Spelling suggestions: "subject:"adoptive ezzell 1a_therapie"" "subject:"adoptive ezzell bromtherapie""
1 |
Human cytomegalovirus-specific regulatory and effctor T cells are clonally identicalSchwele, Sandra 28 September 2009 (has links)
Die Mehrzahl der im Thymus generierten CD4+CD25high regulatorischen T-Zellen (Treg) besitzt hohe Affinität gegenüber körpereigenen Antigenen. Es ist bekannt, dass T-Zell Rezeptoren (TCR) auf Treg Zellen in der Peripherie zusätzlich auch fremde Antigene verschiedener Pathogene wie Parasiten, Bakterien und Viren erkennen. Wenig ist bekannt über das klonale T-Zell Rezeptor Repertoire dieser Treg Populationen und ihre Beziehung zu CD4+CD25low effektor T-Zellen (Teff) im Menschen. In dieser Studie analysieren wir humane TCR auf expandierten Treg and Teff Zellen mit definierter Antigen Spezifität für Haupthistokompatibilitätskomplex (MHC) Klasse II restringierte „fremde“ Epitope des Cytomegalovirus (CMV). Bemerkenswerterweise fanden wir, dass der gleiche TCR Vb-CDR3 Klon in beiden funktionell unterschiedlichen Subpopulationen in vitro dominant expandiert ist. Im Unterschied zu ihren klonal-identischen Teff Gegenspielern, exprimieren die suppressiven Treg Zellen kaum CD127 und IL-2, aber hohe Mengen an IFNg und IL-10. Zusammen mit der signifikant erhöhten FOXP3 Expression, trotz unvollständiger foxp3-DNA Demethylierung, lassen sich die CMV-spezifischen CD4+CD25high Treg Zellen einem induzierten Treg (iTreg) Phänotyp zuordnen mit Ähnlichkeit zum beschriebenen Tr-1 Phänotyp. Darüber hinaus konnten wir die klonale TCR Identität auch in frisch isolierten CD4+CD25low und CD4+CD25high Subpopulationen bestätigen, was die Entstehung von CMV-spezifischen Treg Zellen bereits in vivo nahe legt. Periphere CD25high Treg Zellen supprimieren die anti-virale Immunantwort in Patienten mit häufigen CMV-Reaktivierungen, was auf ihre Bildung als Reaktion chronischer Antigenexposition interpretiert werden kann. Unsere Ergebnisse beweisen erstmals direkt, dass aus dem gleichen humanen T-Zell Klon Teff und Treg Zellen mit identischer Spezifität entstehen können und lassen vermuten, dass die Treg Induktion in der Peripherie durch häufige Antigenexposition vorangetrieben wird. / The majority of thymically arised regulatory CD4+CD25high T cells (Treg) show high affinity to self-antigens. It has been proposed that T-cell receptors (TCR) on Treg cells in the periphery also recognize foreign-antigens from pathogens, such as bacteria and viruses. Studies in mice have shown that peripheral Treg cells can be generated not only from naïve T cells but also from effector T cells (Teff). However, in humans the clonal TCR-repertoire of these Treg populations and their relation to effector CD4+CD25low Teff is not sufficiently known up to date. Here, we analyzed human TCRs derived from expanded Treg and Teff cells with defined specificity to MHC class-II restricted “foreign” epitopes of Cytomegalovirus (CMV). Remarkably, we found that both functionally distinct subsets share the same dominant TCR-CDR3 clones in vitro. In contrast to their Teff counterparts, the Treg cells express low CD127 and IL-2, but high IL-10 upon antigen stimulation. Therefore, together with increased FOXP3 expression, but incomplete foxp3 DNA-demethylation, human CMV-antigen specific Treg cells exhibit an induced phenotype (iTreg) in vitro with similarity to recently described Tr-1 phenotype. Moreover, the clonal identity was confirmed in freshly isolated CD4+CD25low and CD4+CD25high subsets, suggesting their generation occurred already in vivo. Peripheral CD25high Treg cells suppress the anti-viral immune response in patients with frequent CMV-reactivations, implying their development as reaction on chronic antigen-exposure. Our results demonstrate directly for the first time, that the same human T-cell clone can possess the phenotype of Teff and Treg cells with specificity to identical foreign epitopes and suggest that Treg-induction in the periphery is supported by frequent antigen-exposure.
