• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 15
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tecnologia pós-colheita de modoficação atmosférica, controle do etileno e desverdecimento para a banana prata-anã cultivada em Boa Vista, Roraima

Marcos André de Souza Prill 25 April 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A bananicultura é um dos destaques na agricultura de Roraima, representando parcela significativa do mercado frutícola, contudo, deixa a desejar na qualidade final apresentada ao consumidor. Nesse sentido, foram realizados dois experimentos, onde, no primeiro avaliou-se a qualidade pós-colheita de bananas Prata-Anã submetidas ao armazenamento refrigerado (AR) a temperatura de 12 1oC e umidade relativa (U.R.) de 93 2% em câmara frigorífica, localizada no Laboratório de Tecnologia de Alimentos (LTA/UFRR). Nesse experimento, as bananas refrigeradas foram acondicionadas em embalagem de polietileno de baixa densidade (PEBD), com e sem a utilização de vácuo e o uso de adsorvedor de etileno no interior das embalagens. As análises foram realizadas em intervalos de 5 dias até 35 dias de armazenamento refrigerado. No segundo experimento, com base nos resultados obtidos do primeiro experimento, avaliou-se o desverdecimento dos frutos pelo uso tecnológico de fitorregulador e do abafamento, utilizando-se lona plástica (polietileno com fio de ráfia interno e ilhós de latão), realizado sem o controle atmosférico (T C, U.R.) e em diferentes tempos de armazenamento refrigerado das bananas (colheita, aos 10, 20 e 30 dias de AR). As análises foram realizadas seqüencialmente a um, dois, três e quatro dias após cada período de desverdecimento. As análises físicas, químicas e físico-químicas, em ambos experimentos, foram realizadas quanto ao pH da polpa, a perda de massa fresca, coloração da casca, sólidos solúveis (SS), acidez titulável (AT), concentração de CO2/etileno no interior das embalagens, curva respiratória (CO2/etileno) açúcares totais e redutores, atividade enzimática da poligalacturonase (PG) e ectinametilesterase (PME) e teor de pectina total e solúvel e teor de amido. Ao final do primeiro experimento, concluiu-se que a combinação do uso de embalagens com os sachês adsorvedores de etileno resultou no retardamento do processo de maturação dos frutos de banana Prata-Anã, quando observada a curva de respiração em relação ao atraso do pico climatérico dos frutos embalados junto ao sachê adsorvedor de etileno. Da mesma forma, foi constatado o efeito tecnológico do sachê na adsorção do etileno presente no interior das embalagens, refletindo, na melhor manutenção da qualidade sensorial segundo resultados observados nas análises físicas, químicas e físico-químicas. No segundo experimento, ao final dos quatro períodos de armazenamento, observou-se que não houve efeito significativo que determinasse qual o melhor método de desverdecimento, porém, verificou-se que quanto maior foi o período de AR, menor foi o período de manutenção da qualidade das bananas Prata-Anã após o desverdecimento. Assim, pode-se recomendar que o desverdecimento seja realizado com segurança em até 20 dias após a colheita e, sobretudo se mantidas sob condições de refrigeração a 12oC 1oC e 93 2% de U.R. Espera-se, nessa situação, a manutenção dos atributos de qualidade sensorial nas bananas por no mínimo, três dias durante o período médio de comercialização em Roraima.
12

Evaluation of the reverse flow reactor concept for the homogeneous molecular catalysis and case study of methyl oleate metathesis / Réacteur à inversion de flux pour piéger les catalyseurs moléculaires homogènes : application à la métathèse de l'oléate de méthyle

Hamou, Mohamed 06 July 2016 (has links)
Le réacteur à inversion de flux pour retenir et recycler la chaleur est une technologie efficace qui intègre la réaction chimique et la réutilisation de la chaleur dégagée lors de la réaction. Cette technologie a été considérablement commercialisée et industrialisée, vue l'amélioration de la productivité du réacteur et vue l'intensification du procédé qu'elle offrirait. Par analogie chaleur-matière, il a été voulu, par l'actuel travail de doctorat, évaluer la technologie d'inversion de flux et la combinaison de la réaction chimique et de la séparation et la rétention du catalyseur (matière) dans un seul réacteur adsorbeur multifonctionnel. La métathèse des oléfines qui utilise des catalyseurs moléculaires -qui ne sont pas/ ne peuvent pas être efficacement et parfaitement immobilisés et hétérogénéisés sur un support solide- peut être réalisée dans le réacteur adsorbeur à inversion de flux, qui prétend permettre de séparer, de recycler et de retenir les catalyseurs. La réaction cible dans cette thèse est l'homo-métathèse de l'oléate de méthyle. D'abord, un modèle cinétique pour décrire cette réaction et la transformation du réactif a été développé et proposé en suivant une approche micro-cinétique. Ensuite, ce modèle a été ajusté par rapport aux résultats expérimentaux pour optimiser et accéder aux paramètres cinétiques de la réaction. Le modèle cinétique, ainsi obtenu, permettra après son intégration dans le modèle du réacteur adsorbeur à inversion de flux, de prédire la conversion du réactif et sa concentration à la sortie. Le réacteur adsorbeur à inversion de flux, a été étudié et évalué, par la modélisation et par une étude théorique calculatoire, pour avoir une meilleure compréhension de son comportement, et aussi de l'influence des conditions opératoires sur le procédé (perte de catalyseur, conversion, productivité, etc.). Le design de réacteur qui a été proposé dans cette étude et ce travail est une colonne à lit fixe d'adsorbant, avec inversion de flux. Les résultats de simulation du réacteur adsorbeur à inversion de flux pour retenir et recycler les catalyseurs moléculaires ont montré l'intensification du procédé que peut offrir cette technologie en se référant à un réacteur continu conventionnel (réacteur tubulaire monophasique). Il a été montré aussi qu'il n'est pas possible d'atteindre un régime permanent, sans appoint et rajout du catalyseur pour compenser les pertes, dues aux phénomènes physiques indissociables au réacteur. Par la suite, un