles after activation by SII or TRV120027, using kinases arrays, and expression modulation of genes related to GPCRs signaling. AngII is the natural and full agonist of this receptor (activates both G protein and -arrestin signaling pathways) was used for comparison. Our data show that the signaling profile mediated by AT1 receptor can be distinct not only when comparing the profiles from AngII and the biased agonists, but also when comparing the profiles from the two biased ligands SII and TRv120027; revealing that the complex ligand-receptor can influence the downstream signaling pathways in a fine-tune way, further to the activation of -arrestin or G-protein. This data show that there are perspectives for the future development of ligands with even higher degree of selectivity.
14

Caracterização bioquímica e farmacológica de receptores AT1 de angiotensina II contendo mutações relacionadas à fibrilação atrial em humanos / Biochemical and pharmacological characterization of angiotensin II AT1 receptors containing mutations associated to atrial fibrillation in humans

Sarah Capelupe Simões 29 July 2015 (has links)
Os receptores acoplados à proteína G (GPCRs) são proteínas integrais de membrana caracterizados por possuírem sete alfa-hélices transmembranares. Esses receptores são importantes alvos de estudos biomédicos e aproximadamente 40% dos medicamentos atualmente comercializados agem sobre estes receptores. O receptor de Angiotensina II do tipo 1 (AT1) é um GPCR e o principal mediador do Sistema Renina-Angiotensina que tem como principal efetor o octopeptídeo Angiotensina II (AngII). Recentemente foi descrito que as mutações A244S e I103T-A244S no receptor AT1 podem estar relacionadas com a predisposição à fibrilação atrial. Neste trabalho foi realizada a construção, caracterização bioquímica e farmacológica destes mutantes, bem como do mutante I103T, com o objetivo de compreender como a funcionalidade desses receptores mutantes poderiam contribuir para a predisposição à fibrilação atrial. Os mutantes I103T e I103T-A244S revelaram ser mais eficientes e potentes que o receptor selvagem em aumentar os níveis de cálcio intracelular em resposta à AngII. Todos os mutantes estudados apresentaram baixa eficiência quanto à ativação da via das MAPKs e apresentaram comportamento diferente do receptor selvagem quando bloqueados com o antagonista Losartan, seletivo para o receptor AT1 e muito usado na clínica como medicamento anti-hipertensivo. Esses dados ressaltam a relevância do estudo tanto em termos de melhor compreender as bases moleculares da relação entre as mutações e a doença, bem como possível prevenção ao uso de medicamentos que possam interagir e agir diferentemente em receptores com essas mutações. / G-protein coupled receptors (GPCRs) are integral membrane proteins characterized by having seven transmembrane alpha-helices. These receptors are important targets of biomedical studies and approximately 40% of currently marketed drugs act on such receptors. The angiotensin II type 1 receptor (AT1) is a GPCR and the main mediator of the Renin-Angiotensin System whose main effector is the octapeptide Angiotensin II (Ang II). It was recently described that I103T and A244S mutations in the AT1 receptor may be related to the susceptibility to atrial fibrillation. In this study we carried out the construction of these mutants and their biochemical and functional characterization. The I103T and I103T/A244S mutants were shown to be more efficient and potent than the wild-type receptor on the increase of intracellular calcium levels. All mutants showed lower efficcacy for MAPK pathway activation and showed different behavior when compared to the wild-type receptor after antagonism with Losartan. These data highlight the relevance of the present study concerning a better understanding of the molecular basis of cardiovascular diseases and showing that conventional therapies for certain diseases may lead to adverse effects on patients carrying point mutations on the receptor sequence.
15

Characterization of [11C]Methyl-Losartan as a Novel Radiotracer for PET Imaging of the AT1 Receptor

