• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 49
  • 49
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Vyhledávání enzymů v metagenomických datech / Detection of Enzymes in Metagenomic Data

Smatana, Stanislav January 2017 (has links)
This thesis presents specification and implementation of a system for detection of enzymes in metagenomic data. The detection is based on a provided enzyme sequence and its goal is to search the metagenomic sample for its novel variants. In order to guarantee that found enzymes truly have the desired catalytic function, the system employs a number of catalytic function verification methods. Their specification, implementation and evaluation is one of the main contributions of this thesis. Experiments have shown, that proposed methods reach sensitivity as high as 89%, specificity of 95%, values of AUC metric above 0.9 and average throughput of 1,203 verifications per second on regular personal computer. Evaluation of the system also led to discovery of a partial sequence of novel haloalkane dehalogenase enzyme in a metagenomic sample from soil. The implementation is able to work on a personal computer as well as on a grid computing environment.
42

The Binding Mechanism of Carbapenems in the Class A beta-lactamase IMI-1 : A Molecular Dynamics Study of Ligand Stability

Lindahl, Isabell January 2022 (has links)
Antibiotic resistance is a global and accelerating matter. Over time, the bacteria have evolved several defense mechanisms against the antibiotics. One of the defense mechanisms is that the bacteria can produce enzymes with the ability to hydrolyze the characteristic b-lactam ring of the antibiotics. These enzymes are called b-lactamases. There are three different generations of antibiotics clinically available, and b-lactamases have co-evolved with the antibiotics over the generations. The third generation of antibiotics are called the carbapenems and b-lactamases which hydrolyze carbapenems are called carbapenemases. Carbapenemases are promiscuous, which means that they hydrolyze a variety of antibiotics. The b-lactamase IMI-1 is an imipenem-hydrolyzing enzyme and imipenem is a carbapenem, hence IMI-1 is a carbapenemase. In this project, IMI-1 was investigated in complex with the carbapenems imipenem, meropenem and biapenem using computational methods. More specifically, a homology model of IMI-1 was generated and the carbapenems were docked into the model. The system was then used for MD simulations where the important molecular interactions were identified, and the binding free energies were calculated using the LIE method. The results indicate that IMI-1 has flexible loops that enables an open and a closed conformation of IMI- 1. All three carbapenems were docked and simulated in both conformations of IMI-1. The results indicate that open and closed conformations confirms the promiscuity of carbapenemases since the flexibility enables various initial binding mechanisms. in other words, the hydrolysis may occur so quickly that the binding does not have much bearing of the activity of the enzyme. Furthermore, the calculated binding free energies indicate that IMI-1 is optimized for the catalytic process rather than the binding affinity. In conclusion, IMI-1 and similar systems requires further research using computational methods to counteract antibiotic resistance based on knowledge.
43

Études structurales par résonance magnétique nucléaire du ribozyme VS de Neurospora

