• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 13
  • 7
  • 2
  • Tagged with
  • 50
  • 22
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Einfluss von Unsicherheiten auf die Kalibrierung urban-hydrologischer Modelle

Henrichs, Malte 21 October 2015 (has links) (PDF)
Der Einsatz von hydrologischen Modellen zur Unterstützung von Planung und Betrieb von Entwässerungssystemen ist als Stand der Technik anzusehen. Realitätsnahe und sichere Modellergebnisse stellen dabei die Grundlage für eine zielgerichtete Entscheidungsfindung dar. Nur durch eine Kalibrierung können Parameter von konzeptionellen Modellen zur Berechnung des Niederschlag-Abfluss-Prozesses an die Randbedingungen des zu simulierenden technischen oder natürlichen Systems angepasst werden. Auch wenn die Kalibrierung eines Modells entscheidend zur Erhöhung der Realitätsnähe beiträgt, kann diese durch unterschiedliche Faktoren beeinflusst werden. Dies ist darauf zurückzuführen, dass bei hydrologischen Modellen nicht ausschließlich deterministische Gleichungen mit physikalisch basierten Parametern eingesetzt werden. Wesentliche Einflussfaktoren auf die Kalibrierung von urbanhydrologischen Modellen sind die gewählte Modellstruktur, die Eingangsdaten, die Kalibrierdaten, die Auswahl von Kalibrierereignissen sowie die eigentliche Kalibriermethodik. Im Rahmen dieser Arbeit wurden die Einflüsse der Kalibrierdaten, der Auswahl von Ereignissen und der Kalibriermethodik auf die Ergebnisse der automatischen Kalibrierung mittels multikriterieller Optimierungsverfahren untersucht.
32

Modelling nutrient retention in floodplains

Natho, Stephanie 11 November 2013 (has links)
Obwohl es sehr detaillierte Studien zur Nährstoffretention in einzelnen Auen und Feuchtgebieten gibt, ist die Bedeutung von Auen für die Nährstoffbilanz auf Landschaftsebene wenig untersucht. Dies liegt an dem geringen Wissensstand über die wichtigsten Parameter der Nährstoffretention, nämlich die überflutete Auenfläche sowie die in die Aue strömende Nährstofffracht. Zusätzlich gibt es bislang keinen Ansatz, demzufolge beide Parameter abhängig vom Abfluss, und damit variabel für verschiedene zeitliche Einheiten, berechnet werden können. Aus diesem Grund analysiert diese Arbeit die Überflutungshäufigkeiten der Auen von drei Flüssen, Elbe, Main und Rhein. Darauf aufbauend wird eine Abhängigkeit zwischen der überfluteten Fläche und dem Abfluss empirisch abgeleitet, die auf detaillierten Berechnungen der etablierten Software Flys basieren. Ausgehend auf diesen im Folgenden generalisierten Ergebnissen werden eine letztendlich Ereignis basierte mittlere überflutete Auenfläche sowie einströmende Nährstofffracht abhängig vom jeweiligen Abfluss berechnet. Diese und weitere Geoinformationsdaten wie auch Pegel und Gütedaten finden Eingang in jährliche und monatliche empirische Retentionsmodelle. Die berechnete Nährstoffretention in den Auen ist abhängig von der hydrologischen Konnektivität der Auen und dem tatsächlichen Abfluss. Deshalb wird letztendlich das weiterentwickelte Konzept der Ereignis bezogenen Nährstoffretention angewendet und als am realistischsten in Kombination mit hydro-exponentiellen Retentionsmodellen erachtet. Für die naturnahe Elbe werden in Monaten mit Hochwässern bis zu 9% bzw. 10% Retention der transportierten TP bzw. der NO3-N Fracht berechnet. Die Übertragbarkeit dieser Ergebnisse auf eine deutschlandweite Kulisse ist durch die generalisierten Methoden geschaffen. Die vorliegende Arbeit leistet damit einen Beitrag, die Bedeutung der Auen für die Nährstoffbilanz auf Landschaftsebene abhängig von hydrologischen Gegebenheiten zu quantifizieren. / Although there are detailed studies on nutrient retention in single wetlands and floodplains, the role of riparian floodplains for nutrient retention is not investigated very well on a landscape scale, since knowledge on the most important parameters for nutrient retention, inundated floodplains and incoming load, is insufficient. Additionally, a method for describing these parameters as discharge dependent variables is missing. Therefore, the present work analyzes the flooding frequencies on floodplains of three study rivers, Elbe, Main and Rhine. The relation of inundated floodplain extent and current discharge conditions based on detailed results of the established Software Flys is deduced empirically. Based on these subsequently generalized results, finally event related average inundated floodplain extent respectively, incoming nutrient loads are calculated by considering the effects of the hydrologic conditions of each river system. Therefore, available geodata as well as data on water quality and discharge is processed and serves as input data for yearly and monthly empirical retention models. The calculated nutrient retention in floodplains varies with hydrological connectivity of the floodplain to the surface waters as well as with the current hydrologic condition of the river system. For this reason the finally developed concept of event related nutrient retention is suggested as the most realistic in combination with hydro-exponential retention models. The Elbe floodplains are the most natural, and in years with high floods nutrient retention in the floodplains contributes up to 9% respectively 10% of the monthly transported load of TP and NO3-N, which is significant. The transfer of the results to a German-wide application is possible due the generalization of the methods carried out. With the presented results the hydrology dependent role of floodplains for nutrient balances in river systems can be quantified on a landscape scale.
33

Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel sibirischer Flusssysteme / Determination of hydrological mass variations from GRACE data for Siberian river systems

Scheller, Marita 29 January 2013 (has links) (PDF)
Aus Beobachtungsdaten der Satellitenmission GRACE (Gravity Recovery and Climate Experiment) können Variationen des Erdschwerefeldes auf großen räumlichen Skalen mit hoher Genauigkeit abgeleitet werden. Die Variationen auf zeitlichen Skalen von mehreren Tagen bis Wochen und räumlichen Skalen von wenigen hundert Kilometern sind insbesondere auf Änderungen der kontinentalen Wassermassen zurückzuführen. Die vorliegende Promotionsarbeit beschäftigt sich mit der Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel der vier größten sibirischen Flusseinzugsgebiete Ob, Jenissei, Lena und Kolyma. Darauf aufbauend sollen in Kombination mit atmosphärischen Daten der NCEP-Reanalyse Süßwassereinträge in den Arktischen Ozean abgeleitet werden. Die Süßwassereinträge beeinflussen nachhaltig den Salzgehalt und damit das ozeanographische Regime des Arktischen Ozeans, welcher wiederum einen Einfluss auf die globale thermohaline Zirkulation hat. Da die großen Strömungen des Weltozeans einen grundlegenden Faktor des globalen Klimageschehens darstellen, sind die Änderungen des Süßwassereintrages ein wichtiger Aspekt hinsichtlich prognostizierter Klimatrends. Der Abfluss kann an ausgewählten Messpunkten mit einer hohen zeitlichen Auflösung beobachtet werden. Die Datenreihen weisen jedoch immer wieder Lücken auf und die bodengebundenen Messungen sind oft schwierig und kostenintensiv. Messmethoden, die unabhängig vom Zugang ins Messgebiet sind, können einen großen Fortschritt bei der Beobachtung sich ändernder Massen und Süßwasserflüsse leisten und damit einen Beitrag für ein besseres Verständnis gekoppelter komplexer Prozesse der Arktis liefern. Da die Fehlerstruktur der GRACE-Daten komplex und bis heute nicht vollständig verstanden ist, erfolgt zunächst eine Untersuchung des GRACE-Fehlerhaushaltes. Zudem werden die Fehlereffekte aufgrund des begrenzten räumlichen Spektrums und damit einhergehender Leck-Effekte auf Ebene von Gebietsmittelwerten analysiert und Lösungsvorschläge diskutiert. Dabei sind folgende Aspekte von Bedeutung: Erweiterung der GRACE-Datenreihe um geeigente Terme ersten Grades und Abschätzung von Leck-Effekten, verursacht durch das begrenzte Spektrum der Kugelfunktionsentwicklung. Leck-Effekte aufgrund ozeanischer Signalanteile sind bzgl. der Einzugsgebiete sibirischer Flusssysteme klein (< 1%), wohingegen Leck-Effekte aufgrund kontinentaler Signalanteile je nach Gebietsgröße relative Fehler von 8-17% nach sich ziehen. Die größten Fehlereffekte resultieren jedoch aus den Koeffizienten hoher Grade. Die Filterung der GRACE-Daten ermöglicht die Glättung fehlerbehafterer Signalanteile. Neben den in der Literatur gängigen Filtern wurde im Rahmen der Arbeit ein Kombinationsfilter entwickelt, welches auf Basis von räumlichen Vorinformationen aus Hydrologiemodellen signifikante Signalstrukturen in den GRACE-Datenreihen detektiert. Somit muss lediglich ein Restsignal mittels Filterung gedämpft werden. Mit dem Kombinationsfilter können sowohl feinere Signalstrukturen als auch größere Signalamplituden auf Land erhalten werden. Im Vergleich zu reinen Filteranwendungen werden hier Gesamtsignalstärke, Amplitude und Phase des jährlichen Signals gut repräsentiert. Darauf aufbauend lassen sich, in Kombination mit atmosphärischen Daten, Abflüsse für die sibirischen Flusssysteme aus GRACE-Wasserspeichervariationen ableiten. Die Validierung der berechneten Abflüsse anhand beobachteter Abflüsse zeigt eine hohe Übereinstimmung von bis zu 83%. Eine Gegenüberstellung des berechneten Abflusses der Lena mit Wasserstandsmessungen im Mündungsbereich zeigt zudem einen Zusammenhang zwischen dem maximalen Abfluss im Frühjahr und einer Zunahme des Wasserstandes in der Laptewsee. / The satellite mission GRACE (Gravity Recovery and Climate Experiment) observes the earth's gravity field on temporal scales of a few days to several weeks and spatial scales of a few hundred kilometers with high accuracy. A large part of the variations