• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 71
  • 55
  • 23
  • 12
  • 7
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 588
  • 165
  • 122
  • 101
  • 75
  • 72
  • 71
  • 62
  • 57
  • 49
  • 45
  • 44
  • 42
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Programmable materials for sensors, actuators and manipulators for soft robotics applications

Chellattoan, Ragesh 04 1900 (has links)
This thesis describes the concept of programmable materials with tunable physical properties applicable to soft robots. We present these materials for three major applications in soft robotics: sensing, actuation, and robotic manipulation. The strain sensors recognize the internal stimuli in a soft robot, whereas the conductors collect the sensors’ signals to the control part. In the first part, we want to develop both stretchable strain sensors and conductors from a single material by programming a nanowire network’s electrical property, which we achieve through Electrical Welding (e-welding). We demonstrate the transformation of a Silver Nanowire (AgNW)-polymer sponge from a strain sensor to a stretchable conductor through e-welding. Using this method, we produced a soft hybrid e-skin having both a sensor and conductor from a single material. In the second part, we propose new active actuation solutions by obtaining quick, tunable pressure inside a soft material that we achieve through a liquid-gas phase transition of a stored liquid using an efficient electrode. We discuss the significant design variables to improve the performance and propose a new design for the electrodes, for enhancing actuation speed. We propose using low voltage equipment to trigger the phase transition to produce compact actuation technology for portable applications. Using this method, we produced a portable soft gripper. In the third and last part, we want to develop a simple robotic manipulation technology using a single-chambered soft body instead of a multi-chambered system. We propose using on-demand stiffness change in soft material to control the shape change of a single-chambered soft body. For this, we introduce a new concept of a stiffness tunable hybrid fiber: a fiber with stiff and soft parts connected in a series. We demonstrate a substantial change in membrane stiffness in the fiber through locking/unlocking of the soft part of the fiber. We integrated these fibers into a pneumatically operated single-chambered soft body to control its stiffness for on-demand shape change. If applied together, these three concepts could result in a fully printable, cheap, light, and easily controllable new generation soft robots with augmented functionalities.
332

Actuators as a Design Material

Asveld, Jip January 2019 (has links)
This thesis is an explorative, design-based research study towards the expressive potential of using actuators as design materials. Over three distinct phases of experimentation –all with their own particular aim– various sketches are developed that showcase different expressive qualities. These sketches consist of a variety of kitchen devices that are expanded with actuators. These actuators do not necessarily add to the functionality of the device, but rather to its expressiveness. The development of and reasoning for the sketches is clarified in an extensive way to clearly present all the insights that are gained throughout the design process. In the end, the sketches are discussed and reflected upon on the basis of the process-insights and relevant design theories.
333

Mechatronics development of a scalable exoskeleton for the lower part of a handicapped person. / Développement mécatronique d'un exosquelette évolutif pour la partie inférieure d'une personne handicapée.

