• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cálculo da probabilidade de adesão de átomo incidente em superfície metálica. / Computation of the sticking probability of a incident atom on metallic surface.

Makoto Yoshida 11 September 1986 (has links)
Desenvolve-se um novo método de cálculo da probabilidade de adsorção química de átomos incidentes em superfícies metálicas. Introduz-se um modelo teórico de adsorção cujo Hamiltoniano descreve um átomo incidindo normalmente e interagindo com os elétrons da banda de condução de uma superfície metálica. Como interações, são levadas em consideração (1) a possibilidade de transferência de energia cinética e de carga do átomo para o metal e (2) o potencial de carga imagem do átomo ionizado. A solução do modelo consiste em se tratar a parte eletrônica e a nuclear do Hamiltoniano separadamente. A parte eletrônica é tratada com a técnica de grupo de renormalização introduzida por Wilson e a parte nuclear, através da solução numérica da equação de Schrödinger para o movimento nuclear. O acoplamento entre as duas componentes do hamiltoniano é tratado como perturbação à aproximação adiabática. A probabilidade de adsorção é calculada em função da energia cinética do átomo incidente através da regra de ouro de Fermi. Os resultados, mostrando que a probabilidade de adsorção decai rapidamente acima de uma energia cinética característica, são interpretados fisicamente. / A new procedure that calculates sticking coefficients for atomic beams incident upon metallic surfaces is discussed. A model Hamiltonian describing the normal incidence of an ad-atom and its interaction with the conduction electrons of the adsorbate is introduced. The Hamiltonian accounts for two couplings: (1) the overlap between the atomic orbital and the metallic conduction states, allowing charge transfer between incident particle and adsorbate, and (2) the image potential associated with the ionized ad-atom. The electronic and nuclear parts of the model Hamiltonian are diagonalized separately, the former by renormalization group techniques and the second by numerical integration of the Schrödinger equation for the nuclear motion. Through the perturbative treatment, the first order corrections to the adiabatic approximation are presented. The results, showing that the sticking coefficient diminishes rapidly above a characteristic kinetic energy o£ the incident atom, are interpreted.
12

Structure of hypernuclei studied with the integrodifferential equations approach

Nkuna, John Solly 06 1900 (has links)
A two-dimensional integrodi erential equation resulting from the use of potential harmonics expansion in the many-body Schr odinger equation is used to study ground-state properties of selected few-body nuclear systems. The equation takes into account twobody correlations in the system and is applicable to few- and many-body systems. The formulation of the equation involves the use of the Jacobi coordinates to de ne relevant global coordinates as well as the elimination of center-of-mass dependence. The form of the equation does not depend on the size of the system. Therefore, only the interaction potential is required as input. Di erent nucleon-nucleon potentials and hyperon-nucleon potentials are employed to construct the Hamiltonian of the systems. The results obtained are in good agreement with those obtained using other methods. / Physics / M.Sc. (Physics)
13

Four-Body Treatment of the Hydrogen-Antihydrogen System

Stegeby, Henrik January 2012 (has links)
This thesis presents a nonadiabatic (4-body) description of the hydrogen-antihydrogen system at a nonrelativistic level. The properties of the system, the rearrangement processes and the possible existence of resonance states are investigated by using a variational method for coupled arrangement channels, the Gaussian Expansion Method, and the stabilization method. The 4-body basis set is optimized by means of prediagonalization of 2-body fragments. In paper I, a mass-scaling procedure of the Born-Oppenheimer potential is introduced for the description of the relative motion between hydrogen and antihydrogen. The nonadiabaticity of the system is investigated in paper II.

Page generated in 0.1217 seconds