of the gravity field originate from hydrological mass changes on the continents. The dissertation discusses the determination of hydrological mass variations from GRACE for the Siberian water systems of the rivers Ob, Yenisey, Lena and Kolyma. The mass variations from GRACE data are combined with atmospheric data of the NCEP reanalysis to calculate the freshwater fluxes in the Arctic Ocean. The freshwater fluxes strongly influences the salinity and the oceanographic regime of the Arctic Ocean. In turn, the Arctic Ocean controls the global thermohaline circulation which is very important for the global climate. Because these large currents of the ocean influence the global climate, the changes of the freshwater fluxes in the Arctic Ocean are an important factor for the global climate change. The runoff can be measured pointwise with high temporal resolution, but measurements in the high latitudes are difficulty and expensive. Independent methods to measure the mass changes in the Arctic can help to determine the freshwater fluxes on large spatial scales, and contribute to understand the coupled and complex processes of the Arctic. Until present, the complex error structure of the GRACE data are not fully understand. The dissertation examines the errors and analysizes the leakage caused by the limited spectrum of the Stokes coefficients. A proposal for a solution will be discussed. The following steps are important: Expanding the GRACE data with adequate terms of degree one; Valuation of leakage errors because of the limited spectrum. Leakage due to oceanographic signals of the Arctic Ocean are small (< 1%). Leakage errors due to signals on land produces relative errors of basin averages of 8-17%. Beyond that, the largest errors are caused by the coefficients of higher degree. Filtering is an effective method to damp the error signals. In addition to the common filters described in the literature, a filter method, called composite filter, was created. Significant structures from hydrological models can be deteceted in the GRACE data without any other filtering. Only the residual signals should be filtered by using one of the common filters. In comparison to the common filters, the composite filter represents the signal strength, the signal structures, the amplitude and the phase of the saisonal signal on the continents much better. Combining hydrological mass variations from GRACE data with atmospheric data (for example the NCEP reanalysis) the runoff of the four Siberian river systems can be calculated. The validation of the calculated runoff using observations leads to a good agreement (83% for Yenisey and Lena). Furthermore, it is possible to combine the runoff of a river system with measurements of water level and salinity in the Arctic Ocean. The high runoff of the Lena river system in spring is visible in the water level changes in the Laptev sea.
34

Anpassung von WaSiM-ETH und die Erstellung und Berechnung von Landnutzungs- und Klimaszenarien für die Niederschlag-Abfluss-Modellierung am Beispiel des Osterzgebirges

Pöhler, Hannaleena Annikki 21 July 2009 (has links) (PDF)
Für das Verbundprojekt EMTAL (Einzugsgebietsmanagement von Talsperren in Mittelgebirgslandschaften) wurden Methoden zur Klärung hydrologischer Fragen entwickelt. Das dafür gewählte Modell WaSiM-ETH kann den Abfluss im Untersuchungsgebiet gut reproduzieren und ist unter Verwendung physikalisch basierter Teilmodule auf ähnliche Einzugsgebiete übertragbar. Es kann in einer hohen Bandbreite zeitlicher und räumlicher Diskretisierung verwendet werden. Bei der Modellierung verschiedener Landnutzungsszenarien zeigen sich Grenzen im Prozessverständnis, der Parametrisierung bekannter oder vermuteter Prozessse und in der Darstellung verschiedener Prozesse durch das Modell. Innerhalb streng festgelegter Randbedingungen können aber plausible Ergebnisse erlangt werden. Zusätzlich wurden meteorologische Zeitreihen für die Niederschlag-Abfluss-Modellierung bis 2050 erstellt. Die Effekte von Klimaänderungen auf den Abfluss werden gut abgebildet. Die Grenzen der Modellierung liegen hier in erster Linie bei der Güte der Eingangsdaten aus den Klimaprognosen.
35