dispositif expérimental a été construit pour vérifier et valider les résultats de simulations ainsi obtenus, et aussi pour démonter, à l'échelle pilote, la faisabilité de la technologie d'inversion de flux avec adsorption pour séparer l'adsorbé et le retenir à l'intérieur de la colonne. Et similairement au réacteur à inversion de flux pour le recyclage et la réutilisation de la chaleur, le réacteur adsorbeur à inversion de flux pour séparer et recycler le catalyseur, peut lui aussi, avoir un comportement asymptotique sous certaines conditions opératoires, et s'approcher du fonctionnement du réacteur adsorbeur à contre-courant. Par la modélisation et le calcul numérique, il a été établi le domaine des conditions opératoires dans lesquelles, les réacteurs adsorbeurs à inversion de flux et à contre-courant sont équivalents. Le modèle asymptotique à contre-courant permet de calculer et de pré-dimensionner plus rapidement le réacteur à inversion de flux / The reverse flow reactor for heat trapping is an efficient technology that integrates the chemical reaction and the recovery of the heat of the reaction. This technology was widely commercialized and applied in industry because of the reactor productivity enhancement and the process intensification it offers. By heat-matter analogy, we wanted, in this thesis, to evaluate the reverse flow technique and the combination of the chemical reaction with the trapping and the recycling of the catalyst (matter) in one single multi-functional adsorber reactor. The metathesis of olefins that uses molecular catalysts -which are imperfectly immobilized and heterogeneized on the solid support- can be performed in the reverse flow adsorber reactor that claims to separate, recycle and trap the catalyst. The targeted reaction is the self-metathesis of methyl oleate. Thus, a kinetic model of the reaction was developed using a micro-kinetic approach. The obtained kinetic model was fitted to the experiences to get the kinetic parameters values. Then, the kinetic model can be integrated in the reverse flow adsorber reactor model to predict the conversion and the outlet methyl oleate concentration. The reverse flow reactor adsorber was evaluated and studied (by modeling and theoretical study) to have a better understanding of its behavior, and of the operating parameters influence on the process (catalyst leaching, conversion, productivity, etc.). A single fixed bed adsorption column is proposed as a design for the reverse flow adsorber reactor. The simulation results show the process intensification that offers the reverse flow adsorber reactor for catalyst trapping in comparison with a conventional continuous reactor (continuous flow tubular reactor). They also show that it is not possible to reach a stable operation and a permanent regime without catalyst makeup that compensate the leaching. Then, an experimental setup was built to verify, to validate the simulations results, and to demonstrate, at the pilot scale, the feasibility of the reverse flow technology to separate and to trap the adsorbate inside the adsorber. And similarly to the reverse flow reactor for heat trapping, the reverse flow adsorber reactor for catalyst trapping and separation can have an asymptotic behavior under certain operating conditions, and approaches the operation of a counter current adsorber reactor. By modeling and numerical calculation, it has been determined the operating conditions, at which, the reverse flow and the counter current adsorber reactors are equivalents. The counter current asymptotic model allow a rapid reverse flow reactor computing and pre-design
13

Einfluss der Ligninstruktur auf die Sorptionseigenschaften von Ligninhydrogelen

Nong, Johanna Phuong 27 March 2024 (has links)
Lignin als nachwachsendes, erneuerbares Biopolymer, welches als Nebenprodukt in der Zellstoffindustrie anfällt, besitzt das Potenzial Materialien auf der Basis von endlichen, fossilen Rohstoffen ganz oder teilweise zu ersetzen. Ziel der Arbeit war es Adsorptionsmaterialien auf der Basis von Lignin in Form von Hydrogelen herzustellen und ihre Adsorptionseigenschaften zu untersuchen. Hierfür wurden zunächst verschiedene technische Lignine (Kraftlignine, Ligninsulfonate und Sodalignine) eingehend charakterisiert, zu Hydrogelen vernetzt und die Adsorptionseigenschaften an den Metallionen Cu(II), Ni(II) und Zn(II) untersucht. Weiterhin wurde der Einfluss der Fraktionierung des Lignins auf die Adsorptionseigenschaften der resultierenden Ligninhydrogele untersucht. Hierfür wurde das Kraftlignin mittels Aceton : Wassermischungen über die unterschiedliche Löslichkeit der Fraktionen aufgetrennt. Die Fraktionierung des Ligninsulfonates erfolge über die Membranfiltration, bei der ein Reinigungsschritt mit kleinem Porendurchmesser vorausgesetzt wurde. Durch chemische Modifizierung des Ausgangslignins konnten die Adsorptionseigenschaften des Ligninhydrogels verändert werden. Hierfür wurden drei verschiedene Synthesewege durchgeführt: Die Einbringung von Dihydroxybenzol über eine sauerkatalysierte Substitutionsreaktion, das Anbinden von Iminodiessigsäure über die Mannich-Reaktion und mittels Epichlorhydrin, sowie die Einbringung von stickstofffunktionellen Gruppen mittels oxidativer Ammonolyse. Ferner wurden weitere Eigenschaften wie die Zyklenstabilität und Selektivität der Ligninhydrogele untersucht. Die während der Adsorption ablaufenden die Schrumpf- und Quelleigenschaften des Hydrogels konnten ausgenutzt werden, um ein Konzept für ein Sensorsystem zu entwickeln. Dazu wurde das Ligninhydrogel an kovalent an einen ITO-Träger angebunden und die Schrumpf- und Quellprozesse mittels QCM am Beispiel von verschieden konzentrieren Magnesium- und Natriumionenlösungen untersucht. An Aerogelen, welche durch Gefriertrocknung aus dem Kraftligninhydrogel hergestellt wurden, konnten weiterhin die Adsorption von Rohöl gezeigt werden. Außerdem wurde eine Maßstabsvergrößerung der Hydrogelsynthese von 5 g auf 1 kg durchgeführt.:Inhaltsverzeichnis Abkürzungsverzeichnis Formelzeichenverzeichnis Abbildungsverzeichnis Tabellenverzeichnis 1 Motivation und Zielstellung 2 Theorie 2.1 Lignin 2.1.1 Aufbau 2.1.2 Isolierungsmethoden 2.1.2.1 Kraftaufschluss 2.1.2.2 