Bonneau, Éric 01 1900 (has links)
Le ribozyme VS de Neurospora catalyse des réactions de clivage et de ligation d’un lien phosphodiester spécifique essentielles à son cycle de réplication. Il est formé de six régions hélicales (I à VI), qui se divisent en deux domaines, soit le substrat (SLI) et le domaine catalytique (tiges II à VI). Ce dernier comprend deux jonctions à trois voies qui permettent de reconnaître le substrat en tige-boucle de façon spécifique. Ce mode de reconnaissance unique pourrait être exploité pour cibler des ARN repliés pour diverses applications. Bien que le ribozyme VS ait été caractérisé biochimiquement de façon exhaustive, aucune structure à haute résolution du ribozyme complet n’a encore été publiée, ce qui limite la compréhension des mécanismes inhérents à son fonctionnement. Précédemment, une approche de divide-and-conquer a été initiée afin d’étudier la structure des sous-domaines importants du ribozyme VS par spectroscopie de résonance magnétique nucléaire (RMN) mais doit être complétée. Dans le cadre de cette thèse, les structures de la boucle A730 et des jonctions III-IV-V et II-III-VI ont été déterminées par spectroscopie RMN hétéronucléaire. De plus, une approche de spectroscopie RMN a été développée pour la localisation des ions divalents, tandis que diverses approches de marquage isotopique ont été implémentées pour l’étude d’ARN de plus grandes tailles. Les structures RMN de la boucle A730 et des deux jonctions à trois voies révèlent que ces sous-domaines sont bien définis, qu’ils sont formés de plusieurs éléments structuraux récurrents (U-turn, S-turn, triplets de bases et empilement coaxial) et qu’ils contiennent plusieurs sites de liaison de métaux. En outre, un modèle du site actif du ribozyme VS a été construit sur la base des similarités identifiées entre les sites actifs des ribozymes VS et hairpin. Dans l’ensemble, ces études contribuent de façon significative à la compréhension de l’architecture globale du ribozyme VS. De plus, elles permettront de construire un modèle à haute résolution du ribozyme VS tout en favorisant de futures études d’ingénierie. / The Neurospora VS ribozyme catalyzes the cleavage and the ligation of a specific phosphodiester bond, which is essential for its replication cycle. It is formed of six helical regions (I to VI) that are divided in two domains: the substrate (SLI) and the catalytic domain (stems II-VI). The latter contains two three-way junctions that allow recognition of the stem-loop substrate in a specific manner. This unique mode of substrate recognition could be exploited to target folded RNAs for diverse applications. Even though the VS ribozyme has been extensively characterized biochemically, no high-resolution structure of the complete ribozyme has been published yet and this limits our mechanistic understanding. A divide-and-conquer approach was previously initiated to study the structure of the important subdomains of the VS ribozyme by nuclear magnetic resonance (NMR), but this approach needs to be completed. In this thesis, the structures of the A730 loop, the III-IV-V junction and the II-III-VI junction were determined by heteronuclear NMR spectroscopy. Moreover, a unique NMR approach was developed for localizing divalent metal ions, whereas several isotope-labeling strategies were implemented to facilitate the study or large RNA molecules. The NMR structures of the A730 loop and the two three-way junctions reveal that these subdomains are well defined, that they are formed by several recurrent structural elements (U-turn and S-turn motifs, base triples and coaxial stacking) and that they contain several metal-binding sites. Interestingly, structural similarities were identified between the VS and hairpin ribozymes, which allowed the modeling of the VS ribozyme active site. In summary, these studies significantly contribute to a better understanding of the global architecture of the VS ribozyme. In addition, they will allow the construction of a high-resolution model of the complete VS ribozyme and facilitate future engineering studies.
44

Die pleiotrope Maturation der sauerstofftoleranten [NiFe]-Hydrogenasen aus Ralstonia eutropha