Dynamic hyporheic responses to transient discharge, temperature and groundwater table

Wu, Liwen 22 December 2020 (has links)
Obwohl der Bedeutung von hyporheischen Zonen als Übergangsbereiche zwischen Flüssen und angrenzenden alluvialen Aquiferen eine wachsende Anerkennung zuteilwird, sind dynamische hyporheische Reaktionen auf instationäre hydrologische Bedingungen weiterhin signifikant untererforscht. Um diese Lücke zu schließen, liegt der Fokus dieser Doktorarbeit insbesondere auf den Effekten transienter Abflussverhalten und Temperaturschwankungen in Flüssen auf die raumzeitliche Variabilität von hyporheischen Austauschprozessen. Unter Beachtung dieser Ziele wird ein neues physikalisch basiertes numerisches Modell vorgeschlagen und schließlich angewandt, um systematisch die hyporheischen, durch Sedimentoberflächenstrukturen ausgelösten Reaktionen auf eine Reihe von künstlichen und natürlichen Abflussregimen abzuschätzen. Parameter wie das räumliche Ausmaß der hyporheischen Zone, hyporheische Austauschrate, mittlere Aufenthaltszeit, Temperatur des hyporheischen Flusses sowie das Denitrifikationspotenzial werden definiert, um den Einfluss der Antriebskräfte und Regulatoren auf dynamische hyporheische Reaktionen zu quantifizieren. Die Ergebnisse zeigen, dass mit zunehmendem Abfluss generell das räumliche Ausmaß der hyporheischen Zone vergrößert wird; jedoch bestimmen geomorphologische Bedingungen und Grundwasserflüsse erheblich das Ausdehnen und Zusammenziehen hyporheischer Zonen zusammen mit Strömungen, Wärme- und Stoffaustausch zwischen Fluss und Grundwasser. Temperaturvariabilität, ein wichtiger Faktor, welcher oft in hydrodynamischen Studien vernachlässigt wird, zeigt direkte kontrollierende Effekte beim Bestimmen hyporheischer Austauschraten und mittlerer Aufenthaltszeiten. Weiterhin spielt die Dynamik von Grundwasserständen eine entscheidende Rolle bei hyporheischen Austauschprozessen. Das Optimieren der Terminierung von Grundwasserförderung ist ausschlaggebend für die Regulierung von Wasserqualität, Nährstoffkreisläufen und der Entstehung thermischer hyporheischer Refugien. / Although there is a growing recognition of the importance of hyporheic zones as transitional areas connecting rivers and adjacent alluvial aquifers, the dynamic hyporheic responses to unsteady hydrological conditions are still significantly understudied. To bridge this gap, the present PhD thesis primarily focuses on the effects of transient river discharge and temperature fluctuations on the spatiotemporal variability of hyporheic exchange processes. With these objectives in mind, a novel physically based numerical model is proposed and then applied to systematically evaluate bedform-induced hyporheic responses to a series of synthetic and natural hydrological regimes. Metrics including spatial hyporheic extent, hyporheic exchange rate, mean residence time, temperature of hyporheic flux, and denitrification potential are defined to quantify the impact of drivers and modulators of dynamic hyporheic responses. Results indicate that increasing river discharge generally enlarges the spatial hyporheic extent; however, geomorphological settings and groundwater fluxes substantially modulate the expansion and contraction of hyporheic zones along with flow, heat and solute exchange between river and groundwater. Temperature variability, an important factor which is often neglected in hydrodynamic studies, displays direct controlling effects in determining hyporheic exchange rates and mean residence times. Groundwater table dynamics also play a critical role in hyporheic exchange processes. Optimizing the timing of aquifer pumping is crucial for regulation of water quality, nutrient cycling, and the formation of thermal hyporheic refugia. The findings largely advanced our mechanistic understandings of dynamic hyporheic responses to varying transient flow and temperature conditions, and therefore shed lights on improving river management and restoration strategies.
36

