Spelling suggestions: "subject:"das"" "subject:"adas""
51 |
Computer Vision Techniques for Automotive Perception SystemsStoddart, Evan 29 August 2019 (has links)
No description available.
|
52 |
Manoeuvre Coordination : Assuring safety in overtakingSakhnini, Qusay, Suleiman, Mohammad January 2023 (has links)
The frightful statistics regarding road accidents draws a dreadful picture for individuals, communities, and nations across the globe. The number of fatalities exceeds a million every year. To address this issue, an initiative called Vision Zero was introduced first in Sweden 1997. The goal is to reach zero road fatalities and severe injuries by 2045. However, to achieve this goal, Vision Zero is being divided in 4 categories, called Days. Day 4 represents fully automated, cooperative, and connected mobility (CCAM). Now, one of the typical cases that causes road accidents is overtaking. CCAM is a way to enhance safety in such cases. Therefore, this thesis proposes a system that is based on Vehicle-to-Vehicle (V2V) communication where vehicles exchange their intentions and cooperatively perform overtaking manoeuvres. The prevalent approach nowadays is depending on the vehicles’ onboard sensors only, blocking it from having knowledge about the intentions of other actors. Thus, it prevents vehicles from cooperation and coordination. We evaluate the performance of our approach and compare it against the sensors only approach. We show that the proposed approach outperforms the prevalent one in performance. Therefore, vehicle communication must be considered in the upcoming mobility for higher accuracy and safety. / Den skrämmande statistiken angående trafikolyckor tecknar en fruktansvärd bild för individer, samhällen och nationer över världen. Antalet dödsfall överstiger en miljon varje år. Ett initiativ som kallas Vision Zero introducerades i Sverige 1997, vars syfte är att ta itu med detta problem. Målet är att nå noll trafik dödsfall, och allvarliga skador år 2045. För att verkställa det målet, Vision Zero delades in i 4 kategorier, som kallas för Dagar. Dag 4 representerar fullt automatiserad, kooperativ och kommunikativ mobilitet (CCAM). Ett av det vanligaste fallen som orsaker trafikolyckor är omkörningar. CCAM är ett sätt att förbättra säkerheten i sådana fall. Därför presenterar denna avhandling ett system som bygger på fordon-till-fordon (Vehicle-to-Vehicle V2V) kommunikation. Detta system tillåter fordon att utbyta avsikter för att samarbeta och utföra säkra omkörningar. Den ledande teknologin nuförtiden beror enbart av fordonens sensorer, vilket hindrar dem från att ha kunskap om andra aktörers avsikter. Därmed hindrar det dem från att samarbeta. Vi utvärderar prestandan av vårt system och jämför det med den ledande teknologin. Vi visar att vårt system är överlägsen det ledande sättet (dvs. enbart sensorer) i prestanda. Därför måste fordon kommunikation tas hänsyn till i kommande mobilitet för högre noggrannhet och säkerhet.
|
53 |
ADAS : A simulation study comparing two safety improving Advanced Driver Assistance SystemsMattsson, David January 2012 (has links)
Driving is a high-risk adventure which many enjoy on a daily basis. The driving task is highly complex, ever-changing, and one which requires continuous attention and rapid decision making. It is a task that is not without risk, where the cost to reach the desired destination can be too great – your life could be at stake. Driving is not without incidents. Rear-end collision is a common problem in the Swedish traffic environment, with over 100 police-reported individual incidents per year. The amount of rear-end collisions can be hypothetically reduced by introducing new technology in the driver’s vehicle, technology which attempts to improve the driver’s safety driving. This technology is called Advanced Driver Assistance Systems – ADAS. In this study two ADAS were evaluated in a driving simulator study: An Adaptive Cruise Control (ACC) which operates on both hazardous and non-hazardous events, and a Collision Warning System (CWS) which operates solely on non-hazardous events. Both of these ADAS function to guard against risky driving and are based on the assumption that drivers will not act in such a manner that they would willingly reduce the effectiveness of the system. A within-subjects simulation study was conducted where participants drove under three conditions: 1) with an adaptive cruise controller, 2) a frontal rear-end collision warning system ADAS, and 3) unaided, in order to investigate differences between the three driving conditions. Particular focus was on whether the two ADAS improved driving safety. The study results indicate that driving enhanced by the two ADAS made the participating drivers drive less safely.