Bürstel, Ingmar 06 May 2013 (has links)
Hydrogenasen sind komplexe Enzyme, die die reversible Oxidation von molekularem Wasserstoff zu Protonen und Elektronen katalysieren. Diese Enzyme erlauben ihrem Wirtsorganismus das Wachstum unter chemolithoautotrophen Bedingungen. Der Modellorganismus Ralstonia eutropha besitzt drei gut charakterisierte Hydrogenasen der [NiFe]-Klasse, die sich durch ihre Sauerstofftoleranz auszeichnen. Ihr aktives Zentrum besteht aus einer komplexen prosthetischen Gruppe, welche aus einem Nickel- und einem Eisenatom besteht. Letzteres koordiniert drei diatomare Liganden, zwei Cyanide und ein CO. Die Synthese der gesamten Ni(SR)2(µ-SR)2Fe(CN)2(CO)-Gruppe ist ein komplexer Prozess. Die sogenannte Maturation benötigt wenigstens sechs akzessorische Proteine, die sogenannten Hyp-Proteine. Das umfassende Verständnis dieser Maturationsprozesse ermöglicht eine Vielzahl von biotechnologischen Anwendungen. Die vorliegende Arbeit untersucht die Maturation unter verschiedenen Gesichtspunkten. Zentrale, offene Fragen sind die Herkunft des Carbonylliganden sowie die Prozesse, die zur Ligandierung des katalytischen Eisens führen. Dazu wurden molekularbiologische, biochemische und spektroskopische Methoden in Verbindung mit Isotopenmarkierung eingesetzt. Unter anderem konnte dabei gezeigt werden, dass das katalytische Eisen alle seine Liganden bereits im HypCD-Komplex, dem zentralen Element der Maturation, erhält. Ferner konnte in dieser Arbeit, erstmalig für [NiFe]-Hydrogenasen, eine konkrete Biosynthese des seltenen und toxischen diatomaren CO-Liganden beschrieben werden. Ausgehend vom Alpha-Kohlenstoff von Glycin wird der Tetrahydrofolat (THF)-abhängige C1-Metabolismus mit C1-Einheiten versorgt. Durch die enzymatische Aktivität von HypX wird die Formylgruppe von N10-Formyl-THF zu CO umgesetzt. / Hydrogenases are complex enzymes that catalyze the reversible oxidation of molecular hydrogen into protons and electrons. These enzymes allow their host organism to grow under chemolithoautotrophic conditions. The model organism Ralstonia eutropha has three well-characterized [NiFe]-hydrogenases, which exhibit an extraordinary high oxygen tolerance. Its active center is a complex prosthetic group which consists of a nickel and iron atom. The latter coordinates three diatomic ligands, two cyanides and one CO. The biosynthesis of the whole Ni(SR)2(μ-SR)2Fe(CN)2(CO)-group is a complex process. This so-called maturation process needs the activity of at least six accessory proteins, the Hyp-proteins. Understanding the maturation allows a variety of biotechnological applications. The present study examines the maturation of [NiFe]-hydrogenases under different aspects. The major questions concern the origin of the carbonyl ligand as well as the processes that lead to ligandation of the designated catalytic iron. To adress these tasks, molecular biological, biochemical and spectroscopic methods in combination with isotopic labeling were employed. Inter alia, it could be shown that the catalytic iron in the HypCD-complex, the central element of the maturation process, contains all three diatomic ligands. Furthermore, this study describes, for the first time in [NiFe]-hydrogenases, a specific biosynthetic route of the rare and toxic diatomic CO-ligand. Starting from the alpha-carbon of glycine the tetrahydrofolate (THF)-dependent one-carbon metabolism is replenished with one-carbon units. Subsequently the formyl group from N10-formyl-THF is hydrolyzed by the enzymatic activity from HypX and further converted to carbon monoxide as determined by isotopic labeling and infrared spectroscopy.
45

Die Analyse der Sauerstofftoleranz und biotechnologische Anwendung der NAD+-reduzierenden Hydrogenase aus Ralstonia eutropha H16

