• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Off-gas Nitrous Oxide monitoring for nitrification aeration control

Sivret, Eric Claude, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Effective control of nitrification processes employed at municipal wastewater treatment plants is essential for maintaining process reliability and minimizing environmental impacts and operating costs. While a range of process control strategies are available, they share a dependence on invasive liquid phase monitoring and are based on a periphery understanding of the metabolic status of the processes being controlled. Utilization of off-gas nitrous oxide (N2O) monitoring as a real-time indicator of the process metabolic status is a novel process control concept with the potential to address these concerns. This thesis details the development and evaluation of an off-gas N2O stress response based control technique. Examination of the stress response relationship demonstrated that it met the majority of the criteria of interest for process control. A simple feedback aeration control strategy was developed and evaluated through process simulation to determine the feasibility of implementation, cost effectiveness and associated environmental benefits. The off-gas N2O based control strategy provided better matching between aeration supply and metabolic demand, allowing the process to be maintained at the desired operating setpoints and avert nitrification failure. Performance was demonstrated to be similar to dissolved oxygen based feedback aeration control, although slightly more efficient at reduced dissolved oxygen concentrations. A technical, economic and environmental evaluation indicated that aeration control based on non-invasive off-gas N2O monitoring is technically feasible and has the potential to offer significant environmental and economic benefits including reductions in operating costs and process capital investment, as well as improved effluent compliance and reductions in emissions of gaseous pollutants including greenhouse gases. Overall, while off-gas N2O monitoring based aeration control techniques have the potential to provide significant economic and environmental benefits, a number of research questions remain to be answered. Future work in the form of long-term field trials is required to address these issues and allow quantification of economic and environmental benefits.
2

Off-gas Nitrous Oxide monitoring for nitrification aeration control

Sivret, Eric Claude, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Effective control of nitrification processes employed at municipal wastewater treatment plants is essential for maintaining process reliability and minimizing environmental impacts and operating costs. While a range of process control strategies are available, they share a dependence on invasive liquid phase monitoring and are based on a periphery understanding of the metabolic status of the processes being controlled. Utilization of off-gas nitrous oxide (N2O) monitoring as a real-time indicator of the process metabolic status is a novel process control concept with the potential to address these concerns. This thesis details the development and evaluation of an off-gas N2O stress response based control technique. Examination of the stress response relationship demonstrated that it met the majority of the criteria of interest for process control. A simple feedback aeration control strategy was developed and evaluated through process simulation to determine the feasibility of implementation, cost effectiveness and associated environmental benefits. The off-gas N2O based control strategy provided better matching between aeration supply and metabolic demand, allowing the process to be maintained at the desired operating setpoints and avert nitrification failure. Performance was demonstrated to be similar to dissolved oxygen based feedback aeration control, although slightly more efficient at reduced dissolved oxygen concentrations. A technical, economic and environmental evaluation indicated that aeration control based on non-invasive off-gas N2O monitoring is technically feasible and has the potential to offer significant environmental and economic benefits including reductions in operating costs and process capital investment, as well as improved effluent compliance and reductions in emissions of gaseous pollutants including greenhouse gases. Overall, while off-gas N2O monitoring based aeration control techniques have the potential to provide significant economic and environmental benefits, a number of research questions remain to be answered. Future work in the form of long-term field trials is required to address these issues and allow quantification of economic and environmental benefits.
3

Energy savings with a new aeration and control system in a mid-size Swedish wastewater treatment plant / Energibesparingar genom ett nytt luftnings- och reglersystem i ett medelstortsvenskt avloppsreningsverk

