• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 14
  • 7
  • 6
  • 6
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 121
  • 25
  • 25
  • 24
  • 18
  • 18
  • 17
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Search for the Decay KL→π0νν with a Neutron-Insensitive GeV-Energy Photon Detector / 中性子に不感なGeV光子検出器を用いた KL→π0νν崩壊の探索

Maeda, Yosuke 23 March 2016 (has links)
要旨ファイルを2017-04-17に差替え / 京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19502号 / 理博第4162号 / 新制||理||1598(附属図書館) / 32538 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中家 剛, 教授 谷森 達, 准教授 成木 恵 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
42

Nano, Micro and Macro Scale Control of Porous Aerogel Morphology

Teo, Nicholas J. 20 June 2019 (has links)
No description available.
43

POLYMER BLENDS, COMPOSITES AND AEROGEL MODIFICATION BY INNOVATIVE APPROACHES

Johnson, Jack Royce, III January 2011 (has links)
No description available.
44

LOW FLAMMABILITY FOAM-LIKE MATERIALS BASED ON EPOXY, TANNIC ACID, SODIUM MONTMORILLONITE CLAY

Lang, Xiaolong 12 June 2014 (has links)
No description available.
45

Fabrication and Development of a PCL Electrospun Fiber - Keratin Aerogel Scaffold to Mimic Bruch’s Membrane for the Study of Age-related Macular Degeneration

Zeng, Ziqian 11 August 2017 (has links)
No description available.
46

Cellulose Nanocrystal Aerogels: Processing Techniques and Bone Scaffolding Applications

Osorio, Daniel 11 1900 (has links)
This thesis investigates new processing methods and bone tissue engineering applications of cross-linked cellulose nanocrystal (CNC) aerogels. Aerogels are highly porous, low-density materials that have been praised for their high surface area and interconnected pores, but criticized for their brittleness. This prompted a search for new aerogel “building blocks” to produce more flexible materials; CNCs meet this need and chemically cross-linked CNC aerogels have good compressive strength and shape recovery properties in air and liquid environments. CNCs are high aspect ratio, non-toxic and renewably-sourced nanoparticles. Literature has demonstrated CNC aerogel production using cryo-templating with controlled drying. In this work, we produce aerogels using a new scalable process called pressurized gas expansion (PGX) and compare them to conventional cryo-templated aerogels. PGX aerogels were found to have more expanded fibrillar morphology, a range of mesopore sizes and smaller macropores, in contrast to cryo-templated aerogels that had a sheet-like morphology surrounding larger macropores. Additionally, PGX aerogels had higher specific surface area and porosity, but lower compressive strength due to a lower cross-link density. While neither CNC aerogel type dispersed in water, PGX aerogels partially shrank whereas cryo-templated aerogels did not; this is attributed to their morphological differences. This work shows that new aerogel processing methods can introduce new properties and thus broaden the potential applications of CNC aerogels. One specific biomedical application was evaluated for CNC aerogels – their use as bone tissue scaffolds. Cryo-templated aerogels comprised of CNCs with different surface chemistries, either sulfate or phosphate groups, were found to have attractive chemical, physical and mechanical properties for bone tissue engineering. This work shows that both types of CNC aerogels can facilitate cell proliferation, favorable differentiation, and can nucleate uniform hydroxyapatite growth. These positive in vitro results and the bimodal pore morphology of CNC aerogels make them promising bone scaffolds for in vivo studies. / Thesis / Master of Applied Science (MASc) / Aerogels are light, porous, sponge-like materials that are essentially 99% air by volume. In this work, the aerogels are made from non-toxic plant-based nanoparticles called cellulose nanocrystals (CNCs). This thesis investigates: 1) new ways to control CNC aerogel properties and pore size through different processing methods and 2) the use of CNC aerogels to aid in the repair of damaged bones. High-resolution microscopy and nano-characterization tools show that CNC aerogels have tunable properties, which may extend their possible applications. The internal structure, sponge-like mechanical properties and biocompatibility of CNC aerogels allowed them to be successfully utilized to support bone cells and grow bone-like mineral.
47

Alternativa isoleringsmaterial : Aerogel inom sjöfarten / Alternative Insulation Materials : Aerogel in shipping

