• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 163
  • 23
  • 17
  • 16
  • 13
  • 13
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 494
  • 494
  • 216
  • 148
  • 125
  • 107
  • 96
  • 74
  • 74
  • 61
  • 53
  • 51
  • 49
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Breakthrough analysis for filtering facepiece media and respirators with activated carbon

Clinger, Jayson C. 01 May 2018 (has links)
Disposable filtering facepiece respirators (FFRs) include a wide range of products that may be certified or non-certified. Many of these respirators are being produced with activated carbon claiming nuisance level organic vapor (OV) relief. OV includes a wide range of volatile organic compounds (VOCs) which have been linked to major and minor health discomfort such as headaches, upper extremity discomfort, nausea, respiratory irritation, asthma nervous system complications, hearing loss, cancer, and death. Common industries that have been identified that may expose employees to nuisance level OV, resulting in minor symptoms, include beautician salons, dry cleaning operations, and pesticide applications. FFRs with activated carbon (FFR-AC) may provide a more convenient alternative for reusable respirators which could also protect employees from OV exposure. This study investigated the adsorption capabilities of one certified respirator (3M) and two alternatively designed respirators (RZ Hunting Mask, Surgical Mask) with activated carbon filtering media. The three FFRs were tested to determine the 50% breakthrough time for two hydrocarbons and one non-carbon-based vapor. 50% breakthrough was chosen because we felt that reducing nuisance level exposures by half would still be protective. Non-certified respirators were exposed to 15 parts per million (ppm) and 50 ppm for all three vapors. Concentrations of 15 ppm and 50 ppm were standardized to achieve similar mass per time exposures across all contaminants and because these values represented the range of nuisance level exposure documented in literature. The 3M respirator was exposed to 15 and 50 ppm of acetone and ammonia, and perchloroethylene was evaluated at 50 ppm. Perchloroethylene was not evaluated at 15 ppm because breakthrough was longer than 8 hours. 3M respirators were also evaluated at 95% relative humidity using 50 ppm of acetone, ammonia, and perchloroethylene. The total number of trials was 43 (n=43). These contaminants and concentrations were chosen based on published data on occupational exposures. The non-certified respirators, (RZ Hunting Mask and Surgical Mask) , were ineffective for all vapors and offered less than 10 minutes of protection before 50% breakthrough occurred. Respirators performed poorly, when exposed to ammonia, with breakthrough less than 5 mins at 50 ppm and 10 minutes at 15 ppm. The 3M respirator had the longest breakthrough times for all trials. Acetone breakthrough occurred at 121 minutes for 50 ppm and 233 minutes at 15 ppm. Perchloroethylene took over 400 minutes to achieve 50% breakthrough at 50 ppm. When acetone at 50 ppm and perchloroethylene at 50 ppm were evaluated with 95% R.H. breakthrough times decreased to 39 and 144 minutes respectively, a nearly 70% decrease in time for both vapors. The results of this study show that non-certified respirators advertised as nuisance level relief may not offer protection for OV. Certified respirators show much more promise, but their performance is highly dependable upon the characteristics of the vapor and environment the respirators are being used in. Additional research is needed to increase our understanding of FFR-ACs performance under more conditions.
42

Analysis of Selected Pharmaceuticals and Endocrine Disrupting Compounds and their Removal by Granular Activated Carbon in Drinking Water Treatment