Larsson, Viktor January 2011 (has links)
Within this study it was investigated how much energy and money that could be saved by implementing new aeration equipment and aeration control in Sternö wastewater treatment plant (WWTP). Sternö WWTP is a full-scale plant built in 1997 and dimensioned for 26 000 population equivalents. The plant has two parallel biological treatment lines with pre-denitrification. During the study, one of the treatment lines was used as a test line, where new aeration equipment and control was implemented. The other line was used as a reference line, where the aeration equipment and control was maintained as before. The new aeration equipment that was implemented to support the test line was an AtlasCopco screw blower, fine bubble Sanitaire low pressure diffusers and measurement equipment. Two control strategies were tested: oxygen control and ammonium control. The results show that 35 percentage points of the test line energy consumption was reduced with the new screw blower. The diffusers saved another 21 percentage points and by fine tuning the controllers, the oxygen concentrations and the air pressure a further 9 percentage points could be saved. The ammonium control gave no energy savings, since the lowest allowed DO set-point (0.7 mg L-1) kept effluent ammonium below the ammonium set-point of 1 mg L-1.  The final energy savings of the test line was 65 ± 2 %. Each aeration equipment upgrade increased the energy savings with: •    Blower 35 %. •    Diffusers 32 %. •    Oxygen control with decreased DO concentrations and air pressure 21 %. The final savings correspond to 13 % of the total energy consumption of Sternö WWTP. These savings are equivalent to annual savings of 178 MWh, which decreases the energy costs by 200 000 SEK per year. The payback period of the implemented aeration equipment and control was 3.7 years. / I denna studie har det undersökts hur mycket energi och pengar som kan sparas genom att installera ny luftningsutrusning och luftningsreglering i Sternö avloppsreningsverk. Reningsverket är beläget i Karlshamn och dimensionerat för 26 000 personekvivalenter. Den biologiska reningen är uppdelad på två parallella reningslinjer, där den ena användes till försök och den andra som referenslinje i denna studie. Den biologiska reningen utgörs av en konventionell aktivslamprocess med fördenitrifikation. Studien innefattade en simulering där två olika reglerstrategier för luftningen jämfördes. Simuleringen gjordes i programmet Benchmark Simulation Model no 1 och modellen anpassades för att efterlikna Sternö reningsverk på bästa sätt. De två reglerstrategierna för luftningen utgjordes av luftstyrning baserad på syrekoncentration i bioreaktorerna och luftstyrning baserad på utgående ammoniumkoncentration från bioreaktorerna. Simuleringen visade att energibesparingen från ammoniumreglering jämfört med en syrereglering är liten. Fördelen med ammoniumreglering är istället att den önskade reningsgraden lättare kan uppfyllas över året, trots varierande temperatur. Vid fullskaleförsök vid försökslinjen installerades ny luftningsutrustning (AtlasCopco blåsmaskin med skruvteknologi, Sanitaire småbubbliga diffusorer, samt mätnings-utrustning) och ny luftstyrning. Två luftstyrningsstrategier testades: syrereglering och ammoniumreglering. Resultaten visade att blåsmaskinen gav en energibesparing på 35 procentenheter, att diffusorerna gav en energibesparing på 21 procentenheter och att fininställd syrereglering tillsammans med sänkta syre- och lufttrycksnivåer gav en sänkning på 9 procentenheter. Ammoniumregleringen gav ingen energibesparing eftersom den lägst tillåtna syrekoncentrationen (0,7 mg L-1) höll ammonium-koncentrationen under sitt börvärde på 1 mg L-1. Den slutliga energibesparingen för testlinjen var 65 ± 2 %. Varje luftningsutrustning bidrog med följande energibesparing: •    Blåsmaskin 35 %. •    Diffusorer 32 %. •    Ny syrereglering med sänkta syre- och lufttrycksnivåer 21 %. Den slutliga energibesparingen i testlinjen motsvarar 13 % av Sternö reningsverks totala energiförbrukning, vilket gör att 178 MWh kan sparas per år. Den minskade energi-förbrukningen sänker energikostnaden för reningsverket med 200 000 SEK per år. Återbetalningstiden på den till försökslinjen installerade utrustningen var 3,7 år.
4

Ammoniumåterkoppling på Himmerfjärdsverket – utvärdering genom försök och simuleringar / Ammonium feedback control at Himmerfjärden wastewater treatment plant – evaluation through full-scale experiments and simulations