Lauterbach, Lars 30 May 2014 (has links)
Die NAD+-reduzierende Hydrogenase aus Ralstonia eutropha (SH) katalysiert die reversible H2-Oxidation in Verbindung mit der Reduktion von NAD+ in Gegenwart von Sauerstoff. Die bemerkenswerte O2-Toleranz des Enzyms wurde zuvor auf eine für [NiFe]-Hydrogenasen ungewöhnliche Struktur des Wasserstoff-spaltenden Zentrums zurückgeführt. Diese Hypothese wurde in dieser Arbeit mittels in situ-Spektroskopie an SH-haltigen Zellen widerlegt. Um die folgende Untersuchung der aus sechs Untereinheiten und mindestens acht Kofaktoren bestehenden SH zu erleichtern, wurde das Enzym mittels genetischer Methoden in seine beiden Module aufgeteilt. Das die H2-Oxidation katalysierende Hydrogenase-Modul beinhaltete ein FMN-Molekül, welches für die reduktive Reaktivierung des oxidativ modifizierten Zentrums benötigt wird. Das Diaphorase-Modul besaß ebenfalls ein FMN, und die Reduktion von NAD+ wurde von der Anwesenheit von O2 nicht beeinträchtigt. Neben Wasserstoff reagierte das [NiFe]-Zentrum der SH auch mit Sauerstoff. Dabei wurde sowohl Wasserstoffperoxid- als auch Wasser im Hydrogenase-Modul freigesetzt. Die Sauerstofftoleranz der SH basiert auf einer kontinuierlichen Reaktivierung des durch Sauerstoff oxidierten [NiFe]-Zentrums. Aufgrund der außergewöhnlichen Sauerstofftoleranz stellt die SH ein vielversprechendes System für die wasserstoffgetriebene Regeneration von NADH in gekoppelten enzymatischen Reaktionen dar. In dieser Arbeit wurde ein SH-Derivat durch rationale Mutagenese konstruiert, das in der Lage war, ebenso den Kofaktor NADP+ wasserstoffabhängig zu reduzieren. Durch Ganzzellansätze kann die zeitaufwändige und kostenintensive Proteinreinigung vermieden werden. Um die wasserstoffabhängige in-vivo-Kofaktorregeneration zu ermöglichen, wurde die SH in Pseudomonas putida heterolog produziert. Die in dieser Arbeit erzielten Ergebnisse sind sowohl für das molekulare Verständnis der H2-abhängigen Katalyse als auch für die biotechnologische Anwendung der O2-toleranten SH relevant. / The NAD+ reducing hydrogenase from Ralstonia eutropha (SH) catalyzes the reversible oxidation of hydrogen in connection with the reduction of NAD+ in the presence of oxygen. The remarkable oxygen tolerance was previously related to an unusual [NiFe] active site with four instead of two cyanide ligands. This hypothesis was rejected in this study by using in situ spectroscopy on SH containing cells. To simplify the investigation of the six-subunit and at least eight cofactors containing SH, the enzyme was separated into its two modules by genetic methods. The hydrogen oxidizing hydrogenase module contained one FMN molecule, which was required for the reductive reactivation of the oxidatively modified active site. The diaphorase module carried a second FMN. The reduction of NAD+ was not affected by the presence of oxygen. In addition to hydrogen, the [NiFe] center of the SH reacted with oxygen. Both hydrogen peroxide and water were released by the hydrogenase module. The oxygen tolerance of the SH is based on a continuous reactivation of the oxidized [NiFe] center. Due to the oxygen tolerance, the SH is a promising system for hydrogen based NADH regeneration in coupled enzymatic reactions. In this study a SH derivative was constructed by means of rational mutagenesis. The SH derivative was able to reduce the cofactor NADP+ by hydrogen oxidation. The time consuming and costly protein purification can be avoided by using whole cell approaches. In order to allow the hydrogen dependent in vivo cofactor regeneration, SH was heterologously produced in Pseudomonas putida. The results obtained in this study are relevant for the molecular understanding of hydrogen dependent catalysis and for the biotechnological application of the oxygen tolerant SH.
46

Synthesis and Characterization of Copper-Exchanged Zeolite Catalysts and Kinetic Studies on NOx Selective Catalytic Reduction with Ammonia