Yu, Zirui January 2007 (has links)
Over the last decade, endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs) have been detected in drinking water at very low levels, mostly ng/L concentrations, suggesting that these compounds resisted removal through water treatment processes. Concerns have been raised regarding the effectiveness of common drinking water treatment technologies to remove these emerging contaminants. Adsorption processes were suggested to play an important role in the removal of PhACs and EDCs, based on the assumption that these compounds are similar to other conventional micropollutants such as pesticides in both physicochemical properties and concentration levels present in water. However, this remains to be demonstrated since the availability of adsorption data for PhACs and EDCs is extremely limited and their environmental concentrations are typically much lower than the ones for pesticides. The primary objective of this research was to evaluate in detail the removal of representative EDCs and PhACs at environmentally relevant concentrations by granular activated carbon (GAC) adsorption. In the first stage of this study, EDCs (15) were screened separately from the PhACs (86) with two different sets of assessment criteria due to the different nature and the availability of information for these two groups of compounds. As a result, 6 EDCs and 12 PhACs were selected for further evaluation. Subsequently, a multi-residue analytical method based on gas chromatography/mass spectrometry (GC/MS) was developed for the simultaneous determination of the selected PhACs and EDCs. Two key analytical steps - solid phase extraction and derivatization - were systematically optimized using full factorial design and a central composite design, respectively. The statistical experimental design in combination with the concept of the total desirability was demonstrated to be an effective tool for developing a multi-residue analytical method. The application of the developed method to Grand River water, a local raw water source, and finished drinking water from this source indicated that PhACs such as naproxen, carbamazepine, salicylic acid, ibuprofen, and gemfibrozil, and EDCs such as estrone (E1) and nonylphenol mono-ethoxy carboxylate (NP1EC) were the most common contaminants. Based on these results, the quality of the analytical data, and the physicochemical properties relevant to the adsorption on activated carbon, two PhACs (naproxen, carbamazepine) and one EDC (nonylphenol (NP)) were finally chosen for the adsorption studies. Adsorptions of the selected target compounds were evaluated on two types of activated carbon (coal-based Calgon Filtrasorb® 400 (F400) and coconut shell-based PICACTIF TE (PICA) by first investigating their isotherms at environmentally relevant concentrations (equilibrium liquid phase concentration ranging from 10 to 1000 ng/L). The single-solute isotherm data determined for both carbons showed that the relative adsorbabilities of the three target compounds were not in agreement with expectations based on their log Kow values. Overall, in this low concentration range, carbamazepine was most easily removed, and NP was least adsorbable. The adsorption of naproxen was negatively influenced by its dissociation in water. Comparison of single-solute isotherms on F400 carbon for the target compounds to those for other selected conventional micropollutants showed that naproxen and carbamazepine have generally comparable isotherms to 2-methylisoborneol (MIB) and geosmin. The isotherm tests in a post-sedimentation (PS) water from a full-scale plant demonstrated that the presence of background natural organic matter (NOM) significantly reduced the adsorption of all three target compounds, among which.NP was the least impacted compound. Based on the quantification of the direct competition using the ideal adsorbed solution theory (IAST) in combination with the equivalent background compound (EBC) approach, the minimum carbon usage rates (CURs) for removing 90% of the target compounds in PS water were calculated at two environmentally relevant concentrations (50 and 500 ng/L). This work confirmed that the percentage removal of the trace level target compound at a given carbon dosage was independent of the initial target compound concentration. Isotherm experiments were conducted for the target compound on GACs preloaded with PS water for various time intervals (up to 16 weeks) at the Mannheim Water Treatment Plant (Region of Waterloo, ON, Canada). The results indicated that the adsorption of all target compounds were subject to significant negative impacts from preloading of NOM, albeit to different extents. Among the three target compounds, reduction in adsorption capacity for naproxen was most severe, followed by carbamazepine and then NP. The three target compounds followed quite different patterns of decrease in adsorption capacity with increasing preloading time, thus revealing different competitive mechanisms at work for the different compounds. For naproxen, the change in heterogeneity of the carbons due to preloading suggests that some pre-adsorbed NOM could not be replaced by naproxen. However, both direct competitive and pore blockage mechanisms could successfully explain the adsorption performance of naproxen and carbamazepine. The removal of NP even at prolonged preloading times could be explained by absorption or partitioning in the NOM matrix on the surface of, or inside the carbons. The kinetic parameters for each target compound-virgin carbon pair were determined using the short fixed bed (SFB) approach based on the pore and surface diffusion model (PSDM). The SFB results and sensitivity analyses indicated that, under the very low influent concentration conditions, film diffusion (indexed as βL) exerts a much greater effect on breakthrough profiles than internal diffusion. The SFB tests on preloaded GACs showed that mass transport of all the target compounds decreased with increasing preloading time. Similar to the impact of preloading on adsorption capacity, naproxen was subject to the most deteriorative effect, followed by carbamazepine and then NP. In addition, potential mechanisms for the decay of the film diffusion coefficient with increased preloading time were discussed based on scanning electron microscope (SEM) images of virgin and preloaded GAC. Electrostatic interactions between the NOM/bio film formed on the preloaded carbon and dissociated naproxen may have contributed to the enhanced reduction in its film diffusion. Sensitivity analyses and subsequent calculations of the Biot numbers confirmed that film diffusion was also the predominant mechanism controlling the mass transport on preloaded carbon, in particular for naproxen. This suggests that the early breakthrough prediction of the target compounds at their environmentally relevant concentrations could be further simplified by only considering film diffusion and adsorptive capacity. Kinetic and isotherm parameters were used as input for modeling using time-variable PSDM. It was found that the varying trends for Freundlich KF and 1/n, and βL could be generally depicted by a corresponding empirical model. Pilot scale treatability tests were performed for the target compounds which subsequently validated the time-variable PSDM results thus demonstrating its effectiveness and robustness to model GAC adsorber performance for PhAC and EDC removal at environmentally relevant concentrations. The time-variable approach was further improved by adjusting for NOM surface loading differences between the preloading and the pilot columns, which successfully compensated for the prediction errors at the early phase. The validated NOM surface loading associated time variable PSDM was used to predict performances of hypothetical F400 and PICA full-scale adsorbers. Both adsorbers were expected to provide satisfactory performance in achieving 90% removals for the neutral target compounds (carbamazepine and NP). Naproxen was predicted to break through fast since both, capacity and kinetic parameters decay quickly due to carbon fouling by NOM and the physicochemical properties of this compound. Initial recommendations on the choice of adsorption process (GAC vs. PAC) for removing EDCs and PhACs can be made based on the comparison of carbon usage rates (CUR) which were calculated for a GAC adsorber using the validated improved PSDM and for PAC using the minimum applied dosages predicted by the IAST-EBC model.
43