Andersson, Sofia January 2012 (has links)
Avloppsreningsverk står inför uppgiften att rena inkommande vatten för att möta lagstiftade gränsvärden till en så låg kostnad som möjligt. Att syresätta biologiska reningsprocesser är kostsamt eftersom luftningsanordningen förbrukar mycket energi. Ungefär en femtedel av Himmerfjärdsverkets totala elenergiförbrukning går till luftning av biologiska processer. För att öka Himmerfjärdsverkets energieffektivitet startades under 2010 experiment med olika strategier för luftflödesstyrning. En av verkets nitrifikationsbassänger byggdes då om för att möjliggöra zonvis reglering av syrehalten. Syftet med denna studie var att utvärdera reglering med ammoniumåterkoppling och syrehaltsprofil för styrning av Himmerfjärdsverkets nitrifikationsprocess. Utvärderingen baserades på reningsresultat och energiförbrukning. Med nuvarande reglerstrategi varieras luftningen genom återkoppling från syrehalten i den andra av sex zoner i varje luftad bassäng. Denna reglering medför att det uppstår ett överskott av syre i slutet av bassängerna. Det finns således potential att spara energi om luftningen kan regleras så att syreöverskott undviks. Modellsimuleringar i Benchmark Simulation Model no. 1 (BSM1) användes för att jämföra snabb och långsam ammoniumåterkoppling samt olika typer av syrehaltsprofiler inför försök i full skala. Modellen byggdes om och kalibrerades för att efterlikna Himmerfjärdsverkets process. Strategierna utvärderades för två scenarier; ett utan några övre begränsningar för luftningen och ett där Himmerfjärdsverkets luftflödesbegränsningar simulerades. Resultatet från simuleringarna visade att långsam ammoniumåterkoppling var den mest energieffektiva reglerstrategin i båda scenarierna. Resultatet visade även att det var möjligt att minska syretoppar genom en stigande syrehaltsprofil längs med bassängens flödesriktning. Genom fullskaleförsök utvärderades syrehaltsprofil och ammoniumåterkoppling. Resultatet visade att ammoniumåterkoppling var den reglerstrategi som förbrukade minst luft per mängd avskiljt ammoniumkväve och jämfört med ursprunglig reglering erhölls en 16 % lägre energiförbrukning. / Wastewater treatment plants (WWTP) have the challenging task to treat incoming water in order to meet the discharge limits at the lowest possible cost. Aeration of biological treatment processes is one of the most energy consuming posts at a WWTP. At Himmerfjärden WWTP approximately one fifth of the total electric energy consumption is used for aeration of biological processes. With the purpose of making Himmerfjärden WWTP more energy efficient full-scale experiments with different aeration control strategies started in 2010. In one of the aerated tanks a new control system was installed in order to allow zonewise control of the dissolved oxygen (DO). The objective of this master thesis was to evaluate ammonium feedback control and DO-profile control at Himmerfjärden WWTP. The evaluation was made with regard to effluent quality and aeration needs. With the original control strategy aeration is varied to maintain a constant concentration of dissolved oxygen in the second of six zones in each aerated tank. With this control strategy oxygen peaks occur in the last zones of the aerated tank. Thus, there is potential to save energy if these oxygen peaks can be avoided. Simulations were carried out in the Benchmark Simulation Model no. 1 (BSM1) where fast and slow ammonium feedback control and different DO-profiles were evaluated. The model was modified and calibrated to resemble the process at Himmerfjärden WWTP. The simulations showed that the slow ammonium feedback control was the most energy-efficient strategy. The results also showed that it was possible to reduce oxygen peaks by increasing the oxygen set-point along the aerated tank, e.g. an increasing DO-profile. The full-scale experiments included ammonium feedback control and DO-profile control. The results show that ammonium feedback control needed less airflow per amount ammonium removed, compared to both the DO-profile and the original control strategy, with a 16 % lower energy consumption compared to the original control strategy.
5

Optimization of intermittent aeration for increased nitrogen removal efficiency and improved settling