Einfluss von Unsicherheiten auf die Kalibrierung urban-hydrologischer Modelle

Henrichs, Malte 23 July 2015 (has links)
Der Einsatz von hydrologischen Modellen zur Unterstützung von Planung und Betrieb von Entwässerungssystemen ist als Stand der Technik anzusehen. Realitätsnahe und sichere Modellergebnisse stellen dabei die Grundlage für eine zielgerichtete Entscheidungsfindung dar. Nur durch eine Kalibrierung können Parameter von konzeptionellen Modellen zur Berechnung des Niederschlag-Abfluss-Prozesses an die Randbedingungen des zu simulierenden technischen oder natürlichen Systems angepasst werden. Auch wenn die Kalibrierung eines Modells entscheidend zur Erhöhung der Realitätsnähe beiträgt, kann diese durch unterschiedliche Faktoren beeinflusst werden. Dies ist darauf zurückzuführen, dass bei hydrologischen Modellen nicht ausschließlich deterministische Gleichungen mit physikalisch basierten Parametern eingesetzt werden. Wesentliche Einflussfaktoren auf die Kalibrierung von urbanhydrologischen Modellen sind die gewählte Modellstruktur, die Eingangsdaten, die Kalibrierdaten, die Auswahl von Kalibrierereignissen sowie die eigentliche Kalibriermethodik. Im Rahmen dieser Arbeit wurden die Einflüsse der Kalibrierdaten, der Auswahl von Ereignissen und der Kalibriermethodik auf die Ergebnisse der automatischen Kalibrierung mittels multikriterieller Optimierungsverfahren untersucht.
37

Anpassung von WaSiM-ETH und die Erstellung und Berechnung von Landnutzungs- und Klimaszenarien für die Niederschlag-Abfluss-Modellierung am Beispiel des Osterzgebirges

Pöhler, Hannaleena Annikki 30 October 2006 (has links)
Für das Verbundprojekt EMTAL (Einzugsgebietsmanagement von Talsperren in Mittelgebirgslandschaften) wurden Methoden zur Klärung hydrologischer Fragen entwickelt. Das dafür gewählte Modell WaSiM-ETH kann den Abfluss im Untersuchungsgebiet gut reproduzieren und ist unter Verwendung physikalisch basierter Teilmodule auf ähnliche Einzugsgebiete übertragbar. Es kann in einer hohen Bandbreite zeitlicher und räumlicher Diskretisierung verwendet werden. Bei der Modellierung verschiedener Landnutzungsszenarien zeigen sich Grenzen im Prozessverständnis, der Parametrisierung bekannter oder vermuteter Prozessse und in der Darstellung verschiedener Prozesse durch das Modell. Innerhalb streng festgelegter Randbedingungen können aber plausible Ergebnisse erlangt werden. Zusätzlich wurden meteorologische Zeitreihen für die Niederschlag-Abfluss-Modellierung bis 2050 erstellt. Die Effekte von Klimaänderungen auf den Abfluss werden gut abgebildet. Die Grenzen der Modellierung liegen hier in erster Linie bei der Güte der Eingangsdaten aus den Klimaprognosen.
38

Experimentelle Untersuchungen zum Einfluss physikalischer Bodeneigenschaften auf die Rillenerosion

Hieke, Falk 29 January 2010 (has links)
Der Einfluss bodenspezifischer Größen auf die Rillenerosion wurde in Überströmungsversuchen in einem eigens dafür konstruiertem Kleingerinne untersucht. Die Neigung des 2 m langen und 0,1 m breiten Gerinnes wurde dafür zwischen 2, 4 und 6 % variiert. Im Gerinne wurden zum einen natürliche Böden, zum anderen künstliche, aus Schluff und Sand gemischte Substrate mit 0,060 l*s-1, 0,125 l*s-1 und 0,300 l*s-1 überströmt. Die Körnung der natürlichen Böden reichte von stark schluffig bis sandig-lehmig, die der künstlichen Substrate von stark schluffig bis sandig. Die künstlichen Substrate wiesen im Gegensatz zu den natürlichen Böden keine Aggregierung auf und waren frei von organischer Substanz. Zu Beginn der Versuche wird der Boden zunächst flächig überströmt. Währenddessen bilden sich Mikrorillen auf der Gerinnesohle aus. Selektiver Sedimenttransport bewirkt die Akkumulation der nicht transportablen Fraktion auf der Bodenoberfläche, wodurch sich Rippel bilden. Über den Rippeln formen sich stehende Wellen im Abfluss. Die stehenden Wellen erzeugen Sohlschubspannungsspitzen auf die Gerinnesohle, welche zu verstärkter lokaler Erosion, zur Ausbildung von Mikrodepressionen und im weiteren zur Entstehung von Rillenköpfen führen. Die Rillenköpfe wandern entgegen dem Gefälle und hinterlassen Rillen, in denen sich der Abfluss konzentriert. In den Rillen können weitere Rillenköpfe entstehen. Anhand des Beginns der Rillenerosion, der Rillenkopfneubildungsrate, dem Erosionsfortschritt der Rillenköpfe, der Bestandsdauer der Rillenköpfe und der Sedimentkonzentration im Abfluss kann das Phänomen „Rillenerosion“ erfasst und quantifiziert werden. Diese erosionsspezifischen Kennwerte zeigen sich dabei in Abhängigkeit von bodenspezifischen Größen, wie der Lagerungsdichte, der Korngrößenzusammensetzung sowie der Aggregatgrößenverteilung und –stabilität. Aus den Korrelationsanalysen zwischen den bodenspezifischen Größen und den spezifischen Kennwerten der Rillenerosion leiten sich empirische Beziehungen ab. Diese Beziehungen sind nicht-linearerer und nicht-stetiger Natur. Parallel zu den Versuchen im Kleingerinne wurden Überströmungs- und Beregnungsversuche in einem Großgerinne durchgeführt. Die Projektion der laborativen Ergebnisse des Kleingerinnes auf das naturnahere Großgerinne zeigte dabei Parallelen.
39