Sulfitaufschluss 2.1.2.3 Sodaaufschluss bzw. Alkaliaufschluss 2.1.3 Anwendungspotenzial des Lignins 2.1.4 Fraktionierung des Lignins 2.1.5 Modifizierung des Lignins 2.2 Hydrogele 2.2.1 Ligninhydrogele 2.2.2 Anwendung von Ligninhydrogelen 2.3 Adsorption 2.3.1 Adsorptionsparameter 2.3.2 Ionenaustauscher 2.3.3 Selektivität 2.4 Metallionen 2.4.1 Toxikologie und Abscheidung von Schwermetallen 2.4.2 Adsorption von Metallionen an Materialien auf Ligninbasis 3 Ergebnisse und Diskussion 3.1 Hydrogele aus Ligninen unterschiedlichen Ursprungs 3.1.1 Charakterisierung der Lignine 3.1.2 Synthese und Charakterisierung der Ligninhydrogele 3.1.3 Vergleich der Adsorptionskapazitäten der Ligninhydrogele 3.1.4 Fazit zur Hydrogelsynthese aus unterschiedlichen Ligninen 3.2 Adsorptionseigenschaften der Ligninhydrogele am Beispiel von Ca-HG und LS-HG 3.2.1 Bestimmung thermodynamische Kenngrößen 3.2.2 Bestimmung kinetische Kenngrößen 3.2.3 Äußere Einflussfaktoren 3.2.4 Fazit zur Untersuchung der Adsorptionseigenschaften 3.3 Fraktionierung ausgewählter Lignine 3.3.1 Fraktionierung des Kraftlignins KL mittels Lösungsmittelgradienten 3.3.1.1 Charakterisierung der fraktionierten Lignine 3.3.1.2 Synthese und Charakterisierung der fraktionierten Ligninhydrogele 3.3.1.3 Zwischenfazit Fraktionierung von KL 3.3.2 Fraktionierung des Ligninsulfonates LSE mittels Membranfiltration 3.3.2.1 Entfernung von Zuckern und schwefliger Säure aus der Dicklauge 3.3.2.2 Charakterisierung der fraktionierten Lignine 3.3.2.3 Charakterisierung und Vergleich der Adsorptionskapazitäten der fraktionierten Ligninhydrogele 3.3.2.4 Zwischenfazit zur Fraktionierung von LSE 3.3.3 Fazit zur Fraktionierung von Lignin 3.4 Chemische Modifizierung der Kraftlignine 3.4.1 Modifizierung mit Dihydroxybenzol 3.4.1.1 Charakterisierung der modifizierten Ligninhydrogele 3.4.1.2 Vergleich der Ligninhydrogele aus fraktioniertem Kraftlignin aus KL 3.4.1.3 Fazit der Modifizierung mit Dihydroxybenzenen 3.4.2 Modifizierung durch oxidative Ammonolyse 3.4.2.1 Charakterisierung der modifizierten Lignine 3.4.2.2 Charakterisierung und Vergleich der Adsorptionskapazitäten der modifizierten Ligninhydrogele 3.4.2.3 Fazit der Modifizierung mittels oxidativer Ammonolyse 3.4.3 Modifizierung mit Iminodiessigsäure 3.4.3.1 Charakterisierung der modifizierten Lignine 3.4.3.2 Charakterisierung und Vergleich der Adsorptionskapazitäten der modifizierten Ligninhydrogele 3.4.3.3 Fazit der Modifizierung mittels Iminodiessigsäure 3.5 Vergleich der Aufnahmekapazitäten der hergestellten Ligninhydrogele mit der Literatur 3.6 Anwendungsorientierte Untersuchungen 3.6.1 Ligninhydrogele als Adsorber für die Sorption von Metallionen aus wässrigen Medien 3.6.1.1 Zyklenstabilität des Säulenmaterials 3.6.1.2 Selektive Adsorption von Cu(II)-Ionen 3.6.1.3 Fazit aus der Verwendung von Ligninhydrogelen als Adsorber für Metallionen aus wässrigen Lösungen 3.6.2 Ligninhydrogele für Sensoranwendungen 3.6.2.1 Anbindung des Ligninhydrogels an einen Glasträger 3.6.2.2 Untersuchung des Ansprechverhalten des Ligninhydrogelsensors 3.6.2.3 Fazit der Verwendung von Ligninhydrogelen als Sensormaterial 3.6.3 Aerogele aus Kraftligninhydrogelen für die Sorption von Ölen 3.6.3.1 Synthese und Charakterisierung des Aerogels 3.6.3.2 Vergleich mit anderen Materialien aus nachwachsenden Rohstoffen 3.6.3.3 Fazit der Verwendung von Aerogelen aus Ligninhydrogelen für die Adsorption von Öl 3.6.4 Upscaling der Hydrogelsynthese 3.6.4.1 Planung und Aufbau der Syntheseanlage 3.6.4.2 Überprüfung der Anforderungen der Hydrogelsyntheseanlage 3.6.4.3 Fazit zum Upscaling der Hydrogelsynthese 4 Zusammenfassung und Ausblick 5 Experimentalteil 5.1 Chemikalien und Materialien 5.2 Lignine und Fraktionierung des Lignins 5.3 Modifizierung des Lignins 5.4 Synthese der Hydrogele, Aerogele und Xerogele 5.5 Anbindung des Ligninsulfonates an den Glasträger 5.6 Synthese von Referenzmaterialien 5.7 Vorversuche für die Herstellung der Hydrogelsyntheseanlage 5.8 Adsorptionsversuche 5.9 Analytische Methoden 6 Anhang 7 Literatur
14

Herstellung, Charakterisierung und Modifizierung von Perlcellulose / Synthesis, characterization and modification of bead cellulose

Thümmler, Katrin 05 March 2012 (has links) (PDF)
Charakteristisch für Perlcellulose als Regenerat vom Typ Cellulose II sind sphärisch geformte, poröse Partikel mit einer hohen spezifischen Oberfläche und einer guten Bioverträglichkeit. Aufgrund ihrer Eigenschaften sind diese Cellulosemikropartikel besonders gut für medizinische Anwendungen geeignet. Im Mittelpunkt der Arbeit standen Herstellung, Charakterisierung und Modifizierung von Perlcellulosen mit Partikelgrößen von etwa 1 bis10 µm. Im Rahmen der Arbeit wurden zunächst sieben technische Cellulose-2,5-acetate mit vergleichbaren molekularen Eigenschaften auf ihre Eignung zur Herstellung von Perlcellulose nach dem in EP0750007 beschriebenen Acetatverfahren untersucht. Dabei erfolgte der Vergleich verschiedener Eigenschaften. Aus allen untersuchten Celluloseacetaten können Perlcellulosen synthetisiert werden. Als besonders geeignet erwies sich ein Produkt mit einer Molmasse von über 100.000, einem Verhältnis der Molmasse zur numerischen Molmasse von etwa 1,5 und einer guten Löslichkeit in Ethylacetat / Methanol (100:17,5). Die hergestellte Perlcellulose hat eine geringe Partikelgröße und eine relativ enge Größenverteilung. Damit erfüllt dieses Cellulose-2,5-acetat alle Anforderungen für die Synthese von Perlcellulose. Der entscheidende Verfahrensschritt zur Herstellung von Perlcellulose ist das Dispergieren der Emulsion mittels Inline-Ultraturrax. Die Partikelgrößenverteilung hängt im Wesentlichen von den Bedingungen während des Dispergierens ab. Im Rahmen der Arbeit gelang die reproduzierbare Herstellung von Cellulosemicrospheres mit einer Partikelgröße unter 5 µm. Für die Herstellung von Cellulosemikropartikeln mit definierten Eigenschaften ist neben den Synthesebedingungen auch die Charakterisierung der Perlcellulosen von entscheidender Bedeutung. Dafür wurden zunächst etablierte Verfahren verwendet (Partikelgrößenmessung, REM und Quecksilberporosimetrie). Parallel dazu erfolgte die Entwicklung bzw. Einführung neuer Methoden. Im Vordergrund stand die Untersuchung des