• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adhesion of silver nanoparticle amendments to ceramic water filters

Mikelonis, Anne Marie 17 September 2015 (has links)
Silver nanoparticles (Ag NPs) are frequently added as a disinfectant to ceramic filters used for household drinking water treatment. To provide suspension phase particle stability, Ag NPs can be synthesized using a number of different molecules to cap the metal core. The goal of this doctoral work was to advance the fundamental understanding of how stabilizing agents influence the attachment and detachment of Ag NPs from ceramic water filters. To achieve this goal, deposition experiments onto Al₂O₃ membranes and clay-based ceramic filters were performed using Ag NPs stabilized by three different agents: citrate, polyvinylpyrrolidone (PVP), and branched polyethylenimine (BPEI). Laboratory and field- scale filtration experiments were also conducted to evaluate the removal of Ag NPs from ceramics under different water conditions -- the presence of hardness and natural organic matter (NOM). Citrate-stabilized Ag NPs were found to have the highest attachment densities, regardless of filter material. Differing attachment densities for the three types of Ag NPs were extensively explained using a combination of classic Derjaguin, Landau, Verwey and Overbeek (DLVO) theory, steric forces, and particle-particle interaction energy calculations. A multilevel statistical model was built to describe the removal of Ag NPs from ceramic water filters under different water conditions. The type of Ag NP was found to affect the initial release of Ag from the filters, while the interaction of the type of Ag NP and water were found to affect the rate of removal. Hardness and NOM prolonged the release of Ag from ceramic water filters.
2

Vývoj a optimalizace systémů pro SERS na úrovni jedné molekuly / Development and optimization of systems for SERS on single molecule level

Michlová, Magdalena January 2012 (has links)
AABBSSTTRRAACCTT Dimers and small aggregates as well as compact aggregates of Ag nanoparticles (NPs) were assembled and chemically anchored to supporting surfaces. The supporting surfaces were either glass slides or SiO2 - coated Cu or Au grids for TEM, both chemically functionalized by 3-aminopropyltrimethoxysilane (APTMS). Compact aggregates of Ag NPs incorporating protoporphyrin IX (PPIX) molecules were prepared by adsorption of chlorides in the presence of PPIX. Dimers and small aggregates of Ag NPs were assembled by selected molecular linkers: 4,4'-diaminoazobenzene (DAAB), 4,4'-diaminoterphenyl (DATP) and 5,10,15,20-tetrakis(4-aminophenyl)porphine (TAPP). The most efficient strategy of dimers and small aggregates preparation has been their assembling by a three - step procedure involving (i) attachment of isolated Ag NPs to the NH2 groups of APTMS functionalized TEM grid, (ii) attachment of molecular linker (with two functional NH2 groups in para position) to Ag NPs by a one terminal NH2 group, and (iii) attachment of Ag NPs to the second, free terminal NH2 group of the linker. In this procedure, the control over the perpendicular orientation of the bifunctional linker and its attachment by one terminal group to Ag NP surface has been accomplished by functionalization of Ag NPs by adsorbed citrate...
3

Development of Filter-Based Surface Enhanced Raman Spectroscopic Assays for Rapid Detection of Chemical and Biological Contaminants in Water

Gao, Siyue 07 November 2016 (has links)
Surface enhanced Raman spectroscopy (SERS) has been widely applied for rapid and sensitive detection of various chemical and biological targets. Here, we incorporated a syringe filter system into the SERS method to detect pesticides, protein toxins and bacteria in water. For the detection of chemical and protein targets, silver nanoparticles (Ag NPs) were aggregated by sodium chloride (NaCl) to form nanoclusters that could be trapped in the pores of the filter membrane to from the SERS-active membrane. Then a coating of capture (e.g. aptamer) was integrated on the nanoparticle substrate if needed. Then samples were filtered through the membrane. After capturing the target, the membrane was taken out and air dried before measuring by a Raman instrument. The developed filter SERS method was able to detect fungicide ferbam as low as 2.5 ppb level and had a good quantitative capability, which could also be carried out on site using a portable Raman instrument. The aptamer integrated filter SERS was able to detect ricin b chain in water at 100 ppb level. The filter membrane was then applied to detect bacteria E.Coli with the integration of 4-mpba as a capture and indicator. With SERS mapping, we can detect E.Coli down to 101 CFU/ml and the viability of bacteria on the membrane could be confirmed by incubating the membrane on TS agar down to 102 CFU/ml. This study shows the filter based SERS methods improve the detection capability in water samples, with a great versatility for various types of assays.
4