|
2 |
Exploring potential human cancer neoantigens as targets for adoptive T cell therapyImmisch, Lena 15 November 2022 (has links)
Der adoptive Transfer von T-Zell-Rezeptor (TZR) modifizierten T-Zellen gegen krebsspezifische Antigene ist ein vielversprechender Ansatz in der Immuntherapie. Geeignete Zielmoleküle für diese Therapie sollten wichtig für das Überleben von Krebszellen sein und zudem in ausreichenden Mengen auf der Zelloberfläche exprimiert werden, um von T-Zellen erkannt zu werden. Die Identifizierung dieser Zielmoleküle ist jedoch eine Herausforderung und erfordert eine intensive Charakterisierung, um eine ausreichende Prozessierung und Präsentation auf den Tumorzellen zu validieren.
Ziel dieser Arbeit war, HLA-A2-spezifische Neoepitope als Zielmoleküle für adoptive T-Zell-Therapie zu validieren. Dafür wurden erfolgreich Immunantworten in einem humanen transgenen Mausmodell nach Peptidimmunisierung induziert und TZRs mit hoher Affinität isoliert. Trotz einer hohen funktionellen Avidität von H3.3K27M-spezifischen T-Zellen wurde keine Erkennung von Tumorzellen erreicht. Zweitens wurden TZR-transduzierte T-Zellen gegen die häufige Melanommutation Rac1P29S isoliert, welche zytotoxisch gegen Melanomzelllinien waren. Letztlich wurde beobachtetet, dass TZRs mit hoher Affinität gegen gespleißte Kras und Rac2 Epitope, welche durch Proteasom-katalysiertes Peptidspleißen erzeugt wurden, keine Immunantwort gegen endogen exprimierte Mutationen hervorrufen konnten. Daraus lässt sich schließen, dass gespleißte Epitope wahrscheinlich seltener vorkommen als zuvor angenommen und daher möglicherweise irrelevant für die adoptive T-Zelltherapie sind.
Diese Daten deuten darauf hin, dass die Auswahl von Zielmolekülen für die adoptive T-Zell-Therapie mit Hilfe reverser Immunologie auf der Grundlage von Bindungsalgorithmen und der Häufigkeit von Mutationen allein nicht ausreicht. Daher sind vor der Isolierung und Charakterisierung von TZRs zusätzliche Strategien wie z.B. die Analyse des MHC-Immunopeptidoms erforderlich, um die Auswahl geeigneter Zielmoleküle für die T-Zelltherapie zu verbessern. / Adoptive transfer of T cell receptor (TCR)-engineered T cells against tumour-specific neoantigens is a promising approach in cancer immunotherapy. Ideally, targeted antigens are crucial for cancer cell survival and are generated in sufficient amounts to be recognised by T cells. However, the identification of ideal targets remains challenging and requires intensive characterisation to validate sufficient antigen processing and presentation by the tumour cells.
This thesis focused on the validation of HLA-A2 binding neoepitopes carrying the recurrent cancer mutations H3.3K27M, Rac1P29S, Rac2P29L or KrasG12V as targets for adoptive T cell therapy. After peptide immunisation, immune responses in a human transgenic mouse model were elicited and high-affinity TCRs successfully isolated. Although H3.3K27M-specific T cells showed high functional avidity, no recognition of cells endogenously expressing mutant H3.3 was achieved. Furthermore, a mechanism to target the common melanoma mutation Rac1P29S with a TCR raised against a heterologous mutation with higher peptide-MHC affinity was described. TCR-transduced T cells induced cytotoxicity against Rac1P29S expressing melanoma cell lines. Lastly, high-affinity TCRs specific for mutant Kras and Rac2 spliced epitopes generated by proteasome-catalysed peptide splicing were successfully isolated, however, TCR-transduced T cells did not induce an immune response against endogenously expressed mutant transgenes. The results indicate that spliced epitopes are probably less abundant than previously estimated and therefore may play a minor role in the generation of targets for adoptive T cell therapy.