Fredericks, Dana Kathleen 27 August 2014 (has links)
Nitrogen, when present in excess, can cause eutrophication in waterways, which may result in hypoxia and the desertion or death of aquatic life. As nitrogen continues to pollute our water, wastewater discharge limits are becoming more stringent with effluent limits based on preserving receiving waters. This project took place at the Hampton Roads Sanitation District's, Chesapeake-Elizabeth Wastewater Treatment Plant; a High-Rate Activated Sludge (HRAS) plant with no primary clarifiers operating at an SRT of 1.5" 2 days without biological nitrogen removal (BNR). BNR is considered more cost-effective than comparable chemical and physical processes, but it requires considerable resources to meet increasingly strict discharge limits. As these limits decrease, the resource requirement increases, making them no longer cost-effective. By 2021 HRSD anticipates the plant will be included in a bubble permit, resulting in a total nitrogen (TN) effluent target of approximately 5-8 mg/L. Conventional BNR plants remove carbon and nitrogen simultaneously, which requires both increased volume (capital costs) and aeration energy demand (operating costs). As an alternative, HRSD is pilot testing an A/B process; a two-sludge system comprised of a carbon removal stage followed by a nitrogen removal stage. The very high rate, low dissolved oxygen (DO) A-stage could reduce the organic load, allowing the B-stage to perform BNR within the existing reactor volume and eliminating the need for primary clarifiers. However, improper control of the carbon removal system can lead to carbon and alkalinity deficiencies, which results in poor nitrogen removal. This is mediated by employing a short-cut nitrogen removal technology. A novel aeration strategy based on set-points for reactor ammonia, nitrite and nitrate concentrations with the aim of maintaining equal effluent ammonia and nitrate + nitrite (NOx) concentrations was successfully employed. The goal was to inhibit nitrite-oxidizing bacteria (NOB) so the nitrification process stopped at nitrite. This helps promote an effluent with equal parts ammonia and nitrite, which is amenable to anammox polishing to achieve low effluent nitrogen concentrations. NOB suppression has been successfully applied in sidestream anaerobic digestion waste streams because NOB out-selection is favored in warm, nitrogen-rich conditions. However, the cold, dilute conditions of continuous mainstream processes are not favorable to NOB out-selection. The mechanisms employed to achieve sidestream NOB out-selection are not reasonable for mainstream applications. This study employed operational and process control strategies to aggressively out-select NOB based on optimizing the chemical oxygen demand (COD) input, imposing transient anoxia, aggressive solids retention time (SRT) operation approaching ammonia oxidizing bacteria (AOB) washout, and a dissolved oxygen concentration (DO) of 1.5 mg O2/L during aeration. This pilot-scale study demonstrated that when run aggressively, the proposed online aeration control is able to out-select NOB in mainstream conditions and provide relatively high nitrogen removal without supplemental carbon and alkalinity at a low hydraulic retention time (HRT). Successful full-scale implementation would promote improved water quality that is economically sustainable. The ability of two different process configurations (full intermittent aeration and Modified Ludzak-Ettinger [MLE]) to achieve high nitrite accumulation and nitrogen removal efficiencies in four equal volume tanks in series followed by a cone-bottom