Arthur J. Shih (5930264) 16 January 2019 (has links)
<p>Although Cu-SSZ-13 zeolites are used commercially in diesel engine exhaust after-treatment for abatement of toxic NO<sub>x</sub> pollutants via selective catalytic reduction (SCR) with NH<sub>3</sub>, molecular details of its active centers and mechanistic details of the redox reactions they catalyze, specifically of the Cu(I) to Cu(II) oxidation half-reaction, are not well understood. A detailed understanding of the SCR reaction mechanism and nature of the Cu active site would provide insight into their catalytic performance and guidance on synthesizing materials with improved low temperature (< 473 K) reactivity and stability against deactivation (e.g. hydrothermal, sulfur oxides). We use computational, titration, spectroscopic, and kinetic techniques to elucidate (1) the presence of two types of Cu<sup>2+</sup> ions in Cu-SSZ-13 materials, (2) molecular details on how these Cu cations, facilitated by NH<sub>3</sub> solvation, undergo a reduction-oxidation catalytic cycle, and (3) that sulfur oxides poison the two different types of Cu<sup>2+</sup> ions to different extents at via different mechanisms. </p><p><br></p> <p> </p> <p>Copper was exchanged onto H-SSZ-13 samples with different Si:Al ratios (4.5, 15, and 25) via liquid-phase ion exchange using Cu(NO<sub>3</sub>)<sub>2</sub> as the precursor. The speciation of copper started from the most stable Cu<sup>2+</sup> coordinated to two anionic sites on the zeolite framework to [CuOH]<sup>+</sup> coordinated to only one anionic site on the zeolite framework with increasing Cu:Al ratios. The number of Cu<sup>2+</sup> and [CuOH]<sup>+</sup> sites was quantified by selective NH<sub>3</sub> titration of the number of residual Brønsted acid sites after Cu exchange, and by quantification of Brønsted acidic Si(OH)Al and CuOH stretching vibrations from IR spectra. Cu-SSZ-13 with similar Cu densities and anionic framework site densities exhibit similar standard SCR rates, apparent activation energies, and orders regardless of the fraction of Z<sub>2</sub>Cu and ZCuOH sites, indicating that both sites are equally active within measurable error for SCR. </p><p><br></p> <p> </p> <p>The standard SCR reaction uses O<sub>2</sub> as the oxidant (4NH<sub>3</sub> + 4NO + O<sub>2</sub> -> 6H<sub>2</sub>O + 4N<sub>2</sub>) and involves a Cu(I)/Cu(II) redox cycle, with Cu(II) reduction mediated by NO and NH<sub>3</sub>, and Cu(I) oxidation mediated by NO and O<sub>2</sub>. In contrast, the fast SCR reaction (4NH<sub>3</sub> + 2NO + 2NO<sub>2</sub> -> 6H<sub>2</sub>O + 4N<sub>2</sub>) uses NO<sub>2</sub> as the oxidant. Low temperature (437 K) standard SCR reaction kinetics over Cu-SSZ-13 zeolites depend on the spatial density and distribution of Cu ions, varied by changing the Cu:Al and Si:Al ratio. Facilitated by NH<sub>3</sub> solvation, mobile Cu(I) complexes can dimerize with other Cu(I) complexes within diffusion distances to activate O<sub>2</sub>, as demonstrated through X-ray absorption spectroscopy and density functional theory calculations. Monte Carlo simulations are used to define average Cu-Cu distances. In contrast with O<sub>2</sub>-assisted oxidation reactions, NO<sub>2</sub> oxidizes single Cu(I) complexes with similar kinetics among samples of varying Cu spatial density. These findings demonstrate that low temperature standard SCR is dependent on Cu spatial density and requires NH<sub>3</sub> solvation to mobilize Cu(I) sites to activate O<sub>2</sub>, while in contrast fast SCR uses NO<sub>2</sub> to oxidize single Cu(I) sites. </p><p><br></p> <p> </p> <p>We also studied the effect of sulfur oxides, a common poison in diesel exhaust, on Cu-SSZ-13 zeolites. Model Cu-SSZ-13 samples exposed to dry SO<sub>2</sub> and O<sub>2</sub> streams at 473 and 673 K. These Cu-SSZ-13 zeolites were synthesized and characterized to contain distinct Cu active site types, predominantly either divalent Cu<sup>2+</sup> ions exchanged at proximal framework Al sites (Z<sub>2</sub>Cu), or monovalent CuOH+ complexes exchanged at isolated framework Al sites (ZCuOH). On the model Z<sub>2</sub>Cu sample, SCR turnover rates (473 K, per Cu) catalyst decreased linearly with increasing S content to undetectable values at equimolar S:Cu molar ratios, while apparent activation energies remained constant at ~65 kJ mol<sup>-1</sup>, consistent with poisoning of each Z<sub>2</sub>Cu site with one SO<sub>2</sub>-derived intermediate. On the model ZCuOH sample, SCR turnover rates also decreased linearly with increasing S content, yet apparent activation energies decreased monotonically from ~50 to ~10 kJ mol<sup>-1</sup>, suggesting that multiple phenomena are responsible for the observed poisoning behavior and consistent with findings that SO<sub>2</sub> exposure led to additional storage of SO<sub>2</sub>-derived intermediates on non-Cu surface sites. Changes to Cu<sup>2+</sup> charge transfer features in UV-Visible spectra were more pronounced for SO<sub>2</sub>-poisoned ZCuOH than Z<sub>2</sub>Cu sites, while X-ray diffraction and micropore volume measurements show evidence of partial occlusion of microporous voids by SO<sub>2</sub>-derived deposits, suggesting that deactivation may not only reflect Cu site poisoning. Density functional theory calculations are used to identify the structures and binding energies of different SO<sub>2</sub>-derived intermediates at Z<sub>2</sub>Cu and ZCuOH sites. It is found that bisulfates are particularly low in energy, and residual Brønsted protons are liberated as these bisulfates are formed. These findings indicate that Z<sub>2</sub>Cu sites are more resistant to SO<sub>2</sub> poisoning than ZCuOH sites, and are easier to regenerate once poisoned. </p>
47