|
54 |
Recognizing traffic signaling gestures through automotive sensors.Bartlett, Benjamin James 13 May 2022 (has links) (PDF)
As technology advances with each new day, so do the applications and uses of the different modalities of technology, including transportation, particularly in ADAS vehicles. These systems allow the vehicle to avoid collisions, change lanes, adjust the vehicle’s speed, and more without the need of driver input. However, each sensor type has a weakness, and most advanced driver- assisted system (ADAS) vehicles rely heavily on sensors, such as RGB cameras, radars, and LiDAR sensors. These visual-based sensors may collect very noisy data in cloudy, raining, foggy, or other obscuring phenomena. Radar, on the other hand, does not rely on visual information to produce meaningful output, and instead collects range and velocity information. This research aims to use radar technology for human motion classification using traffic signaling based on motions generally used in the American traffic system, while also fusing data from other visual sensors and validating results using neural networks.
|
55 |
Risk assessments and modeling of driver by using Risk Potential theoryKikuta, Riku 12 May 2023 (has links) (PDF)
Recently, various self-driving and driving assistance systems such as Advanced Driver Assistance System (ADAS) have been developed with the intent to reduce the number of motor vehicle accidents. While self-driving systems have been proven to reduce traffic accidents, the systems sometimes make other drivers confused because of their mechanical behavior. To avoid confusion and possible error, it is necessary to construct self-driving systems that exhibit human-like behaviors. Risk Potential theory has been used to construct models that successfully represent driver behavior, especially expert behavior. This project uses Risk Potential theory to construct and evaluate a collision avoidance driver model which uses braking to avoid potential collisions with pedestrians. As a first step, a basic driver model which uses Risk Potential theory is constructed and evaluated using metrics such as collision avoidance, comfortability, and false alarm avoidance. Second, human driving data is collected to observe driver’s risk perception during interactions with a pedestrian. Finally, our proposed driver models improve on standard RP model’s performance but comparisons of the models with observed human performance reveal opportunities for further improvement.
|
56 |
A LiDAR Based Semi-autonomous Collision Avoidance System and the Development of a Hardware-in-the-Loop Simulator to Aid in Algorithm Development and Human StudiesStevens, Thomas F. 01 December 2015 (has links) (PDF)
In this paper, the architecture and implementation of an embedded controller for a steering based semi-autonomous collision avoidance system on a 1/10th scale model is presented. In addition, the development of a 2D hardware-in-the-loop simulator with vehicle dynamics based on the bicycle model is described. The semi-autonomous collision avoidance software is fully contained onboard a single-board computer running embedded GNU/Linux. To eliminate any wired tethers that limit the system’s abilities, the driver operates the vehicle at a user-control-station through a wireless Bluetooth interface. The user-control-station is outfitted with a game-controller that provides standard steering wheel and pedal controls along with a television monitor equipped with a wireless video receiver in order to provide a real-time driver’s perspective video feed. The hardware-in-the-loop simulator was developed in order to aid in the evaluation and further development of the semi-autonomous collision avoidance algorithms. In addition, a post analysis tool was created to numerically and visually inspect the controller’s responses. The ultimate goal of this project was to create a wireless 1/10th scale collision avoidance research platform to facilitate human studies surrounding driver assistance and active safety systems in automobiles. This thesis is a continuation of work done by numerous Cal Poly undergraduate and graduate students.
|
57 |
Engine Idle Sailing with Driver Assistant Systems For Fuel Consumption MinimizationChandramouli, Nitish 15 August 2018 (has links)
No description available.
