Spelling suggestions: "subject:"advection diffusion"" "subject:"advections diffusion""
51 |
Finite Element Modeling of Steel Corrosion in Concrete StructuresFarhadi, Mehrnoush 14 September 2018 (has links)
Concrete is a popular construction material for bridges, due to its high durability and energy efficiency. An important concern for concrete bridges is the possible occurrence of chloride- induced corrosion in prestressing strands and reinforcing bars, which may substantially impact the service life of such structures. Chloride- induced corrosion is a complicated electrochemical process which is affected by heat transfer, moisture flow and transport of chemical species through the concrete pore network. Reliable and robust analytical tools are required to allow multi-physics simulations of steel corrosion.
This study has developed a nonlinear finite element analysis program, called VT-MultiPhys, to enable multi-physics simulations, including analyses of chloride-induced corrosion. The program includes constitutive laws, element formulations and global solution schemes to allow the analysis of steady-state (static) and time-dependent (dynamic) problems, involving multiple, coupled processes such as mechanical deformation, heat transfer, mass flow and chemical reactions combined with advective/diffusive transport of the various species. Special analysis schemes, based on the streamline-upwind Petrov-Galerkin (SUPG) method, have also been implemented to address the spatial instabilities which characterize analyses of advection-dominated transport.
The finite element modeling scheme, constitutive laws and boundary conditions for analysis of chloride-induced corrosion are described in detail. The constitutive laws can be combined with inelastic material models to capture the damage (e.g., cracking) due to chloride-induced corrosion. A set of verification analyses is presented, to demonstrate the capabilities of VT-MultiPhys to conduct different types of simulations and reproduce the closed-form analytical solutions of simple cases. Validation analyses for heat conduction, moisture flow and chloride transport, using data from experimental tests in the literature, are also presented. / Master of Science / The deterioration of concrete structures and infrastructures due to the chloride-induced corrosion in prestressing strands and reinforcing bars may substantially impact the service life of such structures. Chloride-induced corrosion is a complicated electrochemical process which is initiated and proceeds due to the chloride attacks at the surfaces of concrete structures and ends in the volume expansion, cracking and spalling of concrete. Due to the lack of comprehensive modeling tool, which can simultaneously comprise the influential factors in chloride-induced corrosion, the realistic estimation of the service life of reinforced concrete structures is still challenging. Reliable and robust analytical tools are required to allow multi-physics simulations of steel corrosion.
This study has developed a comprehensive finite element analysis program, called VT-MultiPhys, for calculating and monitoring the contribution of chloride ions to chloride-induced corrosion during service life of concrete structures. The present analysis program enables modeling of the coupled physical process including heat transfer, moisture flow and transport of chemical species through the concrete pore network. Also, by modeling the influence of flexural cracks on chloride transport in concrete, the analysis program is able to predict the rate of steel corrosion in cracked concrete structures.
A set of verification analyses is presented, to demonstrate the capabilities of VT-MultiPhys to conduct different types of simulations of heat conduction, moisture flow and chloride transport and the comparison is found to be satisfactory. The element formulations and solution algorithms in VT-MultiPhys also allow the investigation of other long-term deterioration mechanisms, such as carbonation-induced corrosion, alkali-silika reaction (ASR) and sulfate attack. The present contribution will hopefully enable and facilitate future research in these topics, through the formulation and implementation of proper constitutive laws and chemical reaction equations.