Catalytic Consequences of Active Site Speciation, Density, Mobility and Stability on Selective Catalytic Reduction of NO<sub>x</sub> with Ammonia over Cu-Exchanged Zeolites

Ishant Khurana (7307489) 16 October 2019 (has links)
<p>Selective catalytic reduction (SCR) of NO<sub>x </sub>using NH<sub>3 </sub>as a reductant (4NH<sub>3</sub>+ 4NO + O<sub>2</sub> 6H<sub>2</sub>O + 4N<sub>2</sub>) over Cu-SSZ-13 zeolites is a commercial technology used to meet emissions targets in lean-burn and diesel engine exhaust. Optimization of catalyst design parameters to improve catalyst reactivity and stability against deactivation (hydrothermal and sulfur poisoning) necessitates detailed molecular level understanding of structurally different active Cu sites and the reaction mechanism. With the help of synthetic, titrimetric, spectroscopic, kinetic and computational techniques, we established new molecular level details regarding 1) active Cu site speciation in monomeric and dimeric complexes in Cu-SSZ-13, 2) elementary steps in the catalytic reaction mechanism, 3) and deactivation mechanisms upon hydrothermal treatment and sulfur poisoning.</p><p>We have demonstrated that Cu in Cu-SSZ-13 speciates as two distinct isolated sites, nominally divalent Cu<sup>II </sup>and monovalent [Cu<sup>II</sup>(OH)]<sup>+ </sup>complexes exchanged at paired Al and isolated Al sites, respectively. This Cu site model accurately described a wide range of zeolite chemical composition, as evidenced by spectroscopic (Infrared and X-ray absorption) and titrimetric characterization of Cu sites under <i>ex situ </i>conditions and <i>in situ </i>and <i>operando </i>SCR reaction conditions. Monovalent [Cu<sup>II</sup>(OH)]<sup>+ </sup>complexes have been further found to condense to form multinuclear Cu-oxo complexes upon high temperature oxidative treatment, which have been characterized using UV-visible spectroscopy, CO-temperature programmed reduction and dry NO oxidation as a probe reaction. Structurally different isolated Cu sites have different susceptibilities to H<sub>2 </sub>and He reductions, but are similarly susceptible to NO+NH<sub>3 </sub>reduction and have been found to catalyze NO<sub>x </sub>SCR reaction at similar turnover rates (per Cu<sup>II</sup>; 473 K) via a Cu<sup>II</sup>/Cu<sup>I </sup>redox cycle, as their structurally different identities are masked by NH<sub>3 </sub>solvation during reaction. </p><p><br></p><p>Molecular level insights on the low temperature Cu<sup>II</sup>/Cu<sup>I </sup>redox mechanism have been obtained using experiments performed <i>in situ</i>and <i>in operando </i>coupled with<i></i>theory. Evidence has been provided to show that the Cu<sup>II</sup> to Cu<sup>I </sup>reduction half-cycle involves single-site Cu reduction of isolated Cu<sup>II </sup>sites with NO+NH<sub>3</sub>, which is independent of Cu spatial density. In contrast, the Cu<sup>I</sup> to Cu<sup>II </sup>oxidation half-cycle involves dual-site Cu oxidation with O<sub>2 </sub>to form dimeric Cu-oxo complexes, which is dependent on Cu spatial density. Such dual-site oxidation during the SCR Cu<sup>II</sup>/Cu<sup>I </sup>redox cycle requires two Cu<sup>I</sup>(NH<sub>3</sub>)<sub>2</sub>sites, which is enabled by NH<sub>3</sub>solvation that confers mobility to isolated Cu<sup>I </sup>sites and allows reactions between two Cu<sup>I</sup>(NH<sub>3</sub>)<sub>2 </sub>species and O<sub>2</sub>. As a result, standard SCR rates depend on Cu proximity in Cu-SSZ-13 zeolites when Cu<sup>I </sup>oxidation steps are kinetically relevant. Additional unresolved pieces of mechanism have been investigated, such as the reactivity of Cu dimers, the types of reaction intermediates involved, and the debated role of Brønsted acid sites in the SCR cycle, to postulate a detailed reaction mechanism. A strategy has been discussed to operate either in oxidation or reduction-limited kinetic regimes, to extract oxidation and reduction rate constants, and better interpret the kinetic differences among Cu-SSZ-13 catalysts.