Příprava a charakterizace TiO2 nanotrubiček dekorovaných stříbrem pro biomedicínské účely / Fabrication and characterisation of silver decorated TiO2 nanotubes for biomedical applications

Bílek, Ondřej January 2017 (has links)
This diploma thesis summarizes knowledge from the fields of synthesis, characterization and application of titanium dioxide nanotubes and its combination with silver nanoparticles for biomedical purposes. Basic protocols of working with cell cultures and bacteria are also included. Experimental part of this diploma thesis focuses mainly on the synthesis of tubular structures made of titanium dioxide via anodic oxidation of 500nm titanium layer and their subsequent decoration with silver by electrodeposition. Last section of the experimental part is devoted to testing of antibacterial properties of the new material and examining the effect of different silver concentrations on the adhesion of MG-63 cells. All results are compared to reference samples consisting of titanium dioxide nanotubes without silver.
5

Multifunctional photocatalytic substrates and textiles constructed via Layer-by-Layer self-assembly of Ag and TiO2 nanoparticles / Substrats et textiles multifonctionnels construits par assemblage couche-par-couche de nanoparticules d’Ag et TiO2

Motay, Marvin 03 July 2018 (has links)
Des films multicouches à base de nanoparticules de TiO2 et d’Ag ont été construits sur des substrats modèles et des textiles via la technique du Layer-by-Layer (LbL). Les films à base de nanoparticules de TiO2 construits sur substrats modèles ont montré un comportement photocatalytique non conventionnel pour la minéralisation de l’acide formique en phase gaz sous irradiation UV-A, et une minéralisation très importante a été obtenue avec un film possédant une unique couche de nanoparticule de TiO2. Ces films ont également montré des propriétés biocides sous irradiation UV-A. La mise en œuvre d’une méthode one-pot, combinant la synthèse photo-induite des nanoparticules d’Ag et dépôt de la couche de TiO2 par LbL, a permis la synthèse de nanoparticules d’Ag directement au sein des films et une exaltation très importante des propriétés photocatalytiques des films. Les méthodes de constructions ont été transférées avec succès sur textiles. Les films restent photocatalytiquement actifs et biocides sous irradiation UV-A après plusieurs cycles de lavages. / TiO2 and Ag nanoparticle multilayered films were constructed on model substrates and textiles via Layer-by-Layer (LbL) assembly. The TiO2 nanoparticle based films constructed on model substrates showed a non-conventional photocatalytic behaviour for gas phase formic acid mineralisation upon UV-A irradiation, and a high mineralisation was obtained for a single layer TiO2 nanoparticle film. These films also showed biocidal properties upon UV-A irradiation. The elaboration of a one-pot method, combining the photo-induced synthesis of Ag nanoparticles and the LbL deposition of TiO2 nanoparticle layer, allowed the direct synthesis of Ag nanoparticles within the films and a high enhancement of the film photocatalytic properties. The construction methods were successfully transfered on textile surfaces. The films were photocatalytically active and biocidal under UV-A irradiation after several washing treatment cycles.
6

Optical Investigation of Single Fluorophores and their Application as Sensitive Probes in Soft Matter Science