Antoun, Rawad January 2011 (has links)
The Angiotensin II Type 1 (AT1) receptor is the main receptor responsible for the effects of the renin-angiotensin system, and its expression pattern is altered in several diseases. [11C]Methyl-Losartan has been developed based on the clinically used AT1 receptor antagonist Losartan. The aim of this work is to characterize the pharmacokinetics, repeatability and reliability of measurements, binding specificity and selectivity of [11C]Methyl-Losartan in rats using in vivo small animal positron emission tomography (PET) imaging, ex vivo biodistribution and in vitro autoradiography methods. Also, we aim to measure the presence of metabolites in the kidney and plasma using high-performance liquid chromatography. We have demonstrated in vivo that [11C]Methyl-Losartan is taken up in the AT1 receptor-rich kidneys and that it is displaceable by selective AT1 receptor antagonists. Using ex vivo biodistribution, we have confirmed these results and demonstrated that [11C]Methyl-Losartan binds selectively to the AT1 receptor over the AT2, Mas and β-adrenergic receptors. In vitro autoradiography results confirmed these renal binding selectivity studies. [11C]Methyl-Losartan was also shown to have one and two C-11 labeled metabolites in the plasma and kidneys, respectively. In conclusion, [11C]Methyl-Losartan is a promising agent for studying the AT1 receptor in rat models with normal and altered AT1 receptor expression using small animal PET imaging.
16

ANGIOTENSIN AT1 RECEPTOR BLOCKADE PROTECTS THE BRAIN FROM ISCHEMIC DAMAGE

Penchikala, Madhuri 20 August 2007 (has links)
No description available.
17

Étude des déterminants structuraux de l'activation des voies de signalisation de la protéine G[indice inférieur q/11] et des β-arrestines par le récepteur de type 1 à l'angiotensine II / Study of the structural determinants involved in the activation of the G[subscript q/11] pathway and the β-arrestin pathway by the angiotensin-II type 1 receptor

Cabana, Jérôme January 2015 (has links)
Résumé : La signalisation biaisée représente la capacité des récepteurs couplés aux protéines G (RCPG) d'engager des voies de signalisation distinctes avec des efficacités variables selon le ligand utilisé ou la mutation dans le récepteur. Un meilleur contrôle des voies activées ou inhibées par des médicaments pourrait permettre de réduire leurs effets indésirables. Malheureusement, les mécanismes structuraux impliqués dans la transmission du signal à travers la membrane plasmique par l'entremise des RCPG sont peu connus, ce qui limite le développement rationnel de nouvelles molécules ciblant des voies de signalisation particulières. Le récepteur de type 1 à l'angiotensine II (AT[indice inférieur 1]), un RCPG de classe A prototypique, peut activer différents effecteurs suite à sa stimulation par le ligand endogène angiotensine II (AngII), incluant la protéine G[indice inférieur q/11] et les β-arrestines. Il est suggéré que l'activation de ces deux voies de signalisation peut être associée à des conformations différentes du récepteur AT[indice inférieur 1]. Pour vérifier cette hypothèse, nous avons utilisé des simulations de dynamique moléculaire afin d'explorer les interactions et les mouvements qui définissent le paysage conformationnel du récepteur AT[indice inférieur 1]. De plus, nous avons vérifié comment était modifié le paysage conformationnel par des mutations (N111G, N111W et D74N) et des ligands (AngII et [Sar[indice supérieur 1], Ile[indice supérieur 8]]AngII) ayant des profils signalétiques différents pour la voie de la protéine G[indice inférieur q/11] et la voie des β-arrestines. Les résultats obtenus nous éclairent sur le rôle d'un réseau de ponts hydrogène entre des résidus polaires conservés au coeur du récepteur dont font partie les résidus N111[indice supérieur 3.35] et D74[indice supérieur 2.50]. Les résultats révèlent la présence d'un groupe de résidus hydrophobes juste au-dessus du réseau de ponts hydrogène et adjacent à la pochette de liaison du récepteur qui semble important pour la stabilisation de l'état inactif du récepteur ainsi que pour son activation par un ligand. Dans l'ensemble, les résultats suggèrent que l'activation de la voie de la protéine G[indice inférieur q/11] est associée avec une transition conformationnelle spécifique stabilisée par l'agoniste alors que l'activation de la voie des β-arrestines est associée à une stabilisation de l'état de repos du récepteur. / Abstract: Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. Having better control over the signaling pathways activated or inhibited by drugs could lead to fewer undesirable effects. Unfortunately, the structural mechanisms involved in the transmission of signal across the cell membrane through the receptors are poorly understood, which limits the rational development of new molecules targetting specific signaling pathways. The angiotensin-II type 1 (AT[subscript 1]) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the G[subscript q/11] protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT[subscript 1] receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore interactions and movements that define the conformational landscape of the AT[subscript 1] receptor. We have also verified how this conformational landscape is modified by mutations (N111G, N111W, D74N) and ligands (AngII, [Sar[superscript 1]Ile[superscript 8]]AngII) that have different signaling properties on the G[subscript q/11] pathway and the β-arrestin pathway. The results provide a better understanding of the role of a hydrogen bond network formed of conserved polar residues in the receptor core which include residues N111[superscript 3.35] and D74[superscript 2.50]. The results also reveal the existence of a cluster of hydrophobic residues located right above the hydrogen bonds network and adjacent to the binding pocket that appears important for the stabilization of the ground state of the receptor as well as its ligand-induced activation. As a whole, the results suggest that activation of the G[supbscript q/11] pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor.
18