Analysis of Selected Pharmaceuticals and Endocrine Disrupting Compounds and their Removal by Granular Activated Carbon in Drinking Water Treatment

Yu, Zirui January 2007 (has links)
Over the last decade, endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs) have been detected in drinking water at very low levels, mostly ng/L concentrations, suggesting that these compounds resisted removal through water treatment processes. Concerns have been raised regarding the effectiveness of common drinking water treatment technologies to remove these emerging contaminants. Adsorption processes were suggested to play an important role in the removal of PhACs and EDCs, based on the assumption that these compounds are similar to other conventional micropollutants such as pesticides in both physicochemical properties and concentration levels present in water. However, this remains to be demonstrated since the availability of adsorption data for PhACs and EDCs is extremely limited and their environmental concentrations are typically much lower than the ones for pesticides. The primary objective of this research was to evaluate in detail the removal of representative EDCs and PhACs at environmentally relevant concentrations by granular activated carbon (GAC) adsorption. In the first stage of this study, EDCs (15) were screened separately from the PhACs (86) with two different sets of assessment criteria due to the different nature and the availability of information for these two groups of compounds. As a result, 6 EDCs and 12 PhACs were selected for further evaluation. Subsequently, a multi-residue analytical method based on gas chromatography/mass spectrometry (GC/MS) was developed for the simultaneous determination of the selected PhACs and EDCs. Two key analytical steps - solid phase extraction and derivatization - were systematically optimized using full factorial design and a central composite design, respectively. The statistical experimental design in combination with the concept of the total desirability was demonstrated to be an effective tool for developing a multi-residue analytical method. The application of the developed method to Grand River water, a local raw water source, and finished drinking water from this source indicated that PhACs such as naproxen, carbamazepine, salicylic acid, ibuprofen, and gemfibrozil, and EDCs such as estrone (E1) and nonylphenol mono-ethoxy carboxylate (NP1EC) were the most common contaminants. Based on these results, the quality of the analytical data, and the physicochemical properties relevant to the adsorption on activated carbon, two PhACs (naproxen, carbamazepine) and one EDC (nonylphenol (NP)) were finally chosen for the adsorption studies. Adsorptions of the selected target compounds were evaluated on two types of activated carbon (coal-based Calgon Filtrasorb® 400 (F400) and coconut shell-based PICACTIF TE (PICA) by first investigating their isotherms at environmentally relevant concentrations (equilibrium liquid phase concentration ranging from 10 to 1000 ng/L). The single-solute isotherm data determined for both carbons showed that the relative adsorbabilities of the three target compounds were not in agreement with expectations based on their log Kow values. Overall, in this low concentration range, carbamazepine was most easily removed, and NP was least adsorbable. The adsorption of naproxen was negatively influenced by its dissociation in water. Comparison of single-solute isotherms on F400 carbon for the target compounds to those for other selected conventional micropollutants showed that naproxen and carbamazepine have generally comparable isotherms to 2-methylisoborneol (MIB) and geosmin. The isotherm tests in a post-sedimentation (PS) water from a full-scale plant demonstrated that the presence of background natural organic matter (NOM) significantly reduced the adsorption of all three target compounds, among which.NP was the least impacted compound. Based on the quantification of the direct competition using the ideal adsorbed solution theory (IAST) in combination with the equivalent background compound (EBC) approach, the minimum carbon usage rates (CURs) for removing 90% of the target compounds in PS water were calculated at two environmentally relevant concentrations (50 and 500 ng/L). This work confirmed that the