These data suggest that target selection using a reverse immunology approach based on binding algorithms and frequency of mutations alone is not sufficient. Thus, additional strategies to improve the selection of suitable targets such as the analysis of the MHC immunopeptidome are required prior to TCR isolation and characterisation.
|
3 |
Targeted transduction of T cell subsets for immunotherapy of cancer and infectious diseaseEdes, Inan 14 December 2016 (has links)
Das Ziel der vorliegenden Arbeit bestand darin, ein Vektorsystem zu entwickeln, dass den simultanen Transfer verschiedener Transgene in CD8+ und CD4+ T-Zellen und dadurch die Herstellung eines immunotherapeutischen T-Zell-Produkts ermöglicht, welches aus zwei unterschiedlich modifizierten T-Zell-Subtypen besteht. Im ersten Teil der Arbeit wurde die Targeting-Technologie von lentiviralen auf γ-retrovirale Vektoren übertragen. Anschließend wird die Herstellung von Vektoren beschrieben, die spezifisch für murines CD4 oder CD8 sind. Deren Spezifität wurde zum einen durch die exklusive Expression von GFP in CD4+ oder CD8+ Zellen und zum anderen durch den Dosis-abhängigen Verlust des GFP-Signals nach Inkubation dieser Zellen mit CD4- und CD8-blockierenden Antikörpern nachgewiesen. Im dritten Teil der Arbeit wird gezeigt, dass MVm8 und MVm4 primäre T-Zellen spezifisch transduzieren. MVm8-vermittelter Transfer des Ovalbumin (OVA)-reaktiven TZRs OT-I führte zu T-Zellen, die OVA+ Tumor-Zelllinien erkannten und Interferon-γ sezernierten. Der vierte Teil dieser Arbeit beschäftigt sich mit der in vivo Transduktion primärer T-Zellen mithilfe von MVm8, welches den OT-I-TZR und eine Luciferase transferiert (MVm8/OT-I-luc). Durch systemische Applikation von MVm8/OT-I-luc wurden T-Zellen in vivo transduziert. Durch Immunisierungen konnten antigen-spezifisches Homing, Expansion und eine anschließende Kontraktion in vivo transduzierter T-Zellen gezeigt werden. Mäuse mit starker OT-I-luc-Expression waren gegenüber einer Infektion durch OVA-transgene listeria monocytogenes geschützt. Zusammenfassend lässt sich sagen, dass das in dieser Arbeit entwickelte Vektorsystem in der Lage ist zwischen Subtypen von T-Zellen zu unterscheiden und sie simultan mit unterschiedlichen Transgenen auszustatten. Für MVm8 konnte gezeigt werden, dass es T-Zellen direkt in vivo transduzieren kann. / The aim of this thesis was to generate a vector system that allows the simultaneous transfer of different transgenes into CD8+ and CD4+ T cells, allowing the generation of a immunotherapeutic T cell product comprised of two differently engineered T cell subsets. The first part of the thesis describes the transfer of the measles virus (MV) envelope-based targeting technology from lentiviral (LV) to γ-retroviral (gRV) vectors. The second part reports the generation of two targeting vectors specific for murine CD4 or CD8. The exclusive specificity of MVm4 and MVm8 was proven by expression of GFP in CD4+ and CD8+ reporter cells, respectively, but not in CD4-CD8- cells after transduction, and by a dose-dependent loss of GFP signal after incubation of reporter cells with CD4 or CD8 blocking antibodies before transduction. The third part shows that MVm8 but not MVm4 transduced primary T cells. MVm8-mediated transfer of the ovalbumin (OVA)-reactive TCR OT-I resulted in T cells secreting interferon-γ (IFNγ) upon recognition of OVA+ tumor cell lines. The final part of this thesis describes the in vivo transduction of primary T cells using MVm8 transferring OT-I and a luciferase (MVm8/OT-I-luc). To this end, B6 mice deficient for Rag2 have been repopulated with either polyclonal (B6) or monoclonal T cells derived from P14-TCR transgenic mice (P14). One day later the transferred T cells were transduced in vivo by systemic application of MVm8/OT-I-luc. Upon immunization in vivo-transduced T cells homed, expanded and contracted repeatedly in an antigen-dependent manner. Finally, mice exhibiting strong luc-signals showed improved protection against infections by OVA-transgenic listeria monocytogenes (LM-OVA). In conclusion, the viral vector system developed within this thesis is able to discriminate between the two main T cell subsets and to equip them with distinct transgenes simultaneously.