Récepteurs AT1-AT2 de l'angiotensine II et propriétés particulières des antagonistes AT1 sur la circulation cérébrale chez le rat / AT1 And AT2 Angiotensin II Receptors and Special Properties of AT1 Receptor Blockers on Cerebral Circulation in Rat

Foulquier, Sébastien 13 January 2012 (has links)
Le Système Rénine Angiotensine tient une place prépondérante au sein de la circulation cérébrale. Les Antagonistes des Récepteurs AT1 à l'Angiotensine II (ARAII) ont prouvé leur efficacité dans la prévention de l'Accident Vasculaire Cérébral (AVC), indépendamment de leur effet anti-hypertenseur. Plusieurs mécanismes pourraient être impliqués dans cette cérébroprotection. D'une part, en bloquant les récepteurs AT1, les ARAII favorisent la stimulation des récepteurs AT2 à l'angiotensine II. Le caractère bénéfique lié à la stimulation des récepteurs AT2 s'oppose au caractère délétère lié à la stimulation des récepteurs AT1. Nous avons montré que cet équilibre AT1 - AT2 est modifié au niveau cérébrovasculaire suite à un régime hypersodé. En effet, la vasodilatation des artérioles cérébrales médiée par les récepteurs AT2 est abolie, ce qui pourrait constituer un élément délétère lors de la survenue d'un évènement ischémique. D'autre part, certains ARAII présentent une affinité pour les récepteurs PPAR-gamma. Cette activité, démontrée comme protectrice à différents niveaux vasculaires, pourrait également être bénéfique pour la circulation cérébrale. Nous avons en particulier montré que l'activation PPAR-gamma améliore les effets des ARAII au niveau de la circulation cérébrale (diamètre artériolaire, réactivité à l'angiotensine II). Les mécanismes en jeu semblent impliquer des modifications de la fonction des récepteurs AT1-AT2, indépendamment de leur expression. La stimulation des récepteurs AT2 et l'activation PPAR-gamma constituent donc deux propriétés particulières des ARAII. Ces propriétés pourraient participer au caractère cérébroprotecteur des ARAII, au-delà du seul blocage des récepteurs AT1. Le développement de molécules duales regroupant les activités antagoniste AT1 - agoniste PPAR-gamma pourrait constituer un avenir thérapeutique intéressant dans le traitement de l'hypertension en apportant une protection cérébrovasculaire supérieure aux traitements actuels / The Renin Angiotensin System plays a major role in cerebral circulation. AT1 receptor blockers (ARBs) afford protection against cerebrovascular complications that go beyond that to be expected from their blood pressure lowering action. Several mechanisms could explain such beneficial effects. Firstly, by blocking AT1 receptors, ARBs promote AT2 receptor stimulation by angiotensin II. The beneficial effect related to stimulation of AT2 receptors (vasodilation) counterbalances the deleterious actions of AT1 receptors stimulation. Changes in this ratio may then alter cerebral circulation. We demonstrated that the AT1- AT2 ratio is modified at the cerebrovascular level during high salt intake, which is a risk factor for stroke. The AT2-mediated vasodilation of pial arterioles is abolished. Secondly, some ARBs act as partial agonists of PPAR-gamma. Such an activity, which has been demonstrated to protect extracerebral vessels, could also be beneficial for cerebral circulation. Our results showed that PPAR-gamma activation improves ARB effects on cerebral circulation (arteriolar diameter, angiotensin II reactivity). The underlying mechanisms could imply functional regulation of AT1-AT2 receptors without any change in expression status. AT2 receptor stimulation and PPAR-gamma activity are two special properties of ARBs. These properties could contribute to the cerebroprotection induced by ARBs, beyond the AT1-receptor blockade. Development of new molecules with AT1-receptor blockade and PPAR-gamma activity could take part into the future therapeutic management of hypertension, providing a better cerebrovascular protection
19