Kardofaki, Mohamad 11 June 2019 (has links)
Cette thèse présente l'importance des exosquelettes évolutifs des membres inférieurs pour les adolescents handicapés souffrant de troubles neuromusculaires et autres pathologies. Le nouveau terme " évolutif" décrit la capacité de l'exosquelette à grandir physiquement avec l'utilisateur, et à s'adapter à sa morphologie.Une analyse distincte des manifestations physiques qui subissent a été faite, en ce qui concerne la poussée de croissance pubertaire et les effets secondaires éventuelles. L'étude de la littérature montre qu'il n'existe pas de dispositif de réadaptation suffisamment adapté aux besoins d'un adolescent en pleine croissance en raison de la croissance rapide de ses membres et de la nature progressive de ses maladies. Comme c'est la première fois que le terme «évolutivité» est utilisé pour les exosquelettes, ses exigences fonctionnelles sont définies. Le développement mécatronique d'un exosquelette évolutif est aussi présenté, incluant le développement de son actionneur articulaire et sa structure mécanique.Enfin, les résultats préliminaires des performances de l'actionneur articulaire lors de la simulation des mouvements fonctionnels liés à la croissance montrent une grande capacité de suivi et d'exécution des mouvements basés sur les couples, tandis que les résultats liés à la structure évolutive montrent la capacité du système à s'adapter aux différents utilisateurs. / This thesis introduces the importance of the scalable lower limb exoskeletons for disabled teenagers suffering from neuromuscular disorders & other pathological conditions. The new term "scalable" describes the ability of the exoskeleton to physically grow up with the user and to be adapted to his/her morphology.A distinctive analysis of the physical manifestations that the patients experience has been done concerning the pubertal growth spurt and to the future secondary effects. The study of the literature shows that no rehabilitation device is customized enough to the needs of a growing teenagers due to the fast growth of their bodies and to the progressiveness nature of their diseases. As this is the first time the term "scalability" is brought up for exoskeletons, its functional requirements are defined in order to determine the constraints imposed on the design of the new exoskeleton. The mechatronics development of a scalable exoskeleton is presented, including the development of its joint actuator, its mechanical structure and attachments.Finally, the preliminary results of the joint actuator performance when simulating functional movements related to the growth show a high capability of trajectory following and executing torques based motions, while the findings associated with the scalable structure show the system able to be adapted to the different user sizes and ages.
334

Ultrasound-Responsive Microcapsules for Localized Drug Delivery Applications

Field, Rachel Diane January 2022 (has links)
Over the last six decades, the field of drug delivery has advanced considerably, from sustained oral release technology to pH-responsive polymers. Innovation in the space has progressed alongside the development of new categories of drugs, as well as improvements in electronics and material science which have enabled new modalities of external stimulation. Nevertheless, the traditional challenges of drug delivery persist, including the need to reduce off-target toxicity, minimize invasiveness of administration, and bypass biological barriers; these challenges are particularly apparent for drug delivery applications in difficult-to-reach areas of the body, such as tumors or areas beyond the blood-brain barrier. Furthermore, as therapeutics become more targeted, the need for corresponding delivery methods becomes even more vital to ensure treatment effectiveness with minimal side effects. In this dissertation, we aim to demonstrate a new strategy for on-demand and localized drug delivery which is easy to fabricate and delivers a large payload relative to device size, is responsive to external stimulation for triggered release, and can be integrated into a system for real-time actuation during a physiological process. In Aim 1, we developed a microfluidic fabrication technique for making biphasic microcapsules loaded with model drug. This method relied on microfluidic droplet methods, with sufficient interfacial tension between two on-chip phases to cause droplet formation. Typically, these systems rely on an aqueous-oil interface for sufficient interfacial tension; to fabricate a biocompatible microcapsule, we formed biphasic microcapsules composed of an aqueous-based inner and outer phase, without an oil intermediate phase, with aqueous two-phase system properties. Additionally, we incorporated on-chip photopolymerization, designing the microfluidic chip and light source to minimize refracted ultraviolet exposure. The resulting drug-loaded microcapsules were stable, with minimal background leakage. This fabrication technique can produce a high-throughput supply of monodisperse microcapsules, which can be modified for a variety of therapeutic payloads and easily injected in targeted region in the body. In Aim 2, we adapted these drug-loaded microcapsules for ultrasound-triggered release. Focused ultrasound (FUS) is a minimally-invasive method of stimulating release from a device, which can penetrate deep within the body and is compatible with a variety of materials; when applied at sufficient intensity and duration, it can induce heating, cavitation, or both. We tuned the applied ultrasound parameters to minimize temperature increases in surrounding tissue phantoms, while inducing step-like release profiles from the microcapsules over the course of multiple cycles of pulsed FUS. Under these applied conditions, we detected acoustic signatures consistent with inertial cavitation and visually observed structural breakdown of the microcapsules corresponding to cavitation-related effects. This release strategy is highly targeted, inducing drug release from microcapsules within a narrow focal area with minimal risk to surrounding tissue. Finally, in Aim 3, we performed in vitro demonstrations of drug-loaded actuators, as initial demonstrations towards a system of integrated sensors, actuators, and adaptive learning algorithms for closed-loop control over physiological processes involved in wound healing. We experimented with both the aforementioned microcapsules and with a liposome-loaded scaffold as drug-loaded actuators, and tested both actuators with three ultrasound transducers which offered a range of portability, intensity ranges, and imaging capacities. Next, we developed in vitro testing setups incorporating the actuators with either a cell monolayer or a three-dimensional cell construct, mimicking a wound site, and validated ultrasound-triggered drug-release with minimal cell damage. To demonstrate cell uptake of the released therapeutic agents, we modified the microcapsules’ payload, performed the in vitro release experiments, and then observed correlating cell response over the following week of culturing. These demonstrations have provided guidance towards a more integrated system, which will validate the impact of the localized actuators in stimulating enhancing wound healing rates. More broadly, the eventual integrated system, incorporating both sensors and the adaptive algorithm, will be able to sense and respond to physiological changes within a wound in real-time. This work explores how wireless, deep-tissue devices coupled with external control modalities will facilitate interventions with high spatiotemporal accuracy; when combined with sensing and regulating algorithms, it will empower real-time monitoring and interventions in physiological processes. Aim 1 focused on the fabrication of such implantable microcapsule devices and Aim 2 demonstrated a method for triggering the devices using an external control modality. In Aim 3, we investigated a use case for these microcapsules to promote rapid wound healing, alongside flexible electronics, sensors, and additional actuators. To provide additional context on implantable microdevices and biocompatibility, we provide a framework for designing medical microrobotics in Appendix I and an application of a thermally-responsive hydrogel coating in Appendix II. Overall, the sum of this work illustrates the potential impact of soft microdevices for localized and on-demand applications, towards a future of spatiotemporally-targeted biological interventions.
335