Krause, Stefan 06 May 2015 (has links) (PDF)
Im Mittelpunkt dieser Arbeit steht die Verwendung verschiedener Fluoreszenzfarbstoffe in Form photostabiler Perylenbisimide sowie etallischer Nanopartikel zur Untersuchung von Polymeren und nanoskopischen Flüssigkeitsfilmen. Einzelmoleküluntersuchungen zeigen, dass eine chemische Modifizierung der Farbstoffe durch löslichkeitserhöhende Seitengruppen, Molekülkonformationen mit stark variierenden Emissionswellenlängen je nach Seitengruppen-orientierung zur Folge hat. Zeitabhängige Fluoreszenzmessungen an einzelnen Molekülen ermöglichen eine direkte Beobachtung von Übergängen zwischen diesen molekularen Konformationen deren Dynamik vorwiegend durch die Eigenschaften der umgebenden Polymermatrix bestimmt wird. Die gewonnenen Ergebnisse lassen somit Rückschlüsse auf die nanoskopische Umgebung des Moleküls zu. Es werden diskrete Zustände innerhalb der Molekülumgebung sowie eine erhöhte Konformationsdynamik im Falle von alkylsubstituierten Perylenbisimiden beobachtet. Darüber hinaus werden die nanoskopischen Auswirkungen von makroskopischen, mechanischen Deformationen auf amorphe Polymerfilme mikrorheologisch mit Hilfe von stäbchenförmigen Perylenbisimiden studiert. Die gewonnenen Einzelmoleküldaten ermöglichen die Berechnung der lokalen, mikroskopischen Deformation sowie der Orientierung der Sondenmoleküle, welche gut mit einem Model für stäbchenförmige Objekte in einem uniaxial deformierten Kontinuum übereinstimmt. In weiteren Experimenten gelingt der Nachweis ultradünner Wasserfilme auf SiO2-Oberflächen durch Messung der Diffusion von Silbernanopartikeln. Die verwendeten Nanopartikel weisen hierbei eine monodisperse Größenverteilung im Bereich von einem Nanometer als Resultat ihrer Synthese in Y-Zeolith-Kristallen auf. Die Untersuchungen ergeben eine Filmdickenabhängigkeit des Diffusionsverhaltens sowie einen starken Einfluss durch Oberflächensilanisierung bzw. Hydroxylierung.
7

Hybrid mesoporous materials for the oxidative depolymerization of lignin into valuable molecules / Matériaux hybrides mésoporeux pour la dépolymérisation oxydante de la lignine en molécules à haute valeur ajoutée

Nunes, Andreia 08 February 2016 (has links)
La lignine est un des polymères naturels les plus abondants et le seul constituant de la biomasse basé sur des unités aromatiques et, à ce titre, représente une ressource renouvelable prometteuse pour la production durable de molécules organiques plus complexes. Les travaux de cette thèse portent sur le développement de matériaux catalytiques capables de transformer sélectivement la lignine en molécules fonctionnelles de base, hautement oxygénées, et l'étude de leur mise en oeuvre en condition alcaline oxydante en utilisant le peroxyde d'hydrogène comme donneur d'oxygène. Différentes familles de matériaux hybrides de type SBA-15 à base de titane, Au/titane, Ag/titane et Fe(TAML) ont tout d'abord été synthétisées et entièrement caractérisées. Des études catalytiques comparatives ont ensuite été réalisées afin d'évaluer leurs performances en termes de degré de dépolymérisation et distribution de produits. Le catalyseur présentant le plus fort potentiel, le matériau TiO2 supporté sur SBA-15, a ensuite été soumis à des études de réactivité plus poussées afin d'optimiser les différents paramètres réactionnels (température, temps de réaction et quantité d'oxydant) permettant d'atteindre en présence d'un excès d'oxydant jusqu'à 90 %pds de conversion de la lignine et à 80°C un rendement en bio-huile de 50%pds constituée principalement d'acides carboxyliques et molécules aromatiques potentiellement valorisables / Lignin is one of the most abundant natural polymers and the only biomass constituent based on aromatic units and as such represents a promising renewable resource for the sustainable production of complex organic molecules. This dissertation reports on the development of catalytic materials capable of selectively transform lignin into basic functional molecules with high oxygen content and the study of their performance under alkaline oxidative conditions, using hydrogen peroxide as oxygen donner. Different families of hybrid materials based on the SBA-15 scaffold were first synthesized by incorporation of titanium, Au/titanium, Ag/titanium and Fe-TAML and completely characterized. Comparative catalytic studies were then accomplished in order to evaluate their performance in terms of degree of depolymerization and product distribution. The catalyst with the highest potential, the TiO2 based SBA-15 material, was then submitted to further reactivity studies in order to optimize the different reaction parameters (temperature, reaction time and quantity of oxidant). In the presence of an excess of oxidant, conversions up to 90 wt. % were obtained, whereas a temperature of 80 °C allowed to obtain a yield in bio-oil of 50 wt. %, which is mainly composed of carboxylic acids and aromatic molecules with potential to be further valorized
8