Importance de la S-nitrosation des récepteurs cérébrovasculaires de l’angiotensine II / Importance of S-nitrosation of cerebrovascular angiotensin II receptors

Bouressam, Marie Lynda 04 July 2018 (has links)
Les accidents vasculaires cérébraux sont la deuxième cause de mortalité dans le monde, le développement de nouvelles thérapeutiques est donc urgent. Deux acteurs jouent un rôle majeur dans la régulation de la circulation cérébrale : le monoxyde d’azote (NO) et le système rénine angiotensine (SRA). Le chapitre 1 de ce manuscrit s’intéresse tout d’abord au NO, son rôle physiologique et ses voies de signalisation. Nous présentons les donneurs de NO disponibles sur le marché ainsi que ceux en développement. La bucillamine dinitrosée, développée dans notre laboratoire, fait l’objet d’une évaluation in vitro et in vivo. La deuxième partie de l’introduction s’intéresse au SRA, en rappelant son rôle prépondérant dans le maintien de la pression artérielle et de la régulation cérébrovasculaire. Nous présentons les récepteurs de l’angiotensine II (AngII), AT1 et AT2, responsables respectivement d’une vasoconstriction et d’une vasodilatation des artères cérébrales. Enfin la dernière partie présente la régulation des récepteurs de l’AngII par le NO, en particulier via la S-nitrosation du récepteur, la liaison d’un groupement NO sur une fonction thiol d’un résidu cystéine. Nous présentons les travaux de Leclerc qui montrent que l’exposition de cellules surexprimant le récepteur AT1 à un donneur de NO entraine une diminution d’affinité de l’AngII pour AT1 (Leclerc et al., 2006). Le chapitre 2 est consacré aux études expérimentales. L’objectif des travaux présentés dans cette thèse est d’étudier l’importance de la S-nitrosation des récepteurs de l’AngII au niveau cérébrovasculaire. Tout d’abord nous abordons la problématique actuelle concernant l’aspécificité des anticorps anti-AT1. Nous montrons que le nouvel anticorps monoclonal anti-AT1, censé être plus spécifique, ne reconnaît pas AT1 en western blot et en immunofluorescence, rendant donc son utilisation impossible. Nous faisons ensuite la démonstration pharmacologique des effets de la S-nitrosation sur les récepteurs de l’AngII. Nous montrons que l’exposition à un donneur de NO (S-nitrosoglutathion ou nitroprussiate de sodium) abolit spécifiquement la vasoconstriction médiée par AT1 comparé à d’autres vasoconstricteurs partageant ou non sa voie de signalisation. De plus cette exposition abolit aussi le tonus myogénique AT1-dépendant indépendant de la stimulation par l’AngII suggérant que l’altération survient sur le récepteur lui-même. Nous montrons par ailleurs que cet effet (i) ne dépend pas du NO endogène, (ii) se fait par une S-nitrosation plutôt que par la voie de la GMPc/GCs. Enfin nous étudions l’internalisation du récepteur par cytométrie en flux, sur un modèle hétérologue d’expression AT1. Nos résultats montrent que le GSNO ne modifie pas la localisation d’AT1 à la membrane et n’empêche pas son internalisation, indiquant que la voie ß-arrestine n’est pas impactée par la nitrosation.L’ensemble de ces résultats permet d’établir que la S-nitrosation d’AT1 constitue une cible thérapeutique potentiellement intéressante dans les AVC, où l’augmentation de la vasoconstriction médiée par AT1 est délétère / Stroke is the second leading cause of death worldwide, the development of new therapeutics is thus urgent. Two actors play a major role in the regulation of cerebral circulation: nitric oxide (NO) and the renin-angiotensin system (RAS). The first chapter of this manuscript focuses on NO, its role and its signaling pathways. We present the available NO donors as well as those in development. Dinitrosobucillamine, a new NO donor developed in our team, is evaluated in vitro and in vivo. The second part of the introduction focuses on RAS and its preponderant role in blood pressure maintenance and cerebrovascular regulation. We present the angiotensin II (AngII) receptors, AT1 and AT2 responsible for vasoconstriction and vasodilation of cerebral arteries, respectively. Finally, the last part presents the regulation of AngII receptors by NO, in particular through S-nitrosation of the receptors, the covalent bound between NO and cysteine residues. We present the work of Leclerc, showing that exposure of cells overexpressing AT1 to NO causes a decrease in AngII affinity for AT1 (Leclerc et al., 2006). The second chapter is devoted to the experimental studies. The objective of this work is to study the importance of AngII receptor S-nitrosation at the cerebrovascular level. First, we address the current problematic concerning the nonspecificity of anti-AT1 antibodies. We show here that the new monoclonal anti-AT1 antibody, which is supposed to be more specific, does not recognize AT1 in western blot and immunofluorescence, making its use impossible. We then make a pharmacological demonstration of S-nitrosation effects on AngII receptors. We show that exposure to NO donors (S-nitrosoglutathione or sodium nitroprusside) specifically abolishes AT1-mediated vasoconstriction compared to other vasoconstrictors sharing or not its signaling pathway. Moreover, this exposure also abolishes AT1-mediated AngII-independent myogenic tone, suggesting an alteration on the receptor itself. We also show that this effect (i) does not depend on endogenous NO, (ii) is mediated by S-nitrosation rather than by the cGMP/sGC pathway. Finally, we study AT1 internalization by flow cytometry on a heterologous model of AT1 expression. Our results show that GSNO does not alter AT1 cell surface localization and does not prevent its internalization, indicating that the ß-arrestin pathway is not impacted by nitrosation
20