|
52 |
Modélisation stochastique de systèmes biologiques multi-échelles et inhomogènes en espace / Stochastic Modeling of Multiscale Biological Systems with Spatial InhomogeneityNguepedja Nankep, Mac jugal 22 March 2018 (has links)
Les besoins grandissants de prévisions robustes pour des systèmes complexes conduisent à introduire des modèles mathématiques considérant un nombre croissant de paramètres. Au temps s'ajoutent l'espace, l'aléa, les échelles de dynamiques, donnant lieu à des modèles stochastiques multi-échelles avec dépendance spatiale (modèles spatiaux). Cependant, l'explosion du temps de simulation de tels modèles complique leur utilisation. Leur analyse difficile a néanmoins permis, pour les modèles à une échelle, de développer des outils puissants: loi des grands nombres (LGN), théorème central limite (TCL), ..., puis d'en dériver des modèles simplifiés et algorithmes accélérés. Dans le processus de dérivation, des modèles et algorithmes dits hybrides ont vu le jour dans le cas multi-échelle, mais sans analyse rigoureuse préalable, soulevant ainsi la question d'approximation hybride dont la consistance constitue l'une des motivations principales de cette thèse.En 2012, Crudu, Debussche, Muller et Radulescu établissent des critères d'approximation hybride pour des modèles homogènes en espace de réseaux de régulation de gènes. Le but de cette thèse est de compléter leur travail et le généraliser à un cadre spatial.Nous avons développé et simplifié différents modèles, tous des processus de Markov de sauts pures à temps continu. La démarche met en avant, d'une part, des conditions d'approximations déterministes par des solutions d'équations d'évolution (type réaction-advection-diffusion), et, d'autre part, des conditions d'approximations hybrides par des processus stochastiques hybrides. Dans le cadre des réseaux de réactions biochimiques, un TCL est établi. Il correspond à une approximation hybride d'un modèle homogène simplifié à deux échelles de temps (suivant Crudu et al.). Puis, une LGN est obtenue pour un modèle spatial à deux échelles de temps. Ensuite, une approximation hybride est établie pour un modèle spatial à deux échelles de dynamique en temps et en espace. Enfin, des comportements asymptotiques en grandes populations et en temps long sont présentés pour un modèle d'épidémie de choléra, via une LGN suivie d'une borne supérieure pour les sous-ensembles compacts, dans le cadre d'un principe de grande déviation (PGD) correspondant.À l'avenir, il serait intéressant, entre autres, de varier la géométrie spatiale, de généraliser le TCL, de compléter les estimations du PGD, et d'explorer des systèmes complexes issus d'autres domaines. / The growing needs of precise predictions for complex systems lead to introducing stronger mathematical models, taking into account an increasing number of parameters added to time: space, stochasticity, scales of dynamics. Combining these parameters gives rise to spatial --or spatially inhomogeneous-- multiscale stochastic models. However, such models are difficult to study and their simulation is extremely time consuming, making their use not easy. Still, their analysis has allowed one to develop powerful tools for one scale models, among which are the law of large numbers (LLN) and the central limit theorem (CLT), and, afterward, to derive simpler models and accelrated algorithms. In that deduction process, the so-called hybrid models and algorithms have arisen in the multiscale case, but without any prior rigorous analysis. The question of hybrid approximation then shows up, and its consistency is a particularly important motivation of this PhD thesis.In 2012, criteria for hybrid approximations of some homogeneous regulation gene network models were established by Crudu, Debussche, Muller and Radulescu. The aim of this PhD thesis is to complete their work and generalize it afterward to a spatial framework.We have developed and simplified different models. They all are time continuous pure jump Markov processes. The approach points out the conditions allowing on the the one hand deterministic approximations by solutions of evolution equations of type reaction-advection-diffusion, and, on the other hand, hybrid approximations by hybrid stochastic processes. In the field of biochemical reaction networks, we establish a CLT. It corresponds to a hybrid approximation of a simplified homogeneous model (due to Crudu et al.). Then a LLN is obtained for a spatial model with two time scales. Afterward, a hybrid approximation is established, for a two time-space scales spatial model. Finally, the asymptotic behaviour in large population and long time are respectively presented for a model of cholera epidemic, through a LLN followed by the upper bound for compact sets, in the context of a corresponding large deviation principle (LDP).Interesting future works would be, among others, to study other spatial geometries, to generalize the CLT, to complete the LDP estimates, and to study complex systems from other fields.