Johansson, Daniel January 2019 (has links)
Detta arbete handlar om att med en teoretisk modell kunna beräkna fram de olika mängder värmeförluster som vissa isoleringsmaterial släpper igenom.  Syftet med detta arbete är att undersöka om ett specifikt isoleringsmaterial som vanligtvis inte används inom sjöfarten har möjligheten att sänka energin som försvinner igenom isoleringsmaterialen. De metoder som användes är en teoretisk modell som byggdes för att  kunna använda de olika isoleringsmaterialens värmekonduktivitet för sedan kunna beräkna de teoretiska värmeförlusterna. Resultatet visar att aerogel skulle vara lämpligt för användning inom sjöfarten tack vara sina egenskaper och isoleringsförmåga som är mycket bättre än mineralull. / This work is about using a theoretical model to calculate the various amounts of thermal losses that some insulation materials release. The purpose of this work is to investigate whether a specific insulation material that has not been properly tested in shipping has the potential to lower energy that passes through the insulation materials. The methods used are that a theoretical model was built to use the thermal conductivity of different insulation materials in order to calculate the theoretical heat losses. The result shows that aerogel would be suitable for use in shipping thanks to its properties and insulation ability, which is much better than mineral wool.
48

Preparation, Processing and Characterization of Noble Metal Nanoparticle-based Aerogels / Darstellung, Prozessierung und Charakterisierung von Edelmetallnanopartikel-basierten Aerogelen

Herrmann, Anne-Kristin 05 January 2015 (has links) (PDF)
New challenges in nanotechnology arise in the assembly of nanoobjects into three-dimensional superstructures, which may carry synergetic properties and open up new application fields. Within this new class of materials nanostructured, porous functional metals are of great interest since they combine high surface area, gas permeability, electrical conductivity, plasmonic behavior and size-enhanced catalytic reactivity. Even though a large variety of preparation pathways for the fabrication of porous noble metals has already been established, several limitations are still to be addressed by research developments. The new and versatile approach that is presented in this work makes use of a templatefree self-assembly process for the fabrication of highly porous, metallic nanostructures. Thereby, nanochains are formed by the controlled coalescence of noble metal NPs in aqueous media and their interconnection and interpenetration leads to the formation of a self-supported network with macroscopic dimensions. Subsequently, the supercritical drying technique is used to remove the solvent from the pores of the network without causing a collapse of the fragile structure. The resulting highly porous, low-weighted, three-dimensional nanostructured solids are named aerogels. The exceptional properties of these materials originate from the conjunction of the unique properties of nanomaterials magnified by macroscale assembly. Moreover, the combination of different metals may lead to synergetic effects regarding for example their catalytic activity. Therefore, the synthesis of multimetallic gels and the characterization of their structural peculiarities are in the focus of the investigations. In the case of the developed preparation pathways the gelation process starts from preformed, stable colloidal solutions of citrate capped, spherical noble metal (Au, Ag, Pt, Pd) NPs. In order to face various requirements several methods for the initiation of the controlled destabilization and coalescence of the nanosized building blocks were developed and synthesis conditions were optimized, respectively. Multimetallic structures with tunable composition are obtained by mixing different kinds of monometallic NP solutions and performing a joint gel formation. The characterization of the resulting materials by means of electron microscopy reveals the formation of a highly porous network of branched nanochains that provide a polycrystalline nature and diameters in the size range of the initial NPs. Furthermore, synthesis conditions for the spontaneous gel formation of glucose stabilized Au and Pd NPs were investigated. In order to gain a detailed knowledge of the structural properties of bimetallic aerogel structures a versatile set of characterization techniques was applied. A broad pore size distribution dominated by meso- and macropores and remarkably high inner surface areas were concluded from the N2 physisorption isotherms and density measurements. As investigated, a specific thermal treatment could be used to tune the ligament size of Au-Ag aerogels, whereas Au-Pd and Pt-Pd structures provide thermal stability under mild conditions. Further investigations aimed to the enlightenment of the elemental distribution and phase composition within the nanochains of multimetallic gel structures. The different approaches provide complementary and consistent results. Phase analyses based on XRD measurements revealed separated phases of each metal in the case of Ag-Pd and Au-Pd aerogels. They further proved the possibility of temperature induced phase modifications that lead to complete alloying of Au and Pd. In addition, separated domains of Pt and Pd were established from the EXAFS analysis of the corresponding aerogel. STEM EDX high resolution elemental mappings confirmed the separated domains of different metals in the case of Au-Pd and Pt-Pd aerogels. Moreover, a complete interdiffusion and alloy formation of Au and Ag within the corresponding aerogel structure is suggested from STEM EDX results. Finally, the presented investigations further promote the field of metallic aerogels by addressing the challenging issue of processability and device fabrication. Hybrid materials with organic polymers as well as various kinds of coatings on glass substrates and glassy carbon electrodes were prepared whereas the network structure was preserved throughout all processing steps. Moreover, it was illustrated that the NP-based aerogels carry metallic properties as expressed by their low Seebeck coefficients and high electrical conductivities.
49