</p><p><br></p><p>The stability of active Cu sites upon sulfur oxide poisoning has been assessed by exposing model Cu-zeolite samples to dry SO<sub>2 </sub>and O<sub>2 </sub>streams at 473 and 673 K, and then analyzing the surface intermediates formed via spectroscopic and kinetic assessments. Model Cu-SSZ-13 zeolites were synthesized to contain distinct Cu active site types, predominantly either divalent Cu<sup>II </sup>ions exchanged at proximal framework Al (Z<sub>2</sub>Cu), or monovalent [Cu<sup>II</sup>OH]<sup>+ </sup>complexes exchanged at isolated framework Al (ZCuOH). SCR turnover rates (473 K, per Cu) decreased linearly with increasing S content to undetectable values at equimolar S:Cu ratios, consistent with poisoning of each Cu site with one SO<sub>2</sub>-derived intermediate. Cu and S K-edge X-ray absorption spectroscopy and density functional theory calculations were used to identify the structures and binding energies of different SO<sub>2</sub>-derived intermediates at Z<sub>2</sub>Cu and ZCuOH sites, revealing that bisulfates are particularly low in energy, and residual Brønsted protons are liberated at Z<sub>2</sub>Cu sites as bisulfates are formed. Molecular dynamics simulations also show that Cu sites bound to one HSO<sub>4</sub><sup>- </sup>are immobile, but become liberated from the framework and more mobile when bound to two HSO<sub>4</sub><sup>-</sup>. These findings indicate that Z<sub>2</sub>Cu sites are more resistant to SO<sub>2</sub>poisoning than ZCuOH sites, and are easier to regenerate once poisoned.</p><p><br></p><p>The stability of active Cu sites on various small-pore Cu-zeolites during hydrothermal deactivation (high temperature steaming conditions) has also been assessed by probing the structural and kinetic changes to active Cu sites. Three small-pore, eight-membered ring (8-MR) zeolites of different cage-based topology (CHA, AEI, RTH) have been investigated. With the help of UV-visible spectroscopy to probe the Cu structure, in conjunction with measuring differential reaction kinetics before and after subsequent treatments, it has been suggested that the RTH framework imposes internal transport restrictions, effectively functioning as a 1-D framework during SCR catalysis. Hydrothermal aging of Cu-RTH results in complete deactivation and undetectable SCR rates, despite no changes in long-range structure or micropore volume after hydrothermal aging treatments and subsequent SCR exposure, highlighting beneficial properties conferred by double six-membered ring (D6R) composite building units. Exposure aging conditions and SCR reactants resulted in deleterious structural changes to Cu sites, likely reflecting the formation of inactive copper-aluminate domains. Therefore, the viability of Cu-zeolites for practical low temperature NO<sub>x </sub>SCR catalysis cannot be inferred solely from assessments of framework structural integrity after aging treatments, but also require Cu active site and kinetic characterization after aged zeolites are exposed to low temperature SCR conditions.</p>
48