|
58 |
Consideration of dynamic traffic conditions in the estimation of industrial vehicules energy consumption while integrating driving assistance strategies / Prise en compte des conditions de trafic dynamique dans l'évaluation des consommations énergétiques des véhicules industriels en intégrant les stratégies d'aide à la conduiteCattin, Johana 18 April 2019 (has links)
Le monde industriel, et en particulier l’industrie automobile, cherche à représenter au mieux le réel pour concevoir des outils et produits les plus adaptés aux enjeux et marchés actuels. Dans cette optique, le groupe Volvo a développé de puissants outils pour la simulation de la dynamique des véhicules industriels. Ces outils permettent notamment l’optimisation de composants véhicules ou de stratégies de contrôle. De nombreuses activités de recherche portent sur des technologies innovantes permettant de réduire la consommation des véhicules industriels et d’accroitre la sécurité de leurs usages dans différents environnements. En particulier, le développement des systèmes d’aide à la conduite automobile ITS et ADAS. Afin de pouvoir développer ces systèmes, un environnement de simulation permettant de prendre en compte les différents facteurs pouvant influencer la conduite d’un véhicule doit être mis en place. L’étude se concentre sur la simulation de l’environnement du véhicule et des interactions entre le véhicule et son environnement direct, i.e. le véhicule qui le précède. Les interactions entre le véhicule étudié et le véhicule qui le précède sont modélisées à l’aide de modèles mathématiques, nommés lois de poursuites. De nombreux modèles existent dans la littérature mais peu concernent le comportement des véhicules industriels. Une étude détaillée de ces modèles et des méthodes de calage est réalisée. L’environnement du véhicule peut être représenté par deux catégories de paramètres : statiques (intersections, nombre de voies…) et dynamiques (état du réseau). A partir d’une base de données de trajets usuels, ces paramètres sont calculés, puis utilisés pour générer de manière automatisée des scénarios de simulation réalistes. / The industrial world, and in particular the automotive industry, is seeking to best represent the real world in order to design tools and products that are best adapted to current challenges and markets, by reducing development times and prototyping costs. With this in mind, the Volvo Group has developed powerful tools to simulate the dynamics of industrial vehicles. These tools allow the optimization of vehicle components or control strategies. Many research activities focus on innovative technologies to reduce the consumption of industrial vehicles and increase the safety of their use in different environments. Particularly, the development of ITS and ADAS is booming. In order to be able to develop these systems, a simulation environment must be set up to take into account the various factors that can influence the driving of a vehicle. The work focuses on simulating the vehicle environment and the interactions between the vehicle and its direct environment, i.e. the vehicle in front of it. The interactions between the vehicle under study and the vehicle in front of it are modelled using mathematical models, called car-following models. Many models exist in the literature, but few of them deals specifically with heavy duty vehicles. A specific focus on these models and their calibration is realized. The vehicle environment can be represented by two categories of parameters: static (intersections, number of lanes) and dynamic parameters (state of the network). From a database of usuals roads, these parameters are computed, then, they are used to automatically generate realist traffic simulation scenarios.
|
59 |
Vision-based moving pedestrian recognition from imprecise and uncertain data / Reconnaissance de piétons par vision à partir de données imprécises et incertainesZhou, Dingfu 05 December 2014 (has links)
La mise en oeuvre de systèmes avancés d’aide à la conduite (ADAS) basée vision, est une tâche complexe et difficile surtout d’un point de vue robustesse en conditions d’utilisation réelles. Une des fonctionnalités des ADAS vise à percevoir et à comprendre l’environnement de l’ego-véhicule et à fournir l’assistance nécessaire au conducteur pour réagir à des situations d’urgence. Dans cette thèse, nous nous concentrons sur la détection et la reconnaissance des objets mobiles car leur dynamique les rend plus imprévisibles et donc plus dangereux. La détection de ces objets, l’estimation de leurs positions et la reconnaissance de leurs catégories sont importants pour les ADAS et la navigation autonome. Par conséquent, nous proposons de construire un système complet pour la détection des objets en mouvement et la reconnaissance basées uniquement sur les capteurs de vision. L’approche proposée permet de détecter tout type d’objets en mouvement en fonction de deux méthodes complémentaires. L’idée de base est de détecter les objets mobiles par stéréovision en utilisant l’image résiduelle du mouvement apparent (RIMF). La RIMF est définie comme l’image du mouvement apparent causé par le déplacement des objets mobiles lorsque le mouvement de la caméra a été compensé. Afin de détecter tous les mouvements de manière robuste et de supprimer les faux positifs, les incertitudes liées à l’estimation de l’ego-mouvement et au calcul de la disparité doivent être considérées. Les étapes principales de l’algorithme sont les suivantes : premièrement, la pose relative de la caméra est estimée en minimisant la somme des erreurs de reprojection des points d’intérêt appariées et la matrice de covariance est alors