clarifier in a pilot scale biological nitrogen removal (BNR) process (V=0.61 m3) was evaluated. All four biological reactors were equipped with a variable speed mixer, a 17.7 cm membrane disc diffuser, and a Hach LDO probe. Aeration capacity in all four tanks allowed the system to be operated with or without a defined anoxic zone. Both processes utilized a novel aeration strategy based on set-points for reactor ammonia, nitrite and nitrate concentrations with the aim of maintaining equal effluent ammonia and NOx concentrations. The B-stage had a variable HRT (2-7 hours) and a variable influent flow rate. When operating in the MLE configuration, an internal mixed liquor recycle (IMLR) line returned nitrified mixed liquor from the last aerobic reactor to the anoxic reactor using a peristaltic pump at a rate between 200-450% of the influent flow. When IMLR was used the first tank was not aerated. RAS from the clarifier was returned to the anoxic zone at 100% of the influent flow. SRT was controlled by wasting solids from the last aerobic tank. The wasting was automated to maintain desired SRT. The nitrite accumulation ratio (NAR), NO2- -N/(NO2- -N+ NO3- -N), was best under full intermittent aeration, achieving 0.43+0.10 at a 3 hour HRT and influent carbon to ammonia ratio (COD/NH4+-N) of 7.9+1.4. As an MLE, the NAR decreased with increasing internal mixed liquor return (IMLR); at IMLR of 200%, 325% and 450%, the NAR was 0.20+0.04, 0.17+0 and 0.14+0.03, respectively. The MLE did, however, improve the overall TIN removal efficiency compared to operation where all reactors were intermittently aerated. The TIN removal efficiency was best under MLE operation, increasing as the IMLR and influent COD/NH4+-N increased. When the IMLR was 200%, 325% and 450%, the TIN removal efficiencies were 76.4+4.0%, 80.2+0% and 86.3+5.0%, respectively, which corresponded to an influent COD/NH4+-N and HRT of 9.2+0.8 and 4 hr, 9.8+0.4 and 6 hr, and 10.3+1.2 and 6 hr, respectively. In addition to process operation, key issues of filamentous bulking were assessed. Concrete solutions to this continual issue are not available as the unique features of each plants influent and process dynamics prohibit the formulation of a universal solution. Filaments observed throughout this study included Type 0041, Type 0675, Type 0803, Nocardia, Thiothrix I and Thiothrix II. Type 0041 and Type 067 were observed throughout the study and are typical of BNR systems; they arguably do not contribute to settling issues. Type 0803 filaments are linked to low F/M, high SRT systems. It was present at the start of the experiment and then no longer detected. Nocardia made a brief appearance on day 72 causing temporary foaming issues. This was fixed by vacuuming the surface of the clarifier daily and may be attributed to the high surface area to volume ratio present in pilot-scale systems. Thiothrix I and Thiothrix II were observed after day 93, however, never as the dominant species. Thiothrix related bulking was observed in the A-stage (Miller et al, 2012), which was attributed to high sulfide and organic acids in the influent raw wastewater during high temperature periods and carryover of sulfide and Thiothrix from the over-sized A-stage clarifier. The goals of this evaluation were to identify favorable parameters of common filaments and establish their impacts on the system. Typically an SVI of 150 mL/g indicates good settling. Overall the study experienced good settling (128.3+36.3 mL/g), indicating that operating under different influent substrate concentrations and process configurations did not result in poor settling. / Master of Science
6

