• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonparametric adaptive estimation for discretely observed Lévy processes

Kappus, Julia Johanna 30 October 2012 (has links)
Die vorliegende Arbeit hat nichtparametrische Schätzmethoden für diskret beobachtete Lévyprozesse zum Gegenstand. Ein Lévyprozess mit endlichen zweiten Momenten und endlicher Variation auf Kompakta wird niederfrequent beobachtet. Die Sprungdynamik wird vollständig durch das endliche signierte Maß my(dx):= x ny(dx) beschrieben. Ein lineares Funktional von my soll nichtparametrisch geschätzt werden. Im ersten Teil werden Kernschätzer konstruiert und obere Schranken für das korrespondierende Risiko bewiesen. Daraus werden Konvergenzraten unter Glattheitsannahmen an das Lévymaß hergeleitet. Für Spezialfälle werden untere Schranken bewiesen und daraus Minimax-Optimalität gefolgert. Der Schwerpunkt liegt auf dem Problem der datengetriebenen Wahl des Glättungsparameters, das im zweiten Teil untersucht wird. Da die nichtparametrische Schätzung für Lévyprozesse starke strukturelle Ähnlichkeiten mit Dichtedekonvolutionsproblemen mit unbekannter Fehlerdichte aufweist, werden beide Problemstellungen parallel diskutiert und die Methoden allgemein sowohl für Lévyprozesse als auch für Dichtedekonvolution entwickelt. Es werden Methoden der Modellwahl durch Penalisierung angewandt. Während das Prinzip der Modellwahl im üblichen Fall darauf beruht, dass die Fluktuation stochastischer Terme durch Penalisierung mit einer deterministischen Größe beschränkt werden kann, ist die Varianz im hier betrachteten Fall unbekannt und der Strafterm somit stochastisch. Das Hauptaugenmerk der Arbeit liegt darauf, Strategien zum Umgang mit dem stochastischen Strafterm zu entwickeln. Dabei ist ein modifizierter Schätzer für die charakteristische Funktion im Nenner zentral, der es erlaubt, die punktweise Kontrolle der Abweichung dieses Objects von seiner Zielgröße auf die gesamte reelle Achse zu erweitern. Für die Beweistechnik sind insbesondere Talagrand-Konzentrationsungleichungen für empirische Prozesse relevant. / This thesis deals with nonparametric estimation methods for discretely observed Lévy processes. A Lévy process X having finite variation on compact sets and finite second moments is observed at low frequency. The jump dynamics is fully described by the finite signed measure my(dx)=x ny(dx). The goal is to estimate, nonparametrically, some linear functional of my. In the first part, kernel estimators are constructed and upper bounds on the corresponding risk are provided. From this, rates of convergence are derived, under regularity assumptions on the Lévy measure. For particular cases, minimax lower bounds are proved. The rates of convergence are thus shown to be minimax optimal. The focus lies on the data driven choice of the smoothing parameter, which is being considered in the second part. Since nonparametric estimation methods for Lévy processes have strong structural similarities with with nonparametric density deconvolution with unknown error density, both fields are discussed in parallel and the concepts are developed in generality, for Lévy processes as well as for density deconvolution. The choice of the bandwidth is realized, using techniques of model selection via penalization. The principle of model selection via penalization usually relies on the fact that the fluctuation of certain stochastic quantities can be controlled by penalizing with a deterministic term. Contrarily to this, the variance is unknown in the setting investigated here and the penalty term is hence itself a stochastic quantity. It is the main concern of this thesis to develop strategies to dealing with the stochastic penalty term. The most important step in this direction will be a modified estimator of the unknown characteristic function in the denominator, which allows to make the pointwise control of this object uniform on the real line. The main technical tools involved in the arguments are concentration inequalities of Talagrand type for empirical processes.
2

Adaptive and efficient quantile estimation

Trabs, Mathias 07 July 2014 (has links)
Die Schätzung von Quantilen und verwandten Funktionalen wird in zwei inversen Problemen behandelt: dem klassischen Dekonvolutionsmodell sowie dem Lévy-Modell in dem ein Lévy-Prozess beobachtet wird und Funktionale des Sprungmaßes geschätzt werden. Im einem abstrakteren Rahmen wird semiparametrische Effizienz im Sinne von Hájek-Le Cam für Funktionalschätzung in regulären, inversen Modellen untersucht. Ein allgemeiner Faltungssatz wird bewiesen, der auf eine große Klasse von statistischen inversen Problem anwendbar ist. Im Dekonvolutionsmodell beweisen wir, dass die Plugin-Schätzer der Verteilungsfunktion und der Quantile effizient sind. Auf der Grundlage von niederfrequenten diskreten Beobachtungen des Lévy-Prozesses wird im nichtlinearen Lévy-Modell eine Informationsschranke für die Schätzung von Funktionalen des Sprungmaßes hergeleitet. Die enge Verbindung zwischen dem Dekonvolutionsmodell und dem Lévy-Modell wird präzise beschrieben. Quantilschätzung für Dekonvolutionsprobleme wird umfassend untersucht. Insbesondere wird der realistischere Fall von unbekannten Fehlerverteilungen behandelt. Wir zeigen unter minimalen und natürlichen Bedingungen, dass die Plugin-Methode minimax optimal ist. Eine datengetriebene Bandweitenwahl erlaubt eine optimale adaptive Schätzung. Quantile werden auf den Fall von Lévy-Maßen, die nicht notwendiger Weise endlich sind, verallgemeinert. Mittels äquidistanten, diskreten Beobachtungen des Prozesses werden nichtparametrische Schätzer der verallgemeinerten Quantile konstruiert und minimax optimale Konvergenzraten hergeleitet. Als motivierendes Beispiel von inversen Problemen untersuchen wir ein Finanzmodell empirisch, in dem ein Anlagengegenstand durch einen exponentiellen Lévy-Prozess dargestellt wird. Die Quantilschätzer werden auf dieses Modell übertragen und eine optimale adaptive Bandweitenwahl wird konstruiert. Die Schätzmethode wird schließlich auf reale Daten von DAX-Optionen angewendet. / The estimation of quantiles and realated functionals is studied in two inverse problems: the classical deconvolution model and the Lévy model, where a Lévy process is observed and where we aim for the estimation of functionals of the jump measure. From a more abstract perspective we study semiparametric efficiency in the sense of Hájek-Le Cam for functional estimation in regular indirect models. A general convolution theorem is proved which applies to a large class of statistical inverse problems. In particular, we consider the deconvolution model, where we prove that our plug-in estimators of the distribution function and of the quantiles are efficient. In the nonlinear Lévy model based on low-frequent discrete observations of the Lévy process, we deduce an information bound for the estimation of functionals of the jump measure. The strong relationship between the Lévy model and the deconvolution model is given a precise meaning. Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Under minimal and natural conditions we show that the plug-in method is minimax optimal. A data-driven bandwidth choice yields optimal adaptive estimation. The concept of quantiles is generalized to the possibly infinite Lévy measures by considering left and right tail integrals. Based on equidistant discrete observations of the process, we construct a nonparametric estimator of the generalized quantiles and derive minimax convergence rates. As a motivating financial example for inverse problems, we empirically study the calibration of an exponential Lévy model for asset prices. The estimators of the generalized quantiles are adapted to this model. We construct an optimal adaptive quantile estimator and apply the procedure to real data of DAX-options.

Page generated in 0.0642 seconds