calculée en utilisant une stratégie de propagation d’erreurs de premier ordre. Ensuite, une vraisemblance de mouvement est calculée pour chaque pixel en propageant les incertitudes sur l’ego-mouvement et la disparité par rapport à la RIMF. Enfin, la probabilité de mouvement et le gradient de profondeur sont utilisés pour minimiser une fonctionnelle d’énergie de manière à obtenir la segmentation des objets en mouvement. Dans le même temps, les boîtes englobantes des objets mobiles sont générées en utilisant la carte des U-disparités. Après avoir obtenu la boîte englobante de l’objet en mouvement, nous cherchons à reconnaître si l’objet en mouvement est un piéton ou pas. Par rapport aux algorithmes de classification supervisée (comme le boosting et les SVM) qui nécessitent un grand nombre d’exemples d’apprentissage étiquetés, notre algorithme de boosting semi-supervisé est entraîné avec seulement quelques exemples étiquetés et de nombreuses instances non étiquetées. Les exemples étiquetés sont d’abord utilisés pour estimer les probabilités d’appartenance aux classes des exemples non étiquetés, et ce à l’aide de modèles de mélange de gaussiennes après une étape de réduction de dimension réalisée par une analyse en composantes principales. Ensuite, nous appliquons une stratégie de boosting sur des arbres de décision entraînés à l’aide des instances étiquetées de manière probabiliste. Les performances de la méthode proposée sont évaluées sur plusieurs jeux de données de classification de référence, ainsi que sur la détection et la reconnaissance des piétons. Enfin, l’algorithme de détection et de reconnaissances des objets en mouvement est testé sur les images du jeu de données KITTI et les résultats expérimentaux montrent que les méthodes proposées obtiennent de bonnes performances dans différents scénarios de conduite en milieu urbain. / Vision-based Advanced Driver Assistance Systems (ADAS) is a complex and challenging task in real world traffic scenarios. The ADAS aims at perceiving andunderstanding the surrounding environment of the ego-vehicle and providing necessary assistance for the drivers if facing some emergencies. In this thesis, we will only focus on detecting and recognizing moving objects because they are more dangerous than static ones. Detecting these objects, estimating their positions and recognizing their categories are significantly important for ADAS and autonomous navigation. Consequently, we propose to build a complete system for moving objects detection and recognition based on vision sensors. The proposed approach can detect any kinds of moving objects based on two adjacent frames only. The core idea is to detect the moving pixels by using the Residual Image Motion Flow (RIMF). The RIMF is defined as the residual image changes caused by moving objects with compensated camera motion. In order to robustly detect all kinds of motion and remove false positive detections, uncertainties in the ego-motion estimation and disparity computation should also be considered. The main steps of our general algorithm are the following : first, the relative camera pose is estimated by minimizing the sum of the reprojection errors of matched features and its covariance matrix is also calculated by using a first-order errors propagation strategy. Next, a motion likelihood for each pixel is obtained by propagating the uncertainties of the ego-motion and disparity to the RIMF. Finally, the motion likelihood and the depth gradient are used in a graph-cut-based approach to obtain the moving objects segmentation. At the same time, the bounding boxes of moving object are generated based on the U-disparity map. After obtaining the bounding boxes of the moving object, we want to classify the moving objects as a pedestrian or not. Compared to supervised classification algorithms (such as boosting and SVM) which require a large amount of labeled training instances, our proposed semi-supervised boosting algorithm is trained with only a few labeled instances and many unlabeled instances. Firstly labeled instances are used to estimate the probabilistic class labels of the unlabeled instances using Gaussian Mixture Models after a dimension reduction step performed via Principal Component Analysis. Then, we apply a boosting strategy on decision stumps trained using the calculated soft labeled instances. The performances of the proposed method are evaluated on several state-of-the-art classification datasets, as well as on a pedestrian detection and recognition problem.Finally, both our moving objects detection and recognition algorithms are tested on the public images dataset KITTI and the experimental results show that the proposed methods can achieve good performances in different urban scenarios.
|
60 |
Sledování řidiče / Driver monitoringPieger, Matúš January 2021 (has links)
This master’s thesis deals with the design of systems for data collection which describe the driver’s behaviour in a car. This data is used to detect risky behaviour that the driver may commit due to inattention caused by the use of either lower or higher levels of driving automation. The thesis first describes the existing safety systems, especially in relation to the driver. Then it deals with the design of the necessary measuring scenes and the implementation of new systems based on the processing of input images which are obtained via the Intel RealSense D415 stereo camera. Every system is tested in a real vehicle environment. In the end the thesis contains an evaluation regarding the detection reliability of the created algorithms, it considers their shortcomings and possible improvements.
|
Page generated in 0.0315 seconds