Charakterisierung und <i>in vitro</i> - Wirkung agonistischer AT<sub>1</sub>-Rezeptor Autoantikörper bei Präeklampsie-Patienten

Neichel, Dajana January 2003 (has links)
Die Präeklampsie ist eine schwangerschaftsspezifische Bluthochdruck-Erkrankung, die im Allgemeinen nach der 20. Schwangerschaftswoche auftritt. Neben der Hypertonie sind die Proteinurie und die Ödembildung charakteristische Symptome der Präeklampsie. Obwohl heute die Pathophysiologie der Präeklampsie zum großen Teil verstanden ist, ist die Ätiologie dieser Erkrankung noch unklar. 1999 konnten wir in den Seren von Präeklampsie-Patientinnen agonistische Autoantikörper, die gegen den Angiotensin II AT1-Rezeptor gerichtet sind (AT1-AAK), nachweisen. Diese AT1-AAK gehören zur Antikörpersubklasse IgG3.<br /> Die AT1-AAK führen in Kulturen neonataler Rattenkardiomyozyten AT1-Rezeptor spezifisch zu einem positiv chronotropen Effekt. Mittels Immunpräzipitation wurde gezeigt, dass AT1-AAK spezifisch den AT1-Rezeptor präzipitieren. Kontrollproben, aus denen die AT1-AAK entfernt wurden, führen zu keiner Präzipitation des AT1-Rezeptors. Die Präzipitation des AT1-Rezeptors bleibt ebenfalls aus, wenn die AT1-AAK mit einem Peptid, welches der Aminosäuresequenz des zweiten extrazellulären Loops des humanen AT1-Rezeptors entspricht, behandelt wurden. Eine Langzeitbehandlung der Kulturen neonataler Rattenherzzellen mit AT1-AAK vermindert die funktionelle Ansprechbarkeit der Zellen auf einen erneuten AT1-Rezeptor-Stimulus.<br /> Eine veränderte AT1-Rezeptorexpression wurde nicht nachgewiesen. In guter Übereinstimmung mit den in vitro-Expressionsdaten wurde gezeigt, dass die plazentare AT1-Rezeptorexpression bei Präeklampsie-Patientinnen nicht verschieden von der plazentaren AT1-Rezeptorexpression gesunder Schwangerer mit nicht pathogen verändertem Blutdruck ist. Im Zellsystem der neonatalen Rattenherzzellen führen die AT1-AAK zur Aktivierung von Gi-Proteinen und zu verringerten intrazellulären cAMP-Spiegeln.<br /> Des Weiteren wurde gezeigt, dass die AT1-AAK in Kulturen neonataler Rattenherzzellen die Transkriptionsfaktoren AP-1 und NFkB aktivieren. Die Aktivierung des Transkriptionsfaktors NFkB wurde vornehmlich in den Nicht-Myozyten der Rattenherzzellkultur nachgewiesen. Generell wurde festgestellt, dass sich die AT1-AAK pharmakologisch wie der natürliche Agonist des AT1-Rezeptors, Angiotensin II, verhalten.