Sedimentationsverhaltens der Perlcellulosen durch analytisches Zentrifugieren. Davon ausgehend konnte ein Verfahren zur Berechnung der Porosität aus dem Sedimentationsvolumen entwickelt werden. Zum Nachweis der kompletten Deacetylierung der Proben wurde die Ramanspektroskopie genutzt. Durch die Anwendung vorhandener und die Entwicklung neuer Methoden wird die genaue Einstellung von Eigenschaften der Perlcellulosen (z. B. Partikelgröße und deren Verteilung, Morphologie sowie Porosität) ermöglicht und deren Reproduzierbarkeit gewährleistet. Weitere Versuche hatten die Entwicklung von Endotoxinadsorbermaterial auf Basis von Perlcellulose und Polymyxin-B-sulfat (PMB) zum Ziel. Die Kopplung des PMB erfolgte meist nach Aktivierung der Proben mit Epichlorhydrin. Zunächst wurde die eingesetzte Epichlorhydrinmenge variiert, um das Optimum für die Aktivierung der Perlcellulosen zu finden. Weiterhin wurden unterschiedliche Mengen PMB angebunden und die Anbindung an nicht aktivierte Proben untersucht. Die Planung aller Versuche erfolgte jeweils nach Auswertung der an der Donau-Universität Krems durchgeführten Limulus- Amöbocyten- Lysat (LAL)-Tests. Mittels dieser Batchtests wurde die Wirksamkeit des Endotoxinadsorbermaterials sowohl im Vergleich zu unbehandeltem Blutplasma und als auch zu kommerziell erhältlichen Adsorbern auf Polystyrenbasis getestet. Endotoxinadsorber, die bei diesen Tests besonders gut bewertet wurden, konnten in einem up-scale- Versuch erstmals in größeren Mengen synthetisiert werden. Auch die direkte Herstellung von Endotoxinadsorbermaterial aus Perlcelluloseacetat konnte realisiert werden. Bei diesem neu entwickelten Verfahren erfolgen Deacetylierung und Aktivierung in einem Schritt. Damit kann die Herstellung vereinfacht werden. Zur Gewährleistung der Erstfehlersicherheit in extrakorporalen Blutreinigungssystemen sollen magnetisierte Perlcellulosepartikel als bioverträgliche Marker eingesetzt werden. Versuche zur Magnetisierung von Cellulosemikropartikeln während des Herstellungsprozesses zeigten, dass die Einbindung von Magnetit bei Erhalt der sphärischen Partikelstruktur prinzipiell auch auf diesem homogenen Syntheseweg möglich ist. / Bead cellulose is regenerated cellulose II characterized by spherically shaped, porous particles with a high specific surface and a good biocompatibility. Because of their properties these cellulose microspheres are especially suited for medical applications. The focus of this work was the synthesis, characterization and modification of bead cellulose with particle sizes between 1 to 10 µm. In the frame of this work seven technical cellulose-2.5-acetates were investigated with regard to their suitability for making bead cellulose according to the process described in EP0750007. These cellulose acetates have comparable molecular characteristics. Different properties were compared. Bead celluloses can be synthesized from all investigated cellulose acetates. A product with a molecular weight of more than 100,000 and with a ratio between molecular weight and numeric molecular weight of about 1.5 is special suited. This cellulose-2.5-acetate has a good solubility in ethyl acetate / methanol (100:17.5). The bead cellulose made from it has a low particle size and a relative narrow size distribution. Thus this cellulose acetate complies with the requirements for making bead cellulose. The most important process step for making bead cellulose is the dispersing of the emulsion using an inline-ultraturrax. The distribution of particle size depends mainly on the conditions during dispersing. A reproducible synthesis of cellulose microspheres with a particle size range below 5 µm was successfully achieved. In addition to determining conditions for manufacturing bead cellulose the characterization of the microspheres is essential to obtain bead cellulose with well defined properties. At first well-established methods of characterization were used (particle size measurement, SEM and mercury porosimetry). In parallel new methods were developed and implemented. The main focus was the investigation of sedimentation behaviour of bead cellulose using analytical centrifugation. Based on this knowledge of the sedimentation volume a new method to calculate the porosity was designed. Raman spectroscopy was used for detecting the complete deacetylation of the samples. By using well-established and newly developed methods properties of bead cellulose such as particle size and distribution, morphology and porosity can be accurately adjusted. In this way the reproducible synthesis of cellulose microspheres can be ensured. The aim of further experiments was to develop an endotoxin adsorber material based on a coupling of bead cellulose with Polymyxin B sulfate (PMB). The coupling with PMB was carried out after activation of the samples by using epichlorohydrin. At first the added epichlorohydrin amount was diversified in order to find the optimum for the activation of bead cellulose. Later the coupling of different amounts of PMB took place and the linking of PMB to non activated samples was investigated too. The planning of all experiments occurred after evaluation of Limulus amebocyte lysate (LAL) tests at Danube-University Krems. Using these batch tests the effectiveness of the endotoxin adsorber material was tested compared to untreated blood plasma as well as commercial available adsorbers based on polystyrene. Endotoxin adsorbers showing the best adsorption rate were then synthesized for the first time in larger quantities. Also the direct synthesis of endotoxin adsorber material based on bead cellulose acetate could be realized. Using this newly developed method, deacetylation and activation occur during the same step. This means manufacturing process can be simplified. Using magnetized bead cellulose as biocompatible marker particles is planned to achieve first fault safety in case of a membrane rupture during extracorporeal blood purification. Initial tests have shown that the magnetization of cellulose microspheres is possible during the manufacturing process. The incorporation of magnetite can be realized while keeping the spherical shape of the particles using this homogenous synthesis pathway.