|
53 |
Schémas numériques d'advection et de propagation d'ondes de gravité dans les modèles de circulation océanique / Advection and gravity waves propagation numerical schemes for oceanic circulation modelsDemange, Jérémie 21 October 2014 (has links)
Les modèles numériques d'océans régionaux tridimensionnels sont basés sur la résolution des équations primitives et utilisent pour la plupart des méthodes de résolution eulérienne de type différences finies sur des grilles décalées. Ces modèles doivent représenter fidèlement les transports et transferts d'énergie. L'amélioration de ces modèles numériques exige donc (i) l'identification des processus prépondérants, notamment en terme de dissipation, dans ces transferts et (ii) la construction de méthodes numériques respectant un certain nombre d'équilibres. La première partie du travail se concentre sur la propagation des ondes externes et internes de gravité. Nous nous intéresserons en premier lieu à la stabilité de la séparation en mode rapide (barotrope) et lents (baroclines) et montrons qu'elle peut être ameliorée en levant certaines hypothèses traditionnellement effectuées. Dans un second temps, nous étudions l'impact de la discrétisation (ordre des schémas, grilles décalées ou non) sur la propagation des ondes internes de gravité provenant du couplage vitesse pression. Une décomposition en modes verticaux nous permet également de proposer un schéma espace temps très efficace. La seconde partie étudie en détail les schémas d'advection de quantité de mouvement et de traceurs, tout particulièrement dans l'objectif d'une réduction de la diffusion diapycnale (diffusion dans les directions orthogonales aux couches de densité constante). Ce travail nous amène tout d'abord à porter notre attention sur les schémas d'advection verticaux souvent négligés au regard de la dimension horizontale. Les bonnes propriétés d'un schéma compact (et de ses variantes espace temps et monotones) sont mises en avant. Enfin nous analysons le comportement multidimensionnel de ces schémas d'advection. / Three-dimensional regional ocean numerical models are based on solving the primitive equations and mostly use Eulerian finite differences methods of resolution on staggered grids. These models must accurately represent transports and energy transfers. Improving these numerical models therefore requires (i) the identification of predominant process, particularly in terms of dissipation in these transfers and (ii) the construction of numerical methods respecting a number of balances. The first part of the work focuses on the propagation of external and internal gravity waves. We focus primarily on the stability of the separation in fast mode (barotropic) and slow (baroclinic) and show that it can be improved by removing certain assumptions traditionally made. In a second step, we study the impact of the discretization (order of schemes, staggered grids or not) on the propagation of internal gravity waves coming from the coupling velocity pressure. A decomposition into vertical modes also allows us to offer a highly effective space-time scheme. The second part examines in detail the numerical advection schemes of momentum and tracers, especially with the aim of reducing the diapycnal diffusion (diffusion in the orthogonal direction of constant density layers). This work leads us first to focus our attention on the vertical advection schemes often overlooked in front of the horizontal dimension. The good properties of a compact schema (and its space-time and monotonous variants ) are highlighted. Finally we analyze the multidimensional behavior of these advection schemes.
|
54 |
Identificação de parâmetros em problemas de advecção-difusão combinando a técnica do operador adjunto e métodos de volumes finitos de alta ordem / Identification of parameters in advection-diffusion problems of combining the adjoint operator\'s and methods of finite volume of high orderAlessandro Alves Santana 01 November 2007 (has links)
O objetivo desse trabalho consiste no estudo de métodos de identificação de parâmetros em problemas envolvendo a equação de advecção-difusão 2D. Essa equação é resolvida utilizando o método dos volumes finitos, sendo empregada métodos de reconstrução de alta ordem em malhas não-estruturadas de triângulos para calcular os fluxos nas faces dos volumes de controle. Como ferramenta de busca dos parâmetros é empregada a técnica baseadas em gradientes, sendo os mesmos calculados utilizando processos baseados em métodos adjuntos. / The aim of this work concern to study parameter identification methods on problems involving the advection-diffusion equation in two dimensions. This equation is solved employing the finite volume methods, and high-order reconstruction methods, on triangle unstructured meshes to solve the fluxes across the faces of control volumes. As parameter searching tool is employed technicals based on gradients. The gradients are solved using processes based on adjoint methods.
|
55 |
Identificação de parâmetros em problemas de advecção-difusão combinando a técnica do operador adjunto e métodos de volumes finitos de alta ordem / Identification of parameters in advection-diffusion problems of combining the adjoint operator\'s and methods of finite volume of high orderSantana, Alessandro Alves 01 November 2007 (has links)
O objetivo desse trabalho consiste no estudo de métodos de identificação de parâmetros em problemas envolvendo a equação de advecção-difusão 2D. Essa equação é resolvida utilizando o método dos volumes finitos, sendo empregada métodos de reconstrução de alta ordem em malhas não-estruturadas de triângulos para calcular os fluxos nas faces dos volumes de controle. Como ferramenta de busca dos parâmetros é empregada a técnica baseadas em gradientes, sendo os mesmos calculados utilizando processos baseados em métodos adjuntos. / The aim of this work concern to study parameter identification methods on problems involving the advection-diffusion equation in two dimensions. This equation is solved employing the finite volume methods, and high-order reconstruction methods, on triangle unstructured meshes to solve the fluxes across the faces of control volumes. As parameter searching tool is employed technicals based on gradients. The gradients are solved using processes based on adjoint methods.