percentage removal of the trace level target compound at a given carbon dosage was independent of the initial target compound concentration. Isotherm experiments were conducted for the target compound on GACs preloaded with PS water for various time intervals (up to 16 weeks) at the Mannheim Water Treatment Plant (Region of Waterloo, ON, Canada). The results indicated that the adsorption of all target compounds were subject to significant negative impacts from preloading of NOM, albeit to different extents. Among the three target compounds, reduction in adsorption capacity for naproxen was most severe, followed by carbamazepine and then NP. The three target compounds followed quite different patterns of decrease in adsorption capacity with increasing preloading time, thus revealing different competitive mechanisms at work for the different compounds. For naproxen, the change in heterogeneity of the carbons due to preloading suggests that some pre-adsorbed NOM could not be replaced by naproxen. However, both direct competitive and pore blockage mechanisms could successfully explain the adsorption performance of naproxen and carbamazepine. The removal of NP even at prolonged preloading times could be explained by absorption or partitioning in the NOM matrix on the surface of, or inside the carbons. The kinetic parameters for each target compound-virgin carbon pair were determined using the short fixed bed (SFB) approach based on the pore and surface diffusion model (PSDM). The SFB results and sensitivity analyses indicated that, under the very low influent concentration conditions, film diffusion (indexed as βL) exerts a much greater effect on breakthrough profiles than internal diffusion. The SFB tests on preloaded GACs showed that mass transport of all the target compounds decreased with increasing preloading time. Similar to the impact of preloading on adsorption capacity, naproxen was subject to the most deteriorative effect, followed by carbamazepine and then NP. In addition, potential mechanisms for the decay of the film diffusion coefficient with increased preloading time were discussed based on scanning electron microscope (SEM) images of virgin and preloaded GAC. Electrostatic interactions between the NOM/bio film formed on the preloaded carbon and dissociated naproxen may have contributed to the enhanced reduction in its film diffusion. Sensitivity analyses and subsequent calculations of the Biot numbers confirmed that film diffusion was also the predominant mechanism controlling the mass transport on preloaded carbon, in particular for naproxen. This suggests that the early breakthrough prediction of the target compounds at their environmentally relevant concentrations could be further simplified by only considering film diffusion and adsorptive capacity. Kinetic and isotherm parameters were used as input for modeling using time-variable PSDM. It was found that the varying trends for Freundlich KF and 1/n, and βL could be generally depicted by a corresponding empirical model. Pilot scale treatability tests were performed for the target compounds which subsequently validated the time-variable PSDM results thus demonstrating its effectiveness and robustness to model GAC adsorber performance for PhAC and EDC removal at environmentally relevant concentrations. The time-variable approach was further improved by adjusting for NOM surface loading differences between the preloading and the pilot columns, which successfully compensated for the prediction errors at the early phase. The validated NOM surface loading associated time variable PSDM was used to predict performances of hypothetical F400 and PICA full-scale adsorbers. Both adsorbers were expected to provide satisfactory performance in achieving 90% removals for the neutral target compounds (carbamazepine and NP). Naproxen was predicted to break through fast since both, capacity and kinetic parameters decay quickly due to carbon fouling by NOM and the physicochemical properties of this compound. Initial recommendations on the choice of adsorption process (GAC vs. PAC) for removing EDCs and PhACs can be made based on the comparison of carbon usage rates (CUR) which were calculated for a GAC adsorber using the validated improved PSDM and for PAC using the minimum applied dosages predicted by the IAST-EBC model.
44