Simulating Complex Multi-Degree-Of-Freedom Systems and Muscle-Like Actuators

Webster, Victoria Ann 12 March 2013 (has links)
No description available.
336

Simulation of the Localized Arc Filament Plasma Actuators for Jet Excitation

Brown, Clifford A. 20 May 2010 (has links)
No description available.
337

Fully Compliant Tensural Bistable Mechanisms (FTBM) with On-Chip Thermal Actuation

Wilcox, Daniel L. 27 July 2004 (has links) (PDF)
The Fully compliant Tensural Bistable Mechanism (FTBM) class is introduced. The class consists of fully compliant linear bistable mechanisms that achieve much of their displacement and bistable behavior through tension loading of compliant segments. Multiple topologies of designs arising from the FTBM class were designed using a finite element analysis (FEA) model with optimization. In a coupled design approach, thermal actuators were optimized to the force and displacement requirements of the bistable mech-anisms, and selected FTBM devices were combined in switching systems with the result-ing Thermomechanical In-plane Microactuators (TIMs) and Amplified Thermomechanical In-plane Microactuators (ATIMs). Successful on-chip actuation was demonstrated. The bistable mechanisms and actuators in this work were fabricated in the MUMPs and SUMMiT V surface micromachining MEMS fabrication technologies. The Stacked Amplified Thermomechanical In-plane Microactuator (StATIM) is also introduced. The StATIM is a compact linear output actuator based on the ATIM that is capable of large displacements relative to the size of the actuator. The StATIMs presented in this thesis were fabricated in the SUMMiT V technology.
338