|
56 |
New enriched element methods for unsteady reaction-advection-diffusion models / Novos métodos de elementos finitos enriquecidos aplicados a modelos de reação-advecção-difusão transientesJairo Valões de Alencar Ramalho 20 December 2005 (has links)
Several problems in physics and engineering are modeled by reaction-advection-diffusion (RAD) equations. However, when the diffusive terms are small compared with the other ones, these problems can become difficult to solve numerically. Besides, formulating the unsteady version of these models in a semi-discrete fashion, it can be interpreted that the overall diffusivity gets smaller as the time step decreases. To overcome these drawbacks, this thesis considers the development of Galerkin (or Petrov-Galerkin) finite element methods based on approximation spaces enriched by residual-free bubbles (RFB) or multiscale functions. Beginning with the unsteady reaction-diffusion problem, new methods using multiscale functions are presented which improve the solutions in the reaction-dominated regime and/or when small time steps are adopted. They also give rise to a general concept of stabilizing unsteady problems differently along the time. In the following, it is shown that switching RFB by suitable multiscale functions in the elements connected to the outflow boundaries of the domain increases the accuracy of the solutions in this region for RAD problems with advection. Next, this methodology is further studied for systems of RAD equations. In a final contribution, an extension of the RFB method is introduced for the shallow waters equations. All these methods are tested through benchmark problems and compared with stabilized methods presenting stable and accurate results. / A modelagem de vários problemas físicos e de engenharia envolve a solução de problemas de transporte do tipo reação-advecção-difusão (RAD), porém, estes podem tornar-se singularmente perturbados quando os termos difusivos são pequenos comparados aos demais. Além disso, ao adotar formulações semi-discretas em problemas transientes, observa-se que diminuir o passo de tempo tem um efeito de redução da componente difusiva. Para superar estas dificuldades, esta tese considera o desenvolvimento de métodos de elementos finitos de Galerkin (ou Petrov-Galerkin) baseados em espaços de aproximação enriquecidos por funções bolhas livres do resíduo (RFB) ou funções multiescala. Começando pelo problema de reação-difusão transiente, novos métodos utilizando funções multiescala são apresentados, os quais melhoram as soluções no regime reativo-dominante e/ou quando pequenos passos de tempo são adotados. Com estes métodos, discute-se também o conceito de estabilização variável ao longo do tempo para problemas transientes. Na seqüência, verifica-se que utilizar funções multiescala nos elementos conectados às fronteiras de saída de fluxo do domínio e RFB nos demais elementos aumenta a precisão das soluções nesta região em problemas de RAD com advecção dominante. A seguir, esta metodologia é estudada para sistemas de RAD. Como contribuição final, estende-se o método RFB para o modelo de águas rasas. Todos estes métodos são submetidos a testes de robustez e comparados com métodos estabilizados, apresentando resultados estáveis e precisos.