Removal of DDT from Soil using Combinations of Surfactants

Rios, Luis Eglinton 17 May 2010 (has links)
Organochlorine pesticides (OCPs) were used in agriculture throughout the world for a long time because they are very effective for pest control, but OCPs such as DDT and its metabolites can threaten human health and ecological systems. Although DDT has been banned for use in Canada since 1972, it still persists in Canadian farmland at detectable levels due to its chemical stability. The soils contaminated with DDT require economical remediation strategies because of the low land value and rural location. Although soil washing has been proposed as a possible economical technique to remove DDT, it has very low water solubility and so it is necessary to consider using surfactants to improve the soil-washing process. Building on previous research, we hypothesize that combinations of surfactants can be used to improve the performance of this remediation method. The surfactants Tween 80, Brij 35, and sodium dodecylbenzene sulfonate (SDBS) were selected based on environmental and reported performance criteria. Combinations of surfactants were tested in both batch and leaching column experiments. Experiments indicated that removal efficiency and flowrate in leaching columns were optimized when a mixture of 2% Brij 35 and 0.1% SDBS was employed. The presence of Tween 80 was found to be less effective, possibly due to its higher biodegradability in the soil. Since the measurement of surfactant concentration in the wash solution is important, several methods were tested before finally selecting a simple COD analysis as a surrogate parameter. Using the COD analysis, partitioning experiments were performed to measure the adsorption of surfactant on the soil. For economic reasons, it would be desirable to reuse the surfactant in a washing process. For this purpose, we employed activated carbon to selectively remove the more hydrophobic DDT from the surfactant solutions. Preliminary results have shown that carbon adsorption can remove some DDT, but additional work is required to understand and optimize the process.
45

Electro-spun PAN-Based Activated Carbon Nanofibers as Electrode Materials for Electric Double Layer Capacitors

Wu, Kuan-chung 27 July 2012 (has links)
Uniform and aligned nanofibers have been obtained by eletrospinning. Activated carbon nanofibers (ACNFs) have been used as electrode materials for battery and electric double layer due to its porous properties. A high value of surface area can be attained (1000 - 3000 nm) by activation, due to the presence of micropores on the surface of nanofibers. A series of nanofibers have been prepared using different polymer precursors and concentrations by electrospinning in this study. Morphological study by SEM reveals a uniform and aligned fibrous structure for the PAN-based CNF (11 wt%) and a curved and twisted fibrous structure for the PAN-based CNF (8 wt%) and the acrylic-based CNF (9 wt%). Thus, the microstructure of CNF can be greatly influenced by the concentration of polymer precursor; high quality of nanofibers can be produced with higher polymer concentration and higher viscosity. The diameter of PAN-based nanofibers is gradually decreased from 400 to 200 nm during stabilization, carbonization, and activation, due mainly to the degradation and condensation. Surface of CNF becomes rough after activation due to the etching by potassium ions at high temperatures. Microstructural study by X-ray diffraction and Raman spectroscopy indicates a discernible diffraction peak at d002 = 0.356 nm and the ratio ID/IG = 1.83 of ACNFs, showing an amorphous and disordered structure, and leading to a low conductivity. Adsorption/desorption isotherms obtained from BET measurements under nitrogen atmosphere suggests a relatively small surface area of 8-10 m2/g, indicating that there might be no adsorption on the porous ACNF or the porous structure has been destroyed after carbonization. This leads to a relatively low conductance of 17 Faraday/g measured from the cyclic voltammetry.
46

Investigation on the Adsorption of Mercury Chloride by Powdered Activated Carbon¡GOperation Parameters and Adsorption Isotherm