Analyse und Simulation von Unsicherheiten in der flächendifferenzierten Niederschlags-Abfluss-Modellierung

Grundmann, Jens 03 April 2009 (has links)
Die deterministische Modellierung des Niederschlags-Abfluss(N-A)-Prozesses mit flächendifferenzierten, prozessbasierten Modellen ist von zahlreichen Unsicherheiten beeinflusst. Diese Unsicherheiten resultieren hauptsächlich aus den genutzten Daten, die Messfehlern unterliegen sowie für eine flächendifferenzierte Modellierung entsprechend aufbereitet werden müssen, und der Abstraktion der natürlichen Prozesse im Modell selbst. Da N-A-Modelle in der hydrologischen Praxis vielfältig eingesetzt werden, sind Zuverlässigkeitsaussagen im Hinblick auf eine spezielle Anwendung nötig, um das Vertrauen in die Modellergebnisse zu festigen. Die neu entwickelte Strategie zur Analyse und Simulation der Unsicherheiten eines flächendifferenzierten, prozessbasierten N-A-Modells ermöglicht eine umfassende, globale und komponentenbasierte Unsicherheitsbestimmung. Am Beispiel des mesoskaligen Einzugsgebiets der Schwarzen Pockau/Pegel Zöblitz im mittleren Erzgebirge wird der Einfluss maßgebender Unsicherheiten im N-A-Prozess sowie deren Kombination zu einer Gesamt-Unsicherheit auf den Gebietsabfluss aufgezeigt. Zunächst werden die maßgebenden Unsicherheiten separat quantifiziert, wobei die folgenden Methoden eingesetzt werden: (i) Monte-Carlo Simulationen mit flächendifferenzierten stochastischen Bodenparametern zur Analyse des Einflusses unsicherer Bodeninformationen, (ii) Bayes’sche Inferenz und Markov-Ketten-Monte-Carlo Simulationen, die eine Unsicherheitsbestimmung der konzeptionellen Modellparameter der Abflussbildung und -konzentration ermöglichen und (iii) Monte-Carlo Simulationen mit stochastisch generierten Niederschlagsfeldern, die die raum-zeitliche Variabilität interpolierter Niederschlagsdaten beschreiben. Die Kombination der Unsicherheiten zu einer hydrologischen Unsicherheit und einer Gesamt-Unsicherheit erfolgt ebenfalls mit Monte-Carlo Methoden. Dieses Vorgehen ermöglicht die Korrelationen der Zufallsvariablen zu erfassen und die mehrdimensionale Abhängigkeitsstruktur innerhalb der Zufallsvariablen empirisch zu beschreiben. Die Ergebnisse zeigen für das Untersuchungsgebiet eine Dominanz der Unsicherheit aus der raum-zeitlichen Niederschlagsverteilung im Gebietsabfluss gefolgt von den Unsicherheiten aus den Bodeninformationen und den konzeptionellen Modellparametern. Diese Dominanz schlägt sich auch in der Gesamt-Unsicherheit nieder. Die aus Messdaten abgeleiteten Unsicherheiten weisen eine Heteroskedastizität auf, die durch den Prozessablauf geprägt ist. Weiterhin sind Indizien für eine Abhängigkeit der Unsicherheit von der Niederschlagsintensität sowie strukturelle Defizite des N-A-Modells sichtbar. Die neu entwickelte Strategie ist prinzipiell auf andere Gebiete und Modelle übertragbar. / Modelling rainfall-runoff (R-R) processes using deterministic, spatial distributed, process-based models is affected by numerous uncertainties. One major source of these uncertainties origins from measurement errors together with the errors occurring in the process of data processing. Inadequate representation of the governing processes in the model with respect to a given application is another source of uncertainty. Considering that R-R models are commonly used in the hydrologic practise a quantification of the uncertainties is essential for a realistic interpretation of the model results. The presented new framework allows for a comprehensive, total as well as component-based estimation of the uncertainties of model results from spatial distributed, process-based R-R modelling. The capabilities of the new framework to estimate the influence of the main sources of uncertainties as well as their combination to a total uncertainty is shown and analysed at the mesoscale catchment of the Schwarze Pockau of the Ore Mountains. The approach employs the following methods to quantify the uncertainties: (i) Monte Carlo simulations using spatial distributed stochastic soil parameters allow for the analysis of the impact of uncertain soil data (ii) Bayesian inference und Markov Chain Monte Carlo simulations, yield an estimate of the uncertainty of the conceptual model parameters governing the runoff formation and - concentration processes. (iii) Monte Carlo simulations using stochastically generated rainfall patterns describing the spatiotemporal variability of interpolated rainfall data. Monte Carlo methods are also employed to combine the single sources of uncertainties to a hydrologic uncertainty and a total uncertainty. This approach accounts for the correlations between the random variables as well as an empirical description of their multidimensional dependence structure. The example application shows a dominance of the uncertainty resulting from the spatio-temporal rainfall distribution followed by the uncertainties from the soil data and the conceptual model parameters with respect to runoff. This dominance is also reflected in the total uncertainty. The uncertainties derived from the data show a heteroscedasticity which is dominated by the process. Furthermore, the degree of uncertainty seems to depend on the rainfall intensity. The analysis of the uncertainties also indicates structural deficits of the R-R model. The developed framework can principally be transferred to other catchments as well as to other R-R models.
40