15

Herstellung, Charakterisierung und Modifizierung von Perlcellulose

Thümmler, Katrin 20 December 2011 (has links)
Charakteristisch für Perlcellulose als Regenerat vom Typ Cellulose II sind sphärisch geformte, poröse Partikel mit einer hohen spezifischen Oberfläche und einer guten Bioverträglichkeit. Aufgrund ihrer Eigenschaften sind diese Cellulosemikropartikel besonders gut für medizinische Anwendungen geeignet. Im Mittelpunkt der Arbeit standen Herstellung, Charakterisierung und Modifizierung von Perlcellulosen mit Partikelgrößen von etwa 1 bis10 µm. Im Rahmen der Arbeit wurden zunächst sieben technische Cellulose-2,5-acetate mit vergleichbaren molekularen Eigenschaften auf ihre Eignung zur Herstellung von Perlcellulose nach dem in EP0750007 beschriebenen Acetatverfahren untersucht. Dabei erfolgte der Vergleich verschiedener Eigenschaften. Aus allen untersuchten Celluloseacetaten können Perlcellulosen synthetisiert werden. Als besonders geeignet erwies sich ein Produkt mit einer Molmasse von über 100.000, einem Verhältnis der Molmasse zur numerischen Molmasse von etwa 1,5 und einer guten Löslichkeit in Ethylacetat / Methanol (100:17,5). Die hergestellte Perlcellulose hat eine geringe Partikelgröße und eine relativ enge Größenverteilung. Damit erfüllt dieses Cellulose-2,5-acetat alle Anforderungen für die Synthese von Perlcellulose. Der entscheidende Verfahrensschritt zur Herstellung von Perlcellulose ist das Dispergieren der Emulsion mittels Inline-Ultraturrax. Die Partikelgrößenverteilung hängt im Wesentlichen von den Bedingungen während des Dispergierens ab. Im Rahmen der Arbeit gelang die reproduzierbare Herstellung von Cellulosemicrospheres mit einer Partikelgröße unter 5 µm. Für die Herstellung von Cellulosemikropartikeln mit definierten Eigenschaften ist neben den Synthesebedingungen auch die Charakterisierung der Perlcellulosen von entscheidender Bedeutung. Dafür wurden zunächst etablierte Verfahren verwendet (Partikelgrößenmessung, REM und Quecksilberporosimetrie). Parallel dazu erfolgte die Entwicklung bzw. Einführung neuer Methoden. Im Vordergrund stand die Untersuchung des Sedimentationsverhaltens der Perlcellulosen durch analytisches Zentrifugieren. Davon ausgehend konnte ein Verfahren zur Berechnung der Porosität aus dem Sedimentationsvolumen entwickelt werden. Zum Nachweis der kompletten Deacetylierung der Proben wurde die Ramanspektroskopie genutzt. Durch die Anwendung vorhandener und die Entwicklung neuer Methoden wird die genaue Einstellung von Eigenschaften der Perlcellulosen (z. B. Partikelgröße und deren Verteilung, Morphologie sowie Porosität) ermöglicht und deren Reproduzierbarkeit gewährleistet. Weitere Versuche hatten die Entwicklung von Endotoxinadsorbermaterial auf Basis von Perlcellulose und Polymyxin-B-sulfat (PMB) zum Ziel. Die Kopplung des PMB erfolgte meist nach Aktivierung der Proben mit Epichlorhydrin. Zunächst wurde die eingesetzte Epichlorhydrinmenge variiert, um das Optimum für die Aktivierung der Perlcellulosen zu finden. Weiterhin wurden unterschiedliche Mengen PMB angebunden und die Anbindung an nicht aktivierte Proben untersucht. Die Planung aller Versuche erfolgte jeweils nach Auswertung der an der Donau-Universität Krems durchgeführten Limulus- Amöbocyten- Lysat (LAL)-Tests. Mittels dieser Batchtests wurde die Wirksamkeit des Endotoxinadsorbermaterials sowohl im Vergleich zu unbehandeltem Blutplasma und als auch zu kommerziell erhältlichen Adsorbern auf Polystyrenbasis getestet. Endotoxinadsorber, die bei diesen Tests besonders gut bewertet wurden, konnten in einem up-scale- Versuch erstmals in größeren Mengen synthetisiert werden. Auch die direkte Herstellung von Endotoxinadsorbermaterial aus Perlcelluloseacetat konnte realisiert werden. Bei diesem neu entwickelten Verfahren erfolgen Deacetylierung und Aktivierung in einem Schritt. Damit kann die Herstellung vereinfacht werden. Zur Gewährleistung der Erstfehlersicherheit in extrakorporalen Blutreinigungssystemen sollen magnetisierte Perlcellulosepartikel als bioverträgliche Marker eingesetzt werden. Versuche zur Magnetisierung von Cellulosemikropartikeln während des Herstellungsprozesses zeigten, dass die Einbindung von Magnetit bei Erhalt der sphärischen Partikelstruktur prinzipiell auch auf diesem homogenen Syntheseweg möglich