Liu, Ming-Han 14 September 2001 (has links)
The objective of this study was to investigate the removal of mercury chloride in flue gas emitted from municipal waste incinerator (MWI) by the adsorption of powdered activated carbon derived from the pyrolysis of waste tires (PAC-T). This study focused on the removal efficiency of mercury chloride and the adsorption capacity of PAC-T. The operation parameters investigated included temperature (30¢J and 150¢J) and powdered activated carbon injection rate (0.1, 0.2 and 0.3 g/hr). Experimental tests were conducted by the following three steps¡G the adsorption column test, the adsorption isotherm simulation, and the removal efficiency test in a pilot plant. The adsorption capacity of PAC-T for various inlet mercury chloride concentrations (55~215£gg/m3) at room temperature (30¢J) were 811~2,188£gg-HgCl2/g-PAC, while the absorption capacity of PAC-T at 150¢J were 214~700£gg-HgCl2/g-PAC which were lower than those at room temperature. It suggested that the adsorption capacity of PAC-T decreased as adsorption temperature increased. Furthermore, the adsorption of mercury chloride by PAC-T was an unfavorable adsorption isotherm. The adsorption column tests were performed to assess the rate of mercury chloride uptake by PAC-T at 30 and 150¢J. Results from the adsorption isotherm simulation indicated that mercury chloride at room temperature (30¢J) can be simulated by the Redlich and Peterson isotherm. However, the adsorption of mercury chloride at 150¢J can be simulated by the Langmuir isotherm. Experimental results from the pilot tests indicated that the removal efficiency of mercury chloride increased gradually with retention time and then leveled off as retention time was higher than thirty minutes. Moreover, the removal efficiency of mercury chloride increased dramatically as PAC-T injection rate increased from 0.1 to 0.3 g/hr. The highest removal efficiency of mercury chloride which can be achieved by waste-tire derived powdered activated carbon (PAC-T) and commercial powdered activated carbon (PAC-C) were 86.5% and 98.9%, respectively. In general, PAC-T was comparative to PAC-C for the removal of mercury chloride from flue gas on the basis of both physical and chemical properties and removal efficiency of mercury chloride.
47

Study on the treatment of ammonia-containing solutions over Cu/ACF catalyst

Chen, Kuan-Hung 23 June 2003 (has links)
Abstract Ammonia is one of valuable chemicals which are commonly used in various industrial factors. It is also a typical pollutant, and has a long-term impact on human health for toxicity characteristics. This study was to investigate the performance, product selectivity and kinetics in oxidation of ammonia solution in WAO process over Cu/ACF catalyst. The operation parameters in continuous WAO process were performed as follows: initial concentration of ammonia in ranging from 200 ppm to 1000 ppm, pH at 12, velocity of influent at below 3.0 ml/min, temperature ranging from 443K to 463K and pressure at 3.0 MPa. In the experiments of catalyst selection, we decided to use 5% Cu/ACF catalyst for its high conversion and selectivity in oxidation of ammonia. A conversion of 95.42% in oxidation of ammonia was achieved under 463K and the product selectivity of N2 was raised from 53% to 85%. We found that Cu/ACF and ACF catalysts both had the good conversion and selectivity in oxidation of ammonia in WAO process. In the long-term test of catalyst stability, Cu/ACF had a bad stability after 48 hours reaction in WAO process. The tests such as XRD, SEM and EA were also determined. The kinetics of WAO over Cu/ACF catalyst in oxidation of ammonia using Power-Rate Law was presented. The apparent reaction order and activated energy were obtained.
48

Development of an ozone scrubbing-activation process for odor control of fumes generated from recycled polypropylene fusion operations

Zhong, Shi-yi 09 July 2009 (has links)
Since odor-complaint events have been increased year by year in Taiwan, odor control has become an important issue in the air pollution control field. Thus, this paper attempted to investigate if ¡§ozone scrubbing-activation carbon adsorption¡¨ is feasible for efficiently reducing the odor intensity of vented gas from recycled polypropylene (PP) fusion operations. A pilot scrubber (0.17 m L ¡Ñ0.17 m W ¡Ñ1.2m H, packed with Intalox saddles to a total volume of around 0.018 m3) was used for the feasibility test. Odorous gases vented from the fusing operation kept at 200 ¢J in a temperature-controlled oven were used as the target waste gases. Results indicated that with operation conditions of VOCs (as methane) 10-40 ppm, an ozone concentration of 4.0 ppm in the influent gas, a liquid/gas (L/G) ratio of 0.030 L/m3 in the scrubber, and an empty bed retention time of around 9.7 s in the packed section, around 60% of the VOCs in the influent gas was removed. Most alkenes in the gas were converted into sweet-smell ketones in the ozonated gas. Vented gas from the scrubber was further treated by a granulated activated carbon (GAC) adsorption column with an EBRT of less than 1 s for the gas. An overall VOC removal of around 70% was observed for the full ozonation-GAC process. Only trace amounts of original fume-like and sweet-ketone smells were detected in the treated gases. A test indicated that the overall odor (expressed as the dilution to threshold D/T value) removal was around 70% and the D/T were 733, 309, and 232, respectively, for the influent, ozonation-scrubbing effluent, and GAC effluent. It was estimated that the cost is around NT$ 9.57 for treating 1,000 m3 of the teat gas by the system. Efforts should be made by decreasing the cost by other alternative technologies.
49