Regionalisierung von Hochwasserscheiteln auf Basis einer gekoppelten Niederschlag-Abfluss-Statistik mit besonderer Beachtung von Extremereignissen

Wagner, Michael 30 March 2012 (has links)
Die Bemessung von Bauwerken an oder in Fließgewässern erfordert die Kenntnis des statistischen Hochwasserregimes. Beispielsweise legen Hochwasserschutzkonzeptionen häufig ein Hochwasser zu Grunde, welches in einem Jahr mit der Wahrscheinlichkeit von 1/100 auftritt. Ein extremeres Hochwasser wird für den Nachweis der Standsicherheit großer Stauanlagen nach DIN 19700-12 mit einem Hochwasser der jährlichen Eintrittswahrscheinlichkeit von 1/10000 benötigt. Ein solches Hochwasser kann bereits wegen des instationären Klimas nicht allein aus Durchflussmessdaten abgeleitet, sondern lediglich idealisiert dargestellt werden. Das resultiert nicht zuletzt daraus, dass der Mensch natürlich Zeuge eines so unwahrscheinlichen Ereignisses werden kann. Jedoch kann er die Unwahrscheinlichkeit nicht nachweisen. Jedes Berechnungsschema, mit welchem ein so unwahrscheinliches Ereignis abgeschätzt werden soll, wird nur begrenzt zuverlässig sein. Das Ziel der Arbeit ist es daher, die Schätzung etwas zuverlässiger zu gestalten. Grundsätzlich gilt, dass ein Modell umso mehr bzw. sicherere Ergebnisse liefern kann, je mehr Daten in das Modell eingehen. Direkt mit dem Durchfluss gekoppelt sind Angaben zu historischen Hochwasserereignissen bzw. qualitative Einschätzungen kleinräumiger Ereignisse. Eine wichtige Datenquelle neben den Durchflussartigen ist der mit dem Durchfluss kausal verbundene Niederschlag und dessen zu vermutendes Maximum in einem Gebiet. Wird zusätzlich regional vorgegangen, können räumliche Aspekte und Strukturen in größeren Einzugsgebieten berücksichtigt werden. Diese stärken bzw. erweitern die lokalen Berechnungsgrundlagen und gewährleisten ein räumlich konsistentes Bild. Im Umkehrschluss kann das Durchflussregime regionalisiert werden, um Informationen an nicht bemessenen Orten bereitstellen zu können. Aus den genannten erweiterten Berechnungsgrundlagen lassen sich drei Anknüpfungspunkte schließen: (i) Es muss eine sehr flexible und dennoch plausible Darstellungsmöglichkeit des statistischen Niederschlagsregimes bis zum vermutlichen Maximum formuliert werden. (ii) Das entwickelte Niederschlagsregime muss mit dem Durchflussregime gekoppelt werden, um die Informationen nutzen zu können. (iii) Die anschließende Regionalisierung muss die verschachtelte baumartige Struktur hydrologischer Einzugsgebiete berücksichtigen. Punkt (i) wird durch eine zweigeteilte Verteilungsfunktion gelöst. Damit werden die ideale Darstellung des wahrscheinlicheren Bereiches und der plausible Verlauf bis zum Maximum miteinander verbunden. Bezüglich Punkt (ii) wird ein neues Kopplungsprinzip entwickelt. Dieses basiert auf der Annahme, dass ein je nach Gebiet gültiger maximaler Scheitelabflussbeiwert existiert, welcher asymptotisch erreicht wird. Im Ergebnis erhält die Durchflussverteilung mit der Abflussbeiwertapproximation einen oberen Grenzwert in Abhängigkeit von Niederschlagsmaximum und Scheitelabflussbeiwert. Entsprechend der Vorgaben in Punkt (iii) wird die Referenzpegelmethode entwickelt. Diese basiert darauf, dass ähnliche Einzugsgebiete äquivalente Hochwasserscheitel generieren. Damit können bekannte Hochwasserereignisse eines Referenzpegels auf unbeobachtete Teileinzugsgebiete übertragen werden. Bei der Wahl des Referenzpegels