Bimetallic aerogels for electrocatalytic applications

Kühn, Laura 29 May 2017 (has links)
Polymer electrolyte fuel cells (PEFCs) have emerged as a promising renewable emission-free technology to solve the worldwide increasing demand for clean and efficient energy conversion. Despite large efforts in academia and automotive industry, the commercialization of PEFC vehicles still remains a great challenge. Critical issues are high material costs, insufficient catalytic activity as well as longterm durability. Especially due to the sluggish kinetics of the oxygen reduction reaction (ORR), high Pt loadings on the cathode are still necessary which leads to elevated costs. Alloys of Pt with other less precious metals (Co, Ni, Fe, Cu, etc.) show improved ORR activities compared to pure Pt catalysts. However, state-of-the-art carbon-supported catalysts suffer from severe Pt and carbon corrosion during the standard operation of PEFCs, affecting their reliability and long-term efficiency. Multimetallic aerogels constitute excellent candidates to overcome these issues. Due to their large open pores and high inner surface areas combined with electrical conductivity, they are ideal for applications in electrocatalysis. In addition, they can be employed without any catalyst support. Therefore, the fabrication of bimetallic Pt-M (M=Ni, Cu, Co, Fe) aerogels for applications in fuel cell catalysis was the focus of this thesis. Based on a previously published synthesis for Pt–Pd aerogels, a facile one-step procedure at ambient conditions in aqueous solution was developed. Bimetallic aerogels with nanochain diameters of as small as 4 nm and Brunauer-Emmett-Teller (BET) surface areas of up to 60 m2/g could be obtained. Extensive structure analysis of Pt–Ni and Pt–Cu aerogels by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (STEM-EDX) and electrochemical techniques showed that both metals were predominantly present in their metallic state and formed homogeneous alloys. However, metal (hydr)oxide byproducts were observed in aerogels with higher contents of non-precious metal (>25 %). Moreover, electronic and geometric structures were similar to those of carbon-supported Pt alloy catalysts. As a result, ORR activites were comparable, too. A threefold improvement in surface-specific activity over Pt/C catalysts was achieved. The mass-specific activites met or exceeded the U.S. Department of Energy (DOE) target for automotive PEFC applications. Furthermore, a direct correlation between non-precious metal content in the alloy and ORR activity was discovered. Aerogels with nonprecious metal contents >25% turned out to be susceptible to dealloying in acid leaching experiments, but there was no indication for the formation of extended surface structures like Pt-skeletons. A Pt3Ni aerogel was successfully employed as the cathode catalyst layer in a differential fuel cell (1 cm2), which is a crucial step towards technical application. This was the first time an unsupported metallic aerogel was implemented in a PEFC. Accelerated stress tests that are usually applied to investigate the support stability of fuel cell catalysts revealed the excellent stability of Pt3Ni alloyed aerogels. In summary, the Pt alloy aerogels prepared in the context of this work have proven to be highly active oxygen reduction catalysts with remarkable stability.
50

Boron Nitride Aerogels with Super‐Flexibility Ranging from Liquid Nitrogen Temperature to 1000 °C

Li, Guangyong, Zhu, Mengya, Gong, Wenbin, Du, Ran, Li, Taotao, Lv, Weibang, Zhang, Xuetong 10 September 2019 (has links)
Aerogels with extraordinary mechanical properties attract a lot of interest for their wide spread applications. However, the required flexibility is yet to be satisfied, especially under extreme conditions. Herein, a boron nitride nanoribbon aerogel with excellent temperature‐invariant super‐flexibility is developed by high temperature amination of a melamine diborate precursor formed by hydrogen bonding assembly. The unique structure of the aerogel provides it with outstanding compressing/bending/twisting elasticity, cutting resistance, and recoverable properties. Furthermore, the excellent mechanical super‐flexibility is maintained over a wide temperature range, from liquid nitrogen temperature (−196 °C) to higher than 1000 °C, which extends their possible applications to harsh environments.

Page generated in 0.0256 seconds