|
4 |
Generation of Epstein-Barr Virus-specific T Cell Receptorengineered T Cells for Cancer TreatmentDudaniec, Krystyna 15 June 2022 (has links)
Die adoptive T-Zell-Therapie (ATT) ist eine sich schnell entwickelnde Immuntherapie, die bei Patienten, die an verschiedenen Krebsarten leiden, eine positive klinische Reaktion anzeigt. Eine Variante der ATT ist eine T-Zellen-Rezeptor (TCR)-Gentherapie, bei der Patienten-T-Zellen mit krebsspezifischen TCRs ausgestattet werden.
Die Herstellung der TCR-erzeugten T-Zellen ist schnell und robust und erfordert eine geringe Anfangsmenge an Patienten-T-Zellen. Der Mangel an verfügbaren krebsspezifischen TCRs, die auf verschiedene Moleküle des menschlichen Leukozytenantigens (HLA) der Klasse I beschränkt sind, schließt jedoch viele Patienten von der Krebsbehandlung aus. Die Generierung einer krebsspezifischen TCR-Bibliothek, die aus gut definierten TCRs besteht, könnte die Zahl der Patienten, die an klinischen Studien teilnehmen, erhöhen.
Das Ziel dieser Doktorarbeit war es, Epstein-Barr-Virus (EBV)-spezifische TCRs zu identifizieren und zu isolieren, um eine EBV-spezifische TCR-Bibliothek als ein nützliches Werkzeug der TCR-Gentherapie bei der Behandlung von EBV-bedingten Krebserkrankungen zu generieren.
Insgesamt wurden neun EBV-spezifische TCRs von EBV-positiven Spendern isoliert und charakterisiert, die verschiedene pHLA-Komplexe von EBV-Latentmembranproteinen (LMP1, LMP2A) und Kernprotein (EBNA3C) erkannten. Zusätzlich wurde ein neuartiges immunogenes LMP1-Epitop (QQNWWTLLV) entdeckt, das auf HLA-C*15:02 beschränkt ist.
Definierte EBV-spezifische TCRs können als Grundlage für die EBV-spezifische TCR-Bibliothek verwendet werden, die eine wertvolle Quelle von TCRs für die schnelle Generierung von EBV-spezifischen T-Zellen zur Behandlung von Krebspatienten mit verschiedenen HLA-Typen darstellt. / Adoptive T cell therapy (ATT) is a fast developing immunotherapy indicating positive clinical response in patients suffering from different type of cancers. One type of the ATT is a T cell receptor (TCR) gene therapy, which involves endowing patient T cells with cancer-specific TCRs.
Manufacturing of the TCR-engineered T cells is fast and robust, requiring small initial amount of patient T cells. However, lack of available cancer-specific TCRs restricted to various human leukocyte antigen (HLA) class I molecules eliminates many patients from cancer treatment. Generation of a cancer-specific TCR library consisting of well-defined TCRs could increase the number of patients enrolled in clinical trials.
The aim of this PhD thesis was to identify and isolate Epstein-Barr virus (EBV)-specific TCRs in order to generate the EBV-specific TCR library as a useful tool of the TCR gene therapy for treatment of EBV-related malignancies.
In total, nine EBV-specific TCRs of EBV-positive donors that recognized various pHLA complexes of EBV latent membrane proteins (LMP1, LMP2A) and nuclear protein (EBNA3C) were isolated and characterized. Additionally, a novel immunogenic LMP1 epitope (QQNWWTLLV) restricted to a HLA-C*15:02 was discovered.
Defined EBV-specific TCRs can be used as a basis for the EBV-specific TCR library, which provides a valuable source of TCRs for rapid generation of EBV-specific T cells to treat cancer patients with different HLA types.
|
Page generated in 0.0667 seconds