|
57 |
Fonctionnement hydrogéologique et processus de transport dans les aquifères karstiques du Massif du Jura / Hydrogeological functioning and transport processes in the karst aquifers of the Jura MountainsCholet, Cybèle 18 May 2017 (has links)
La compréhension du fonctionnement des aquifères karstiques est un enjeu considérable au vu des structures complexes de ces réservoirs. La forte hétérogénéité des écoulements induit une grande vulnérabilité de ces milieux et des comportements variés au cours des crues en lien avec différents processus de recharge. Dans le Massif du Jura, les aquifères karstiques constituent la principale ressource en eau potable et posent la question de leur rôle dans la dégradation de la qualité de l'eau observée depuis plusieurs décennies. Cette thèse propose différentes approches complémentaires pour mieux comprendre les dynamiques de crues dans ces aquifères sous diverses conditions hydrologiques. Plusieurs systèmes karstiques du Massif du Jura, présentant des dimensions variables et dominés par des mécanismes de recharges distincts, sont caractérisés à partir de suivis physico-chimiques et hydrochimiques détaillés.Tout d'abord, les différents systèmes sont comparés à l'échelle du cycle hydrologique et à l'échelle saisonnière afin d'identifier les processus de recharge dominants (infiltrations localisées et/ou diffuses) ainsi que les signatures hydrochimiques caractéristiques (arrivées allochtones, autochtones et/ou anthropiques). Une étude comparative de deux systèmes met en avant la forte variabilité saisonnière de la réponse hydrochimique sur un système marqué par une recharge localisée importante. Les différents systèmes sont ensuite analysés à une échelle de temps plus fine afin de mieux comprendre les dynamiques de crues. Une crue intense d'automne a été ainsi comparée à de plus petites crues précédées par des périodes d'étiages importantes et marquées par des signatures hydrochimiques anthropiques significatives. A partir de ces résultats, la méthode EMMA (End-Member Mixing Analysis) est appliquée afin d'établir les principaux pôles hydrochirniques responsables des contributions caractéristiques des différents systèmes. Ensuite, au vu du transport important de matières en suspension au cours des crues dans ces aquifères, une partie de ce travail vise à mieux comprendre le rôle et l'impact de ces matières sur le transport dissous et colloïdal. Les éléments traces métalliques (ETM) sont utilisés afin de caractériser l'origine et la dynamique des transferts. Ils apparaissent alors comme des outils pertinents pour identifier des phénomènes de dépôts et de remobilisation de particules dans le système. Ces dynamiques s'observent à la fois sur le système de Fourbanne marqué par une infiltration localisée importante et sur le petit système du Dahon, caractérisé par une infiltration diffuse.Finalement, afin de mieux comprendre la variabilité spatio-temporelle des interactions qui ont lieu au cours des crues le long du conduit karstique, une nouvelle approche de modélisation est définit. Elle propose l'utilisation des équations de l'onde diffusante et d'advection-diffusion avec la même résolution mathématique (solution analytique d'Hayarni (1951)) en supposant une distribution uniforme des échanges le long du conduit. A partir d'une modélisation inverse, elle permet alors d'identifier et d'estimer les échanges en termes de flux hydriques et de flux massiques entre deux stations de mesure. Cette méthodologie est appliquée sur le système de Fourbanne le long de deux tronçons caractérisant (1) la zone non-saturée et (2) zone non-saturée et saturée. L'analyse de plusieurs crues permet d'observer des dynamiques d'échanges variées sur les deux tronçons. Elle permet ainsi d'établir un schéma de fonctionnement du système soulignant des interactions importantes dans la zone saturée et également le rôle de la zone non-saturée pour le stockage dans le système karstique.Ce travail de thèse propose donc un ensemble d'outils riches et complémentaires pour mieux comprendre les dynamiques de crues et montre l'importance de coupler l'analyse des processus hydrodynamiques et hydrochimiques afin de mieux déchiffrer le fonctionnement de ces aquifères. / The understanding of karst aquifer functioning is a major issue, given the complex structures of these reservoirs. The high heterogeneity of the flows induces a high vulnerability of these media and implies distinct behaviours during floods because of various infiltration processes. In the Jura Mountains, karst aquifers constitute the main source of water drinking supply and raise the question of their role in the degradation of water quality observed for several decades. This work uses complementary approaches to better understand the dynamics of floods in aquifers under various hydrological conditions. Several karst systems of the Jura Mountains, varying in size and characterized by distinct recharge processes, are investigated by detailed physico-chemical and hydrochemical monitoring.First, the different systems are compared at the hydrological cycle scale and at the seasonal scale to identify the dominant recharge processes (localized and/or diffuse infiltrations) as well as the characteristic hydrochemical signatures (allochtonous, autochthonous and/or anthropogenic). A comparative study of two systems with distinct recharge processes highlights the high seasonal variability of the hydrochemical response. The different systems are then analysed on a finer time scale to shed light on flood dynamics. An intense autumn flood was thus compared to smaller floods preceded by periods of significant low flow and marked by significant anthropogenic hydrochemical signatures. The EMMA (End-Member Mixing Analysis) method is applied to these results in order to establish the main hydrochemical end-members responsible for the characteristic contributions of the different systems.Then, considering the important transport of suspended matter during floods in these aquifers, part of this work aims to better understand the role and impact of these materials on dissolved