Intensification of Biological Nutrient Removal Processes

Klaus, Stephanie Anne 29 October 2019 (has links)
Intensification refers to utilizing wastewater treatment processes that decrease chemical and energy demands, increase energy recovery, and reduce the process footprint (or increased capacity in an existing footprint) all while providing the same level of nutrient removal as traditional methods. Shortcut nitrogen removal processes; including nitrite shunt, partial nitritation/anammox, and partial denitrification/anammox, as well as low-carbon biological phosphorus removal, were critically-evaluated in this study with an overall objective of intensification of existing infrastructure. At the beginning of this study, granular sidestream deammonification was becoming well-established in Europe, but there was virtually no experience with startup or operation of these processes in North America. The experience gained from optimization of the sidestream deammonification moving bed biofilm reactor (MBBR) in this study, including the novel pH-based aeration control strategy, has influenced the startup procedure and operation of subsequent full-scale installations in the United States and around the world. Long startup time remains a barrier to the implementation of sidestream deammonification processes, but this study was the first to show the benefits of utilizing media with an existing nitrifying biofilm to speed up anammox bacteria colonization. Utilizing media with an established biofilm from a mature integrated fixed film activated sludge (IFAS) process resulted in at least five times greater anammox activity rates in one month than virgin media without a preliminary biofilm. This concept has not been testing yet in a full-scale startup, but has the potential to drastically reduce startup time. False dissolved oxygen readings were observed in batch scale denitrification tests, and it was determined that nitric oxide was interfering with optical DO sensors, a problem of which the sensor manufacturers were not aware. This led to at least one sensor manufacturer reevaluating their sensor design and several laboratories and full-scale process installations were able to understand their observed false DO readings. There is an industry-wide trend to utilize influent carbon more efficiently and realize the benefits of mainstream shortcut nitrogen removal. The A/B pilot at the HRSD Chesapeake Elizabeth Treatment provides a unique chance to study these strategies in a continuous flow system with real wastewater. For the first time, it was demonstrated that the presence of influent particulate COD can lead to higher competition for nitrite by heterotrophic denitrifying bacteria, resulting in nitrite oxidizing bacteria (NOB) out-selection. TIN removal was affected by both the type and amount of influent COD, with particulate COD (pCOD) having a stronger influence than soluble COD (sCOD). Based on these findings, an innovative approach to achieving energy efficient biological nitrogen removal was suggested, in which influent carbon fractions are tailored to control specific ammonia and nitrite oxidation rates and thereby achieve energy efficiency in the nitrogen removal goals downstream. Intermittent and continuous aeration strategies were explored for more conventional BNR processes. The effect of influent carbon fractionation on TIN removal was again considered, this time in the context of simultaneous nitrification/denitrification during continuous aeration. It was concluded that intermittent aeration was able to achieve equal or higher TIN removal than continuous aeration at shorter SRTs, whether or not the goal is nitrite shunt. It is sometimes assumed that converting to continuous aeration ammonia-based aeration control (ABAC) or ammonia vs. NOx (AvN) control will result in an additional nitrogen removal simply by reducing the DO setpoint resulting in simultaneous nitrification/denitrification (SND). This work demonstrated that lower DO did not always improve TIN removal and most importantly that aeration control alone cannot guarantee SND. It was concluded that although lower DO is necessary to achieve SND, there also needs to be sufficient carbon available for denitrification. While the implementation of full-scale sidestream anammox happened rather quickly, the implementation of anammox in the mainstream has not followed, without any known full-scale implementations. This is almost certainly because maintaining reliable mainstream NOB out-selection seems to be an insurmountable obstacle to full-scale implementation. Partial denitrification/anammox was proven to be easier to maintain than partial nitritation/anammox and still provides significant aeration and carbon savings compared to traditional nitrification/denitrification. There is a long-standing interest in combining shortcut nitrogen removal with biological phosphorus removal, without much success. In this study, biological phosphorus removal was achieved in an A/B process with A-stage WAS fermentation and shortcut nitrogen removal in B-stage via partial denitrification. / Doctor of Philosophy / When the activated sludge process was first implemented at the beginning of the 20th century, the goal was mainly oxygen demand reduction. In the past few decades, treatment goals have expanded to include nutrient (nitrogen and phosphorus) removal, in response to regulations protecting receiving bodies of water. The only practical way to remove nitrogen in municipal wastewater is via biological treatment, utilizing bacteria, and sometimes archaea, to convert the influent ammonium to dinitrogen gas. Orthophosphate on the other hand can either be removed via chemical precipitation using metal salts or by conversion to and storage of polyphosphate by polyphosphate accumulating organisms (PAO) and then removed in the waste sludge. Nitrification/denitrification and chemical phosphorus removal are well-established practices but utilize more resources than processes without nutrient removal in the form of chemical addition (alkalinity for nitrification, external carbon for denitrification, and metal salts for chemical phosphorus removal), increased reactor volume, and increased aeration energy. Intensification refers to utilizing wastewater treatment processes that decrease chemical and energy demands, increase energy recovery, and reduce the process footprint (or increased capacity in an existing footprint) all while providing the same level of nutrient removal as traditional methods. Shortcut nitrogen removal processes; including nitrite shunt, partial nitritation/anammox, and partial denitrification/anammox, as well as low-carbon biological phosphorus removal, were critically-evaluated in this study with an overall objective of intensification of existing infrastructure. Partial nitritation/anammox is a relatively new technology that has been implemented in many full-scale sidestream processes with high ammonia concentrations, but that has proven difficult in more dilute mainstream conditions due to the difficulty in suppressing nitrite oxidizing bacteria (NOB). Even more challenging is integrating biological phosphorus removal with shortcut nitrogen removal, because biological phosphorus removal requires the readily biodegradable carbon that is diverted. Partial denitrification/anammox provides a viable alternation to partial nitritation/anammox, which may be better suited for integration with biological phosphorus removal.
7