wird u.a. die Topologie der Einzugsgebiete berücksichtigt. Die gesamte Strategie kann auf große Untersuchungsgebiete angewandt werden. Am Beispiel sächsischer Flüsse wird die Vorgehensweise von der Datenhomogenisierung bis hin zum extremen Hochwasserdurchfluss an einem unbeobachteten Querschnitt erläutert. / The dimensioning of different constructions at and in streams respectively requires knowlegde on the flood situation at site. For instance flood protection concepts often base on a peak discharge of the annual recurrence probability of 1/100. A more severe flood of an annual recurrence probability of 1/10000 is used to confirm the stability of large dams following DIN 19700-12. Such a flood cannot be deduced from runoff data only, but rather shown in an idealised way. It results not least on the fact, that human can witness a very improbable flood event. But is it not possible to verify the improbability. Every modelling scheme that is confronted with the deduction of such an extreme flood event will be of limited reliability. The task\'s aim will therefore be to make the estimation more reliable. Generally the more data a model involves the more trustworthy the results will become. Directly coupled with runoff are historical flood data and qualitative details of small scale flood events respectively. Aside runoff information an important data source is precipitation data, which is coupled with runoff data in a causal way, and the possible maximum precipitation. If additionally whole regions are examined it is possible to consider regional facets and structures of larger catchments. These strengthen and expand local modelling basics and provide a regional consistent result. Vice versa the flood regime can be regionalised to gain information at unobserved cross sections. Out of the described expanded modelling basics follow three links: (i) It is necessary to find a flexible but still plausible formulation of the statistical precipitation regime until the probable maximum precipitation. (ii) The formulation of point i) has to be coupled with the flood regime to include these information. (iii) The adjacent regionalisation has to account for the nested and arboreal structure of hydrological catchments. Point (i) will be solved by a split distribution function. That allows the ideal display of the more probable domain as well as the characteristics until the probable maximum. Regarding point (ii) a new principle of coupling will be developed. It bases on the assumption that a regional maximum runoff coefficient exists and it will be gained asymptotically. As a result of the runoff coefficient approximation the runoff distribution function gets an upper limit depending on maximum precipitation and runoff coefficient. Respecting the guidelines in point (iii) the reference gauge method will be developed. It bases upon the fact, that likewise catchments generate equivalent peak discharges. For this reason it is possible to carry known peak discharges of a reference gauge onto unobserved subcatchments. Among other things the choice of a reference gauge accounts for the topology of the catchments. The whole strategy can be applied to large catchments what is exemplarily shown in Saxon streams. Beginning with a data homogenisation to the point of discharges of extreme low exceedance probabilities at unobserved cross sections the whole procedure is shown.

Page generated in 0.1082 seconds