<br /> Erste Daten dieser Arbeit deuten auf einen eventuellen Einfluss der AT1-AAK auf die Expression von Komponenten der extrazellulären Matrix bzw. assoziierter Faktoren (Kollagen III, MMP-2, TIMP-2, Colligin) hin. In allen in dieser Arbeit untersuchten Seren von klinisch diagnostizierten Präeklampsie-Patientinnen wurden agonistische AT1-AAK nachgewiesen. Wir vermuten daher, dass die AT1-AAK möglicherweise bedeutend in der Pathogenese der Präeklampsie sind. / Preeclampsia is a serious, pregnancy-specific disorder that usually occurs after week 20 of gestation and is characterized by hypertension, proteinuria, and oedema. While the pathophysiology is clear, little is known about etiology of preeclampsia.<br /> In 1999, we showed that sera from preeclamptic patients contain autoantibodies directed against angiotensin II AT1 receptor (AT1-AAB). These autoantibodies are immunoglobuliens of the IgG3 subclass.<br /> AT1-AAB accelerate the beating rate of neonatal rat cardiomyocytes. The agonistic effect can be blocked with the AT1 receptor blocker losartan.<br /> Co-immunoprecipitation studies have shown that AT1-AAB specifically precipitate the AT1 receptor while control samples lacking AT1-AAB do not. The AT1 receptor could not be precipitated following neutralization of the AT1-AAB by a peptide corresponding to the AT1 receptors second extracellular loop. In further studies on neonatal rat heart cells, we showed long-term stimulation of the AT1 receptor whereby AT1-AAB down-regulated the AT1 receptor-mediated response to a second agonistic receptor-stimulation.<br /> After long-term stimulation of neonatal rat heart cells, no changes in AT1 receptor expression could be identified. Corresponding to these in vitro-expression data, no difference was seen in placental AT1 receptor expression between patients with preeclampsia and healthy pregnant women. Next, we tested if the AT1-AAB lead to activation of AT1 receptor signaling in angiotensin II fashion. In neonatal rat heart cell cultures, AT1-AAB lead to activation of Gi-protein with reduced cAMP levels. AT1-AAB are able to activate the transcription factors AP-1 and NFkB in this cell system. In all observations, the agonistic AT1-AAB behave pharmacologically in a similar fashion to angiotensin II.<br /> Initial data suggest that AT1-AAB may have an effect on extracellular matrix components (ECM).<br /> We have found AT1-AAB in all women meeting the clinical criteria of preeclampsia and, therefore, suggest that AT1-AAB may be important to the pathogenesis of the disease.

Page generated in 0.0623 seconds