Structural Investigation of Processing α-Glucosidase I from Saccharomyces cerevisiae

Barker, Megan 20 August 2012 (has links)
N-glycosylation is the most common eukaryotic post-translational modification, impacting on protein stability, folding, and protein-protein interactions. More broadly, N-glycans play biological roles in reaction kinetics modulation, intracellular protein trafficking, and cell-cell communications. The machinery responsible for the initial stages of N-glycan assembly and processing is found on the membrane of the endoplasmic reticulum. Following N-glycan transfer to a nascent glycoprotein, the enzyme Processing α-Glucosidase I (GluI) catalyzes the selective removal of the terminal glucose residue. GluI is a highly substrate-specific enzyme, requiring a minimum glucotriose for catalysis; this glycan is uniquely found in biology in this pathway. The structural basis of the high substrate selectivity and the details of the mechanism of hydrolysis of this reaction have not been characterized. Understanding the structural foundation of this unique relationship forms the major aim of this work. To approach this goal, the S. cerevisiae homolog soluble protein, Cwht1p, was investigated. Cwht1p was expressed and purified in the methyltrophic yeast P. pastoris, improving protein yield to be sufficient for crystallization screens. From Cwht1p crystals, the structure was solved using mercury SAD phasing at a resolution of 2 Å, and two catalytic residues were proposed based upon structural similarity with characterized enzymes. Subsequently, computational methods using a glucotriose ligand were applied to predict the mode of substrate binding. From these results, a proposed model of substrate binding has been formulated, which may be conserved in eukaryotic GluI homologs.
49

Structural Investigation of Processing α-Glucosidase I from Saccharomyces cerevisiae

Barker, Megan 20 August 2012 (has links)
N-glycosylation is the most common eukaryotic post-translational modification, impacting on protein stability, folding, and protein-protein interactions. More broadly, N-glycans play biological roles in reaction kinetics modulation, intracellular protein trafficking, and cell-cell communications. The machinery responsible for the initial stages of N-glycan assembly and processing is found on the membrane of the endoplasmic reticulum. Following N-glycan transfer to a nascent glycoprotein, the enzyme Processing α-Glucosidase I (GluI) catalyzes the selective removal of the terminal glucose residue. GluI is a highly substrate-specific enzyme, requiring a minimum glucotriose for catalysis; this glycan is uniquely found in biology in this pathway. The structural basis of the high substrate selectivity and the details of the mechanism of hydrolysis of this reaction have not been characterized. Understanding the structural foundation of this unique relationship forms the major aim of this work. To approach this goal, the S. cerevisiae homolog soluble protein, Cwht1p, was investigated. Cwht1p was expressed and purified in the methyltrophic yeast P. pastoris, improving protein yield to be sufficient for crystallization screens. From Cwht1p crystals, the structure was solved using mercury SAD phasing at a resolution of 2 Å, and two catalytic residues were proposed based upon structural similarity with characterized enzymes. Subsequently, computational methods using a glucotriose ligand were applied to predict the mode of substrate binding. From these results, a proposed model of substrate binding has been formulated, which may be conserved in eukaryotic GluI homologs.

Page generated in 0.07 seconds