Integrated Piezoresistive Sensing for Feedback Control of Compliant MEMS

Messenger, Robert K. 12 October 2007 (has links) (PDF)
Feedback control of MEMS devices has the potential to significantly improve device performance and reliability. One of the main obstacles to its broader use is the small number of on-chip sensing options available to MEMS designers. A method of using integrated piezoresistive sensing is proposed and demonstrated as another option. Integrated piezoresistive sensing utilizes the inherent piezoresistive property of polycrystalline silicon from which many MEMS devices are fabricated. As compliant MEMS structures flex to perform their functions, their resistance changes. That resistance change can be used to transduce the structures' deflection into an electrical signal. This dissertation addresses three topics associated with integrated piezoresistive sensing: developing an empirical model describing the piezoresistive response of polycrystalline-silicon flexures, designing compliant MEMS with integrated piezoresistive sensing using the model, and implementing feedback control using integrated piezoresistive sensing. Integrated piezoresistive sensing is an effective way to produce small, reliable, accurate, and economical on-chip sensors to monitor compliant MEMS devices. A piezoresistive flexure model is presented that accurately models the piezoresistive response of long, thin flexures even under complex loading conditions. The model facilitates the design of compliant piezoresistive MEMS devices, which output an electrical signal that directly relates to the device's motion. The piezoresistive flexure model is used to design a self-sensing long displacement MEMS device. Motion is achieved through contact-aided compliant rolling elements that connect the output shaft to kinematic ground. Self-sensing is achieved though integrated piezoresistive sensing. An example device is tested that demonstrates 700 micrometers of displacement with a sensing resolution of 2 micrometers. The piezoresistive microdisplacement transducer (PMT) is a structure that uses integrated piezoresistive sensing to monitor the output displacement of a thermomechanical inplane microacutator (TIM). Using the PMT as a feedback sensor for closed-loop control of the TIM reduced the system's response time from 500~$mu$s to 190~$mu$s, while maintaining a positioning accuracy of $pm$29~nm. Feedback control of the TIM also increased its robustness and reliability by allowing the system to maintain its performance after it had been significantly damaged.
339

Thermomechanical Behavior Of High-temperature Shape Memory Alloy Ni-ti-pd-pt Actuators

Nicholson, Douglas E 01 January 2011 (has links)
To date the commercial use of shape memory alloys (SMAs) has been mostly limited to binary NiTi alloys with transformation temperatures approximately in the -100 to 100 ºC range. In an ongoing effort to develop high-temperature shape memory alloys (HTSMAs), ternary and quaternary additions are being made to binary NiTi to form NiTi-X (e.g., X: Pd, Pt, Au and Hf) alloys. Stability and repeatability can be further increased at these higher temperatures by limiting the stress, but the tradeoff is reduced work output and stroke. However, HTSMAs operating at decreased stresses can still be used effectively in actuator applications that require large strokes when used in the form of springs. The overall objective of this work is to facilitate the development of HTSMAs for use as high-force actuators in active/adaptive aerospace structures. A modular test setup was assembled with the objective of acquiring stroke, stress, temperature and moment data in real time during joule heating and forced convective cooling of Ni19.5Ti50.5Pd25Pt5 HTSMA springs. The spring actuators were evaluated under both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Recognizing that evolution in the material microstructure results in changes in geometry and vice versa in HTSMA springs, the objective of the present study also included assessing the contributions from the material microstructural evolution, by eliminating contributions from changes in geometry, to overall HTSMA spring performance. The finite element method (FEM) was used to support the analytical analyses and provided further insight into the behavior and heterogeneous stress states that exist in these spring actuators. iv Furthermore, with the goal of improving dimensional stability there is a need to better understand the microstructural evolution in HTSMAs that contributes to irrecoverable strains. Towards this goal, available Ni29.5Ti50.5Pd20 neutron diffraction data (from a comparable HTMSA alloy without the solid solution strengthening offered by the Pt addition) were analyzed. The data was obtained from in situ neutron diffraction experiments performed on Ni29.5Ti50.5Pd20 during compressive loading while heating/cooling, using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory. Specifically, in this work emphasis was placed on neutron diffraction data analysis via Rietveld refinement and capturing the texture evolution through inverse pole figures. Such analyses provided quantitative information on the evolution of lattice strain, phase volume fraction (including retained martensite that exists above the austenite finish temperature) and texture (martensite variant reorientation and detwinning) under temperature and stress. Financial support for this work from NASA’s Fundamental Aeronautics Program Supersonics Project (NNX08AB51A), Subsonic Fixed Wing Program (NNX11AI57A) and the Florida Center for Advanced Aero-Propulsion (FCAAP) is gratefully acknowledged. It benefited additionally from the use of the Lujan Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Office of Basic Energy Sciences (Department of Energy) and is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396.
340