ist.:1. EINLEITUNG 3 2. THEORETISCHE GRUNDLAGEN 5 2.1 CELLULOSE 5 2.1.1 Molekulare Struktur 7 2.1.2 Morphologische Struktur 9 2.1.3 Polymorphie 9 2.1.3.1 Native Cellulose 11 2.1.3.2 Weitere Cellulosemodifikationen 12 2.1.3.3 Umwandlung von Cellulose I in Cellulose II 13 2.1.4 Aktivierung 15 2.2 CELLULOSEACETAT 17 2.2.1 Herstellung 17 2.2.1.1 Technische Herstellung 18 2.2.1.2 Homogene Herstellungsmethoden 19 2.2.2 Eigenschaften und Charakterisierung 20 2.2.3 Verwendung 21 2.3 PERLCELLULOSE 22 2.3.1 Herstellung 23 2.3.1.1 Sprühverfahren 23 2.3.1.2 Suspensionsverfahren 24 2.3.1.3 Acetatverfahren 24 2.3.2 Charakterisierung 26 2.3.2.1 Partikelgröße und Partikelgrößenverteilung 26 2.3.2.2 Porosität 27 2.2.2.3 Quellwert 28 2.3.2.4 Weitere Methoden 28 2.3.3 Verwendung 30 2.3.3.1 Perlcellulose als Adsorbermaterial 30 2.3.3.2 Adsorption von Endotoxinen 31 2.3.4 Magnetisierung 36 2.3.4.1 Einsatz und Herstellung magnetischer Partikel 36 2.3.4.2 Einbindung von Magnetit in Perlcellulose 39 3. HERSTELLUNG VON PERLCELLULOSE 41 3.1 CELLULOSEACETAT ALS AUSGANGSSTOFF FÜR DIE SYNTHESE VON PERLCELLULOSE 41 3.1.1 Charakterisierung von Celluloseacetaten 41 3.1.1.1 Löslichkeit 41 3.1.1.2 Trübungsmessungen 42 3.1.1.3 Molmassenverteilung 44 3.1.1.4 Verteilung der Substituenten 45 3.1.1.5 Bestimmung des Substitutionsgrades mittels NMR und SEC 46 3.1.2 Einfluss der Celluloseacetate auf die Eigenschaften der Perlcellulose 47 3.1.2.1 Herstellung der Perlcellulosen 47 3.1.2.2 Messung der Partikelgröße 48 3.1.2.3 Charakterisierung der Perlcellulosen mittels Rasterelektronenmikroskopie 49 3.1.3 Schlussfolgerungen 51 3.2 HERSTELLUNG VON PERLCELLULOSE MIT DEFINIERTEN EIGENSCHAFTEN 52 3.2.1 Bildung der Celluloseperlen 52 3.2.2 Dispergieren im Inline- Ultraturrax 54 3.2.2.1 Einfluss der Drehzahl 54 3.2.2.2 Mehrfaches Dispergieren 56 3.2.2.3 Geschwindigkeit der Schlauchpumpe 58 3.2.2.4 Vergleich der Ergebnisse 59 3.2.3 Zusammensetzung der Emulsion 60 3.2.3.1 Salzgehalt 61 3.2.3.2 Methylcellulosekonzentration 62 3.2.3.3 Ethylacetatkonzentration 63 3.2.3.4 Tensidgehalt 65 3.2.3.5 Gleichzeitige Veränderung mehrerer chemischen Parameter 66 3.2.4 Aufbereitung des Perlcelluloseacetats 68 3.2.4.1 Abrotieren der Lösungsmittel 68 3.2.4.2 Reinigung und Deacetylierung 69 3.2.5 Standardbedingungen 69 4. CHARAKTERISIERUNG VON PERLCELLULOSEN 70 4.1 PARTIKELGRÖßENMESSUNG 70 4.2 RASTERELEKTRONENMIKROSKOPIE 70 4.3 QUECKSILBERPOROSIMETRIE 71 4.4 SEDIMENTATIONSVERHALTEN 73 4.4.1 Sedimentationsgeschwindigkeit 73 4.4.2 Berechnung der mittleren Teilchengröße 79 4.4.3 Sedimentationsvolumen 82 4.5 BESTIMMUNG DER POROSITÄT AUS DEM SEDIMENTATIONSVOLUMEN 83 4.5.1 Porositätsuntersuchungen an einer analytischen Multiprobenzentrifuge 83 4.5.2 Porositätsuntersuchungen an einer Laborzentrifuge 84 4.5.3 Vergleich der ermittelten Porositätswerte 85 4.6 RAMANSPEKTROSKOPIE 87 5. PERLCELLULOSE ALS ENDOTOXINADSORBERMATERIAL 88 5.1 ENTWICKLUNG VON ENDOXINADSORBERN AUF BASIS VON PERLCELLULOSE 88 5.1.1 Aktivierung von Perlcellulose 88 5.1.2 Anbindung von Polymyxin-B-Sulfat 90 5.2 CHARAKTERISIERUNG UND OPTIMIERUNG DES ENDOTOXINADSORBERMATERIALS 90 5.3 UP- SCALE- VERSUCH 96 5.4 WEITERE VERSUCHE MIT PERLCELLULOSE 98 5.5 ANBINDUNG VON PMB AN PERLCELLULOSEACETAT 102 5.6 BEWERTUNG UND AUSBLICK 107 6. MAGNETISCHE MARKERPARTIKEL AUF BASIS VON PERLCELLULOSE 109 6.1 HOMOGENE EINBINDUNG VON MAGNETIT IN PERLCELLULOSE 109 6.1.1 Auswahl des Dispergiergerätes 111 6.1.2 Optimierung der BUT- Drehzahl und der Dispergierzeit 112 6.1.3. Versuche mit Methylcellulose als Schutzkolloid 120 6.2 CHARAKTERISIERUNG DER MAGNETISIERTEN PERLCELLULOSEPARTIKEL 122 6.2.1 Partikelgröße 122 6.2.2 Rasterelektronenmikroskopie 124 6.2.3 Energiedispersive Röntgenmikroanalyse 126 6.2.4 Bestimmung des Eisengehaltes mittels AAS 128 6.2.5 Magnetische Messungen 129 6.3 BEWERTUNG DER BISHERIGEN ERGEBNISSE 130 7. ZUSAMMENFASSUNG UND AUSBLICK 132 8. EXPERIMENTELLES 135 8.1 CHEMIKALIEN 135 8.2 METHODISCHES 135 8.3 PRÄPARATIONSVORSCHRIFTEN UND ARBEITSANLEITUNGEN 136 8.3.1 Herstellen der Ausgangslösungen 136 8.3.2 Herstellung der Perlcellulosen 137 8.3.2.1 Herstellung des Perlcelluloseacetates 137 8.3.2.2 Deacetylierung des Perlcelluloseacetates 138 8.3.3 Aktivierung von Perlcellulosen 138 8.3.4 Herstellung von Endotoxinadsorbermaterial 138 8.3.5 