Removal of organic carbon by using a membrane bioreactor

Lin, Yu-Ting 27 July 2009 (has links)
The drinking water treated by water treatment plant (WTP) usually has an excess of assimilable organic carbon (AOC) in distribution systems in south Taiwan. They will cause the growth of heterotrophic plate count (HPC) and deterioration of water quality in pipeline of distribution systems. Recently, part of traditional purification processes were changed into advanced processes in WTP. The past researches showed the combined advanced processes ultrafitration (UF) / reverse osmosis (RO) in south WTP in Taiwan has the removal problems of AOC in above UF / RO processes because the organic compounds in raw water caused a fouling layer which was formed on the membranes surface. These problems made the back-wash frequency increasing, short membrane life and raising cost. The study combines activated carbon and membrane bioreactor (MBR) to explore the removal efficiency of drinking water in laboratory. The system showed the removal efficiencies of dissolved organic carbon (DOC) and AOC were 57% and 36%, respectively in average. More, the system showed the removal efficiencies of DOC and AOC were 81% and 66%. The results of this research showed good removal efficiency was found in AOC and DOC. Good quality of biological stability, removal of organic compounds, low cost in building and maintaining were reached.
50

Sorption Studies of Synthetically Modified Carbon Nanomaterials

2014 January 1900 (has links)
The level of risk originating from toxic (heavy) metals in the environment and ecological systems is continuously escalating due to our imprudent development of mineral resources such as coal and gold. For example, selenium as one of the major components in coal has contaminated surface and groundwater sources, and represents a threat to human and ecosystem health accumulation in organisms known as selenosis. Arsenic, like selenium, has also a negative effect to human beings, so called "arsenicosis" if it is accumulated in an organism through dietary pathways. Therefore, these elements have threatened waterways by contaminating surface and groundwater sources, and the WHO has established the drinking water quality guideline as 10 ppb for selenium and arsenic. The development of surface modified carbon nano-materials was motivated by considering how toxic metal species such as selenium and arsenic can be effectively removed from aquatic environments such as mineral tailings ponds found at mine sites. The materials design strategy employed herein hypothesizes of the incorporation of Lewis acid-base sites by the preparation of surface modified carbon nano-material with magnetite (magnetite composite). The resulting composite materials were anticipated to have variable π-π interactions and H-bonding between (non-)metals and ligands. These novel composite sorbents were evaluated for sorptive removal of selenium and arsenic species in aqueous solution at variable conditions. Selenium and arsenic have variable adsorption affinity onto the surface of magnetite (iron oxide) and its composites and goethite (iron oxyhydrate) in aqueous solution. The sorptive properties of these materials were correlated to the synthetic strategy as evidenced by the characterization of these minerals and their adsorbent properties. The adsorptive properties were evaluated by comparing the adsorption of inorganic selenium species with various adsorbents (magnetite, magnetite composites, activated carbon, and goethite) through adsorption kinetics and at equilibrium conditions. A novel “in situ” kinetic set-up for this experiment was developed using a non-magnetic stirrer device with a semi-permeable filtration barrier. The analytical measurement of selenium uptake was achieved using hydride generation atomic absorption spectroscopy. An arylarsenical (roxarsone) in aqueous solution was removed by using the same adsorbents used for selenium sorption and using a novel one-pot kinetic experiment with a non-magnetic stirrer and a dialysis-based tubing filter. Determination of roxarsone uptake was evaluated with UV-vis spectroscopy. This study showed the prepared magnetite composites might be excellent adsorbents for removing organic (aryl) and inorganic forms of Se and As chemical species in aqueous solution. The composite nature of the composite adsorbents suggests their potential as dual function sorbents due to their affinity toward organic (aryl) and inorganic anion species. In the occurrence of iron leaching, it was attenuated at low temperatures for the composite materials; whereas, greater leaching occurred above room temperature due to the increased thermal breakdown of magnetite particles in the pores or on the surface of activated carbon. In addition to the aforementioned tunable surface reactivity and surface area, magnetite composites have magnetic susceptibility properties that enable physical separation of adsorbents in water treatment processes by employing an electro-magnet to induce phase separation.

Page generated in 0.0532 seconds