Dynamic Modeling of an Advanced Wastewater Treatment Plant

Rathore, Komal 11 June 2018 (has links)
Advanced wastewater treatment plants have complex biological kinetics, time variant influent rates and long processing times. The modeling and operation control of wastewater treatment plant gets complicated due to these characteristics. However, a robust operational system for a wastewater treatment plant is necessary to increase the efficiency of the plant, reduce energy cost and achieve environmental discharge limits. These discharge limits are set by the National Pollutant Discharge Elimination System (NPDES) for municipal and industrial wastewater treatment plants to limit the amount of nutrients being discharged into the aquatic systems. This document summarizes the research to develop a supervisory operational and control system for the Valrico Advanced Wastewater Treatment Plant (AWWTP) in the Hillsborough County, Florida. The Valrico AWWTP uses biological treatment process and has four oxidation ditches with extended aeration where simultaneous nitrification and denitrification (SND) takes place. Each oxidation ditch has its own anaerobic basin where in the absence of oxygen, the growth of microorganisms is controlled and which in return also helps in biological phosphorus removal. The principle objective of this research was to develop a working model for the Valrico AWWTP using BioWin which mimics the current performance of the plant, predicts the future effluent behavior and allows the operators to take control actions based on the effluent results to maintain the discharge permit limits. Influent and experimental data from online and offline sources were used to tune the BioWin model for the Valrico Plant. The validation and optimization of the BioWin model with plant data was done by running a series of simulations and carrying out sensitivity analysis on the model which also allowed the development of operation policies and control strategies. The control strategies were developed for the key variables such as aeration requirements in the oxidation ditch, recycle rates and wastage flow rates. A controller that manipulates the wasting flow rate based on the amount of mixed liquor suspended solids (MLSS) was incorporated in the model. The objective of this controller was to retain about 4500-4600 mg/L of MLSS in the oxidation ditch as it is maintained by the Valrico Plant. The Valrico AWWTP recycles around 80% of their effluent and hence, the split ratios were adjusted accordingly in the model to recycle the desired amount. The effluent concentrations from the BioWin model for the parameters such as Total Nitrogen (TN), Ammonia, Nitrate, Nitrite, Total Kjeldahl Nitrogen (TKN) complied with the discharge limits which is usually less than 2 mg/L for all the parameters.
8

Luftflödesstyrning på Käppalaverket – utvärdering av konstanta styrsignaler / Aeration control at the Käppala wastewater treatment plant - evaluation of constant control signals

Nordenborg, Åsa January 2011 (has links)
På Käppalaverket i Stockholm står luftningen av de biologiska bassängerna för omkring en femtedel av verkets totala elenergiförbrukning. I ett försök att minska energikostnaden utvärderades under hösten 2010 nya metoder för luftflödesreglering på verket. Grundtanken var att styra luftflödet efter medelvärdet på utgående ammoniumkoncentration under en längre tid, istället för som idag efter momentana värden. Ett vanligt sätt att styra luftflöden på reningsverk idag är att använda återkoppling från utgående ammoniumkoncentration, vilket syftar till att alltid hålla den utgående koncentrationen vid ett valt börvärde. Lagstiftade gränsvärden på ammonium avser dock normalt medelvärden över en längre tid, såsom kvartal eller år. Istället för att anpassa luftflödet efter den inkommande belastningen är det därför möjligt att hålla luftflödet relativt konstant medan istället den utgående koncentrationen tillåts variera. I denna studie visades en energibesparing kunna erhållas om luftflödets variation reduceras. Två strategier utvärderades i vilka luftflödet respektive syrehalten hölls så konstant som möjligt. Dessa jämfördes med den idag använda styrstrategin på Käppalaverket, i vilken luftflödet anpassas efter den inkommande belastningen genom återkoppling. Studien inkluderade både simuleringar i modellen Benchmark Simulation Model no. 1 och fullskaleförsök på Käppalaverket. I både simuleringar och fullskaleförsök resulterade de två utvärderade strategierna i en lägre luftförbrukning per reningsgrad än den idag använda återkopplingsstrategin. I fullskaleförsöken erhölls en luftflödesreduktion på 11 % då luftflödet hölls konstant och 15 % då syrehalten hölls konstant. Båda strategierna genererade dock en kraftigt varierande utgående ammoniumkoncentration. Variationerna var störst då luftflödet hölls konstant och korrelerade inte med den dygnsbaserade belastningsprofilen. Sammanfattningsvis visade studien att en reducering av luftflödets variation resulterar i en lägre luftförbrukning men också i en ökad instabilitet. En konstant syrehalt gav en större energivinst och även en stabilare ammoniumreduktion än ett konstant luftflöde, varför denna metod har störst potential till vidare implementering i fullskala. / The aeration of the bioreactors is responsible for one fifth of the energy consumption at the Käppala wastewater treatment plant (WWTP) in Stockholm. In this report, new methods for aeration control were evaluated in order to reduce the energy costs at the plant. The main idea was to control the effluent ammonia concentration in terms of mean values instead of momentary values. A quite common approach for aeration control is to use feedback from the effluent ammonia concentration, thus aiming to keep the effluent concentration consistently at a certain set point. However, discharge limits normally refer to mean values over longer periods of time, such as months or years. Instead of adjusting the airflow to the incoming load it is therefore possible the keep the airflow fairly constant while allowing a fluctuating effluent concentration. In this paper, it was shown that by reducing the variation of the airflow, energy could be saved. Two methods were evaluated in which the airflow and oxygen concentration respectively was held constant. These methods were compared to the control strategy used today at the Käppala WWTP, where feedback control adjusts the airflow to the influent load. The study consisted of simulations with the Benchmark simulation model no. 1 (BSM1) as well as full scale experiments at the Käppala WWTP. Both the simulations and full scale experiments showed a reduced aeration per nutrient removal for the evaluated methods. In full scale, the total airflow reduction was 11 % when the airflow was held constant and 15 % when the oxygen concentration was held constant. However, the methods resulted in large variations of the effluent ammonia concentration, which did not correlate to the daily influent load. The variations were especially large when the airflow was held constant. In summary, this study showed that a reduced airflow variation results in lower aeration costs but also less stability. A constant oxygen concentration required less aeration and provided a more stable degree of ammonia removal than a constant airflow. For this reason, aeration control with a constant oxygen concentration has the best potential for further use at the Käppala WWTP.
9