Magnetitanbindung 139 LITERATUR 140 ABKÜRZUNGSVERZEICHNIS 152 ABBILDUNGSVERZEICHNIS 154 TABELLENVERZEICHNIS 158 / Bead cellulose is regenerated cellulose II characterized by spherically shaped, porous particles with a high specific surface and a good biocompatibility. Because of their properties these cellulose microspheres are especially suited for medical applications. The focus of this work was the synthesis, characterization and modification of bead cellulose with particle sizes between 1 to 10 µm. In the frame of this work seven technical cellulose-2.5-acetates were investigated with regard to their suitability for making bead cellulose according to the process described in EP0750007. These cellulose acetates have comparable molecular characteristics. Different properties were compared. Bead celluloses can be synthesized from all investigated cellulose acetates. A product with a molecular weight of more than 100,000 and with a ratio between molecular weight and numeric molecular weight of about 1.5 is special suited. This cellulose-2.5-acetate has a good solubility in ethyl acetate / methanol (100:17.5). The bead cellulose made from it has a low particle size and a relative narrow size distribution. Thus this cellulose acetate complies with the requirements for making bead cellulose. The most important process step for making bead cellulose is the dispersing of the emulsion using an inline-ultraturrax. The distribution of particle size depends mainly on the conditions during dispersing. A reproducible synthesis of cellulose microspheres with a particle size range below 5 µm was successfully achieved. In addition to determining conditions for manufacturing bead cellulose the characterization of the microspheres is essential to obtain bead cellulose with well defined properties. At first well-established methods of characterization were used (particle size measurement, SEM and mercury porosimetry). In parallel new methods were developed and implemented. The main focus was the investigation of sedimentation behaviour of bead cellulose using analytical centrifugation. Based on this knowledge of the sedimentation volume a new method to calculate the porosity was designed. Raman spectroscopy was used for detecting the complete deacetylation of the samples. By using well-established and newly developed methods properties of bead cellulose such as particle size and distribution, morphology and porosity can be accurately adjusted. In this way the reproducible synthesis of cellulose microspheres can be ensured. The aim of further experiments was to develop an endotoxin adsorber material based on a coupling of bead cellulose with Polymyxin B sulfate (PMB). The coupling with PMB was carried out after activation of the samples by using epichlorohydrin. At first the added epichlorohydrin amount was diversified in order to find the optimum for the activation of bead cellulose. Later the coupling of different amounts of PMB took place and the linking of PMB to non activated samples was investigated too. The planning of all experiments occurred after evaluation of Limulus amebocyte lysate (LAL) tests at Danube-University Krems. Using these batch tests the effectiveness of the endotoxin adsorber material was tested compared to untreated blood plasma as well as commercial available adsorbers based on polystyrene. Endotoxin adsorbers showing the best adsorption rate were then synthesized for the first time in larger quantities. Also the direct synthesis of endotoxin adsorber material based on bead cellulose acetate could be realized. Using this newly developed method, deacetylation and activation occur during the same step. This means manufacturing process can be simplified. Using magnetized bead cellulose as biocompatible marker particles is planned to achieve first fault safety in case of a membrane rupture during extracorporeal blood purification. Initial tests have shown that the magnetization of cellulose microspheres is possible during the manufacturing process. The incorporation of magnetite can be realized while keeping the spherical shape of the particles using this homogenous synthesis pathway.:1. EINLEITUNG 3 2. THEORETISCHE GRUNDLAGEN 5 2.1 CELLULOSE 5 2.1.1 Molekulare Struktur 7 2.1.2 Morphologische Struktur 9 2.1.3 Polymorphie 