and colloidal transport. Metal trace elements (ETM) are used to characterize the origin and transfer dynamics. These are relevant tools to identify the processes of storage and remobilization of the particles in the system. These dynamics are observed both on the Fourbanne system with an important localized infiltration, and on the small Dahon system, characterized by diffuse infiltration.Finally, in order to shed light on the spatio-temporal variability of the interactions that occur along the karst network during floods, a new modelling approach is defined. It is based upon the use of the diffusive wave and advectiondiffusion equations with the same mathematical resolution (Hayami's analytical solution (1951)) assuming a uniform distribution of the exchanges along the reach. An inverse modelling approach allows to identify and estimate the exchanges in terms of water flows and solute between two measurement stations. This methodology is applied to the Fourbanne system on two sections characterizing (1) the unsaturated zone and (2) unsaturated and saturated zone. The analysis of several floods highlights the different exchange dynamics on the two sections. It thus makes it possible to establish a functioning scheme of the system, bringing to light the important interactions in the saturated zone and also the storage role of the unsaturated zone in the karst system.This work offers a set of rich and complementary tools to better characterize the dynamics of floods and shows the importance of coupling the analysis of the hydrodynamic and hydrochemical processes to better decipher the functioning of these aquifers.
|
58 |
Fyzikální modelování a simulace / Physically-based Modeling and SimulationDvořák, Radim January 2014 (has links)
Disertační práce se zabývá modelováním znečištění ovzduší, jeho transportních a disperzních procesů ve spodní části atmosféry a zejména numerickými metodami, které slouží k řešení těchto modelů. Modelování znečištění ovzduší je velmi důležité pro předpověď kontaminace a pomáhá porozumět samotnému procesu a eliminaci následků. Hlavním tématem práce jsou metody pro řešení modelů popsaných parciálními diferenciálními rovnicemi, přesněji advekčně-difúzní rovnicí. Polovina práce je zaměřena na známou metodu přímek a je zde ukázáno, že tato metoda je vhodná k řešení určitých konkrétních problémů. Dále bylo navrženo a otestováno řešení paralelizace metody přímek, jež ukazuje, že metoda má velký potenciál pro akceleraci na současných grafických kartách a tím pádem i zvětšení přesnosti výpočtu. Druhá polovina práce se zabývá poměrně mladou metodou ELLAM a její aplikací pro řešení atmosférických advekčně-difúzních rovnic. Byla otestována konkrétní forma metody ELLAM společně s navrženými adaptacemi. Z výsledků je zřejmé, že v mnoha případech ELLAM překonává současné používané metody.
|
59 |
Analyse numérique de méthodes performantes pour les EDP stochastiques modélisant l'écoulement et le transport en milieux poreux / Numerical analysis of performant methods for stochastic PDEs modeling flow and transport in porous mediaOumouni, Mestapha 06 June 2013 (has links)
Ce travail présente un développement et une analyse des approches numériques déterministes et probabilistes efficaces pour les équations aux dérivées partielles avec des coefficients et données aléatoires. On s'intéresse au problème d'écoulement stationnaire avec des données aléatoires. Une méthode de projection dans le cas unidimensionnel est présentée, permettant de calculer efficacement la moyenne de la solution. Nous utilisons la méthode de collocation anisotrope des grilles clairsemées. D'abord, un indicateur de l'erreur satisfaisant une borne supérieure de l'erreur est introduit, il permet de calculer les poids d'anisotropie de la méthode. Ensuite, nous démontrons une amélioration de l'erreur a priori de la méthode. Elle confirme l'efficacité de la méthode en comparaison avec Monte-Carlo et elle sera utilisée pour accélérer la méthode par l'extrapolation de Richardson. Nous présentons aussi une analyse numérique d'une méthode probabiliste pour quantifier la migration d'un contaminant dans un milieu aléatoire. Nous considérons le problème d'écoulement couplé avec l'équation d'advection-diffusion, où on s'intéresse à la moyenne de l'extension et de la dispersion du soluté. Le modèle d'écoulement est discrétisée par une méthode des éléments finis mixtes, la concentration du soluté est une densité d'une solution d'une équation différentielle stochastique, qui sera discrétisée par un schéma d'Euler. Enfin, on présente une formule explicite de la dispersion et des estimations de l'erreur a priori optimales. / This work presents a development and an analysis of an effective deterministic and probabilistic approaches for partial differential equation with random coefficients and data. We are interesting in the steady flow equation with stochastic input data. A projection method in the one-dimensional case is presented to compute efficiently the average of the solution. An anisotropic sparse grid collocation method is also used to solve the flow problem. First, we introduce an indicator of the error satisfying an upper bound of the error, it allows us to compute the anisotropy weights of the method. We demonstrate an improvement of the error estimation of the method which confirms the efficiency of the method compared with Monte Carlo and will be used to accelerate the method using the Richardson extrapolation technique. We also present a numerical analysis of one probabilistic method to quantify the migration of a contaminant in random media. We consider the previous flow problem coupled with the advection-diffusion equation, where we are interested in the computation of the mean extension and the mean dispersion of the solute. The flow model is discretized by a mixed finite elements method and the concentration of the solute is a density of a solution of the stochastic differential equation, this latter will be discretized by an Euler scheme. We also present an explicit formula of the dispersion and an optimal a priori error estimates.