Low Temperature Nitife Shape Memory Alloys: Actuator Engineering And Investigation Of Deformation Mechanisms Using In Situ Neutr

Krishnan, Vinu 01 January 2007 (has links)
Shape memory alloys are incorporated as actuator elements due to their inherent ability to sense a change in temperature and actuate against external loads by undergoing a shape change as a result of a temperature-induced phase transformation. The cubic so-called austenite to the trigonal so-called R-phase transformation in NiTiFe shape memory alloys offers a practical temperature range for actuator operation at low temperatures, as it exhibits a narrow temperature-hysteresis with a desirable fatigue response. Overall, this work is an investigation of selected science and engineering aspects of low temperature NiTiFe shape memory alloys. The scientific study was performed using in situ neutron diffraction measurements at the newly developed low temperature loading capability on the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory and encompasses three aspects of the behavior of Ni46.8Ti50Fe3.2 at 92 K (the lowest steady state temperature attainable with the capability). First, in order to study deformation mechanisms in the R-phase in NiTiFe, measurements were performed at a constant temperature of 92 K under external loading. Second, with the objective of examining NiTiFe in one-time, high-stroke, actuator applications (such as in safety valves), a NiTiFe sample was strained to approximately 5% (the R-phase was transformed to B19' phase in the process) at 92 K and subsequently heated to full strain recovery under a load. Third, with the objective of examining NiTiFe in cyclic, low-stroke, actuator applications (such as in cryogenic thermal switches), a NiTiFe sample was strained to 1% at 92 K and subsequently heated to full strain recovery under load. Neutron diffraction spectra were recorded at selected time and stress intervals during these experiments. The spectra were subsequently used to obtain quantitative information related to the phase-specific strain, texture and phase fraction evolution using the Rietveld technique. The mechanical characterization of NiTiFe alloys using the cryogenic capability at SMARTS provided considerable insight into the mechanisms of phase transformation and twinning at cryogenic temperatures. Both mechanisms contribute to shape memory and pseudoelasticity phenomena. Three phases (R, B19' and B33 phases) were found to coexist at 92 K in the unloaded condition (nominal holding stress of 8 MPa). For the first time the elastic modulus of R-phase was reported from neutron diffraction experiments. Furthermore, for the first time a base-centered orthorhombic (B33) martensitic phase was identified experimentally in a NiTi-based shape memory alloy. The orthorhombic B33 phase has been theoretically predicted in NiTi from density function theory (DFT) calculations but hitherto has never been observed experimentally. The orthorhombic B33 phase was observed while observing shifting of a peak (identified to be B33) between the R and B19' peaks in the diffraction spectra collected during loading. Given the existing ambiguity in the published literature as to whether the trigonal R-phase belongs to the P3 or P space groups, Rietveld analyses were separately carried out incorporating the symmetries associated with both space groups and the impact of this choice evaluated. The constrained recovery of the B19' phase to the R-phase recorded approximately 4% strain recovery between 150 K and 170 K, with half of that recovery occurring between 160 K and 162 K. Additionally, the aforementioned research methodology developed for Ni46.8Ti50Fe3.2 shape memory alloys was applied to experiments performed on a new high temperature Ni29.5Ti50.5Pd20 shape memory alloys. The engineering aspect focused on the development of (i) a NiTiFe based thermal conduction switch that minimized the heat gradient across the shape memory actuator element, (ii) a NiTiFe based thermal conduction switch that incorporated the actuator element in the form of helical springs, and (iii) a NiTi based release mechanism. Patents are being filed for all the three shape memory actuators developed as a part of this work. This work was supported by grants from SRI, NASA (NAG3-2751) and NSF (CAREER DMR-0239512) to UCF. Additionally, this work benefited from the use of the Lujan Center at the Los Alamos Neutron Science Center, funded by the United States Department of Energy, Office of Basic Energy Sciences, under Contract No. W-7405-ENG-36.

Page generated in 0.4866 seconds