9 2.1.3.1 Native Cellulose 11 2.1.3.2 Weitere Cellulosemodifikationen 12 2.1.3.3 Umwandlung von Cellulose I in Cellulose II 13 2.1.4 Aktivierung 15 2.2 CELLULOSEACETAT 17 2.2.1 Herstellung 17 2.2.1.1 Technische Herstellung 18 2.2.1.2 Homogene Herstellungsmethoden 19 2.2.2 Eigenschaften und Charakterisierung 20 2.2.3 Verwendung 21 2.3 PERLCELLULOSE 22 2.3.1 Herstellung 23 2.3.1.1 Sprühverfahren 23 2.3.1.2 Suspensionsverfahren 24 2.3.1.3 Acetatverfahren 24 2.3.2 Charakterisierung 26 2.3.2.1 Partikelgröße und Partikelgrößenverteilung 26 2.3.2.2 Porosität 27 2.2.2.3 Quellwert 28 2.3.2.4 Weitere Methoden 28 2.3.3 Verwendung 30 2.3.3.1 Perlcellulose als Adsorbermaterial 30 2.3.3.2 Adsorption von Endotoxinen 31 2.3.4 Magnetisierung 36 2.3.4.1 Einsatz und Herstellung magnetischer Partikel 36 2.3.4.2 Einbindung von Magnetit in Perlcellulose 39 3. HERSTELLUNG VON PERLCELLULOSE 41 3.1 CELLULOSEACETAT ALS AUSGANGSSTOFF FÜR DIE SYNTHESE VON PERLCELLULOSE 41 3.1.1 Charakterisierung von Celluloseacetaten 41 3.1.1.1 Löslichkeit 41 3.1.1.2 Trübungsmessungen 42 3.1.1.3 Molmassenverteilung 44 3.1.1.4 Verteilung der Substituenten 45 3.1.1.5 Bestimmung des Substitutionsgrades mittels NMR und SEC 46 3.1.2 Einfluss der Celluloseacetate auf die Eigenschaften der Perlcellulose 47 3.1.2.1 Herstellung der Perlcellulosen 47 3.1.2.2 Messung der Partikelgröße 48 3.1.2.3 Charakterisierung der Perlcellulosen mittels Rasterelektronenmikroskopie 49 3.1.3 Schlussfolgerungen 51 3.2 HERSTELLUNG VON PERLCELLULOSE MIT DEFINIERTEN EIGENSCHAFTEN 52 3.2.1 Bildung der Celluloseperlen 52 3.2.2 Dispergieren im Inline- Ultraturrax 54 3.2.2.1 Einfluss der Drehzahl 54 3.2.2.2 Mehrfaches Dispergieren 56 3.2.2.3 Geschwindigkeit der Schlauchpumpe 58 3.2.2.4 Vergleich der Ergebnisse 59 3.2.3 Zusammensetzung der Emulsion 60 3.2.3.1 Salzgehalt 61 3.2.3.2 Methylcellulosekonzentration 62 3.2.3.3 Ethylacetatkonzentration 63 3.2.3.4 Tensidgehalt 65 3.2.3.5 Gleichzeitige Veränderung mehrerer chemischen Parameter 66 3.2.4 Aufbereitung des Perlcelluloseacetats 68 3.2.4.1 Abrotieren der Lösungsmittel 68 3.2.4.2 Reinigung und Deacetylierung 69 3.2.5 Standardbedingungen 69 4. CHARAKTERISIERUNG VON PERLCELLULOSEN 70 4.1 PARTIKELGRÖßENMESSUNG 70 4.2 RASTERELEKTRONENMIKROSKOPIE 70 4.3 QUECKSILBERPOROSIMETRIE 71 4.4 SEDIMENTATIONSVERHALTEN 73 4.4.1 Sedimentationsgeschwindigkeit 73 4.4.2 Berechnung der mittleren Teilchengröße 79 4.4.3 Sedimentationsvolumen 82 4.5 BESTIMMUNG DER POROSITÄT AUS DEM SEDIMENTATIONSVOLUMEN 83 4.5.1 Porositätsuntersuchungen an einer analytischen Multiprobenzentrifuge 83 4.5.2 Porositätsuntersuchungen an einer Laborzentrifuge 84 4.5.3 Vergleich der ermittelten Porositätswerte 85 4.6 RAMANSPEKTROSKOPIE 87 5. PERLCELLULOSE ALS ENDOTOXINADSORBERMATERIAL 88 5.1 ENTWICKLUNG VON ENDOXINADSORBERN AUF BASIS VON PERLCELLULOSE 88 5.1.1 Aktivierung von Perlcellulose 88 5.1.2 Anbindung von Polymyxin-B-Sulfat 90 5.2 CHARAKTERISIERUNG UND OPTIMIERUNG DES ENDOTOXINADSORBERMATERIALS 90 5.3 UP- SCALE- VERSUCH 96 5.4 WEITERE VERSUCHE MIT PERLCELLULOSE 98 5.5 ANBINDUNG VON PMB AN PERLCELLULOSEACETAT 102 5.6 BEWERTUNG UND AUSBLICK 107 6. MAGNETISCHE MARKERPARTIKEL AUF BASIS VON PERLCELLULOSE 109 6.1 HOMOGENE EINBINDUNG VON MAGNETIT IN PERLCELLULOSE 109 6.1.1 Auswahl des Dispergiergerätes 111 6.1.2 Optimierung der BUT- Drehzahl und der Dispergierzeit 112 6.1.3. Versuche mit Methylcellulose als Schutzkolloid 120 6.2 CHARAKTERISIERUNG DER MAGNETISIERTEN PERLCELLULOSEPARTIKEL 122 6.2.1 Partikelgröße 122 6.2.2 Rasterelektronenmikroskopie 124 6.2.3 Energiedispersive Röntgenmikroanalyse 126 6.2.4 Bestimmung des Eisengehaltes mittels AAS 128 6.2.5 Magnetische Messungen 129 6.3 BEWERTUNG DER BISHERIGEN ERGEBNISSE 130 7. ZUSAMMENFASSUNG UND AUSBLICK 132 8. EXPERIMENTELLES 135 8.1 CHEMIKALIEN 135 8.2 METHODISCHES 135 8.3 PRÄPARATIONSVORSCHRIFTEN UND ARBEITSANLEITUNGEN 136 8.3.1 Herstellen der Ausgangslösungen 136 8.3.2 Herstellung der Perlcellulosen 137 8.3.2.1 Herstellung des Perlcelluloseacetates 137 8.3.2.2 Deacetylierung des Perlcelluloseacetates 138 8.3.3 Aktivierung von Perlcellulosen 138 8.3.4 Herstellung von Endotoxinadsorbermaterial 138 8.3.5 Magnetitanbindung 139 LITERATUR 140 ABKÜRZUNGSVERZEICHNIS 152 ABBILDUNGSVERZEICHNIS 154 TABELLENVERZEICHNIS 158

Page generated in 0.0478 seconds