|
60 |
Novos métodos de elementos finitos enriquecidos aplicados a modelos de reação-advecção-difusão transientes / New enriched element methods for unsteady reaction-advection-diffusion modelsRamalho, Jairo Valões de Alencar 20 December 2005 (has links)
Made available in DSpace on 2015-03-04T18:50:39Z (GMT). No. of bitstreams: 1
Apresentacao.pdf: 200775 bytes, checksum: 317576b779951158daadb5222c59a464 (MD5)
Previous issue date: 2005-12-20 / Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior / Several problems in physics and engineering are modeled by reaction-advection-diffusion (RAD) equations. However, when the diffusive terms are small compared with the other ones, these problems can become difficult to solve numerically. Besides, formulating the unsteady version of these models in a semi-discrete fashion, it can be interpreted that the overall diffusivity gets smaller as the time step decreases. To overcome these drawbacks, this thesis considers the development of Galerkin (or Petrov-Galerkin) finite element methods based on approximation spaces enriched by residual-free bubbles (RFB) or multiscale functions. Beginning with the unsteady reaction-diffusion problem, new methods using multiscale functions are presented which improve the solutions in the reaction-dominated regime and/or when small time steps are adopted. They also give rise to a general concept of stabilizing unsteady problems differently along the time. In the following, it is shown that switching RFB by suitable multiscale functions in the elements connected to the outflow boundaries of the domain increases the accuracy of the solutions in this region for RAD problems with advection. Next, this methodology is further studied for systems of RAD equations. In a final contribution, an extension of the RFB method is introduced for the shallow waters equations. All these methods are tested through benchmark problems and compared with stabilized methods presenting stable and accurate results. / A modelagem de vários problemas físicos e de engenharia envolve a solução de problemas de transporte do tipo reação-advecção-difusão (RAD), porém, estes podem tornar-se singularmente perturbados quando os termos difusivos são pequenos comparados aos demais. Além disso, ao adotar formulações semi-discretas em problemas transientes, observa-se que diminuir o passo de tempo tem um efeito de redução da componente difusiva. Para superar estas dificuldades, esta tese considera o desenvolvimento de métodos de elementos finitos de Galerkin (ou Petrov-Galerkin) baseados em espaços de aproximação enriquecidos por funções bolhas livres do resíduo (RFB) ou funções multiescala. Começando pelo problema de reação-difusão transiente, novos métodos utilizando funções multiescala são apresentados, os quais melhoram as soluções no regime reativo-dominante e/ou quando pequenos passos de tempo são adotados. Com estes métodos, discute-se também o conceito de estabilização variável ao longo do tempo para problemas transientes. Na seqüência, verifica-se que utilizar funções multiescala nos elementos conectados às fronteiras de saída de fluxo do domínio e RFB nos demais elementos aumenta a precisão das soluções nesta região em problemas de RAD com advecção dominante. A seguir, esta metodologia é estudada para sistemas de RAD. Como contribuição final, estende-se o método RFB para o modelo de águas rasas. Todos estes métodos são submetidos a testes de robustez e comparados com métodos estabilizados, apresentando resultados estáveis e precisos.
|
Page generated in 0.0955 seconds