Ammonium-Based Aeration Control with Iterative Set-Point Tuning in Wastewater Treatment Plants / Ammoniumreglering med iterativ börvärdesjustering i avloppsreningsverk

Bärnheim, Tom January 2023 (has links)
In wastewater treatment plants, the amount of ammonium is one example of a measure to determine the quality of the effluent wastewater. Ammonium is regarded as a hazardous chemical for aqueous ecosystems and can cause eutrophication due to its high nitrogen content. The ammonium content in the treated wastewater is controlled by aeration of the biological treatment stage, in which ammonium is converted to nitrate. The aeration process often accounts for the largest energy consumption of the wastewater treatment plant, which motivates automatic control solutions that can both aid in reducing the discharge of ammonium in the effluent and improve the energy efficiency of the aeration process. One such control technique currently used by several large municipal wastewater treatment plants in Sweden is ammonium-based aeration control. In this technique, the aeration process is controlled based on measurements of the effluent ammonium concentration. The purpose of the thesis was to study an extension of ammonium-based aeration control that could better adapt to daily, and often large, fluctuations in the influent load. The proposed method is to use an iterative algorithm to tune the set-point of the ammonium feedback controller. The objective is to, over a given time interval, achieve a flow-proportional mean of the effluent ammonium concentration close to a desired value for a wide range of influent loads. The method was tested by extensive simulations, and the results indicate that the iterative set-point tuning algorithm has the potential to offer a superior ability to achieve a desired flow-proportional mean at the end of a given evaluation period and, in some instances, energy savings compared to standard ammonium feedback control.
10

Ammonium Feedback Control in Wastewater Treatment Plants

Åmand, Linda January 2014 (has links)
The aeration process is often the single largest consumer of electricity in a wastewater treatment plant. Aeration in biological reactors provides microorganisms with oxygen which is required to convert ammonium to nitrate. Ammonium is toxic for aqueous ecosystems and contributes to eutrophication. The importance of aeration for the treatment results in combination with the high costs motivates automatic control of the aeration process. This thesis is devoted to ammonium feedback control in municipal wastewater treatment plants. With ammonium feedback control, the aeration intensity is changed based on a measurement of the outlet ammonium concentration. The main focus of the thesis is design, implementation, evaluation and improvement of ammonium PI (proportional-integral) controllers. The benefits of ammonium feedback control are established through long-term experiments at three large wastewater treatment plants in Stockholm, Sweden. With ammonium feedback control, energy savings up to around 10 % were achieved compared to keeping the dissolved oxygen concentration constant. The experiments generated several lessons learned with regard to implementation and evaluation of controllers in full-scale operation. The thesis has established guidelines on how to design ammonium feedback controllers for situations when cost-effective operation is the overall aim. Simulations have demonstrated the importance to limit the dissolved oxygen concentration in the process and under what conditions the energy saving with ammonium feedback control is large. The final part of the thesis treats improvements of ammonium PI control through minor modifications to the control structure or controller. Three strategies were studied: gain scheduling control, repetitive control, and a strategy reacting to oxygen peaks in the last aerobic zone. The strategies all had their benefits but the ammonium feedback controller was the key factor to improved aeration control.

Page generated in 0.0878 seconds