Modification de nanotubes de TiO2 pour la production d’hydrogène par photodissociation de l’eau sous lumière solaire / Modification of TiO2 nanotubes for hydrogen production by water-splitting under solar light

Gross, Pierre-Alexandre 21 November 2014 (has links)
Ce travail de thèse traite de la production d’hydrogène par le procédé de photoélectrocatalyse en utilisant une photoanode à base de nanotubes de TiO2 verticalement alignés. L’utilisation du TiO2 étant limité pour des applications solaires en raison de son large gap, il est nécessaire de le modifier. Deux approches sont proposées pour modifier les nanotubes de TiO2 et leur permettre d’absorber la lumière visible. La première est une modification chimique du TiO2 par co-dopage cationique-anionique (Ta-N) ou (Nb-N). Les cations sont insérés durant la croissance des nanotubes grâce à une approche inédite, et l’azote est inséré durant le traitement thermique. Ceci a pour effet la formation d’orbitales hybrides qui entraîne une réduction du gap et une activité sous lumière visible, tout en permettant une stabilité de la structure. La seconde approche consiste à déposer des nanoparticules d’Ag sur la surface des nanotubes de TiO2. Grâce au contrôle de la morphologie des nanoparticules d’Ag, leur résonnance plasmonique permet de stimuler l’absorption du TiO2 et ainsi d’augmenter son rendement à la fois sous lumière UV et sous lumière visible. / This work is about the production of hydrogen by photoelectrocatalysis using a vertically aligned TiO2 nanotubes based photoanode. Utilization of TiO2 for solar applications is limited due to its large band gap, it has to be modified. Two approaches are proposed for the modification of the TiO2 nanotubes to make them absorb visible light. The first one is the chemical modification of the TiO2 by (Ta-N) or (Nb-N) cationic-anionic co-doping. Cations are inserted during the growth of the nanotubes by a novel approach, and nitrogen is inserted during heat treatment. This leads to the formation of hybrid orbitals resulting in a band gap reduction and of activity under visible light. The second approach consists of the deposition of Ag nanoparticles on the surface of the TiO2 nanotubes. Thanks to the control of the morphology of the Ag nanoparticles, their plasmonic resonance can enhance the absorption of TiO2 and thus increase its activity both under UV and visible light.
9

Synthesis, Characterization, and Reactivity Studies of Au, Ag, and Pd Colloids Prepared by the Solvated Metal Atom Dispersion (SMAD) Method

Jose, Deepa January 2009 (has links) (PDF)
Surfactant bound stable colloids of Au, Ag, and Pd were prepared by the solvated Metal Atom Dispersion (SMAD) method, a method involving co-condensation of metal and solvent vapors on the walls of a reactor at 77 k. The as=prepared dodecanethiol-capped Au and Ag colloids consisting of polydisperse nanoparticles were transformed into colloids consisting of highly monodisperse nanoparticles by the digestive ripening process. In the case of Pd colloids, digestive ripening led to the formation of thiolate complexes. The [Pd(SC12H25)2]6 complex formed from the dodecanethiol-capped Pd nanoparticles was found to be a versatile precursor for the synthesis of a variety of Pd nanophases such as Pd(0), PdS, and Pd@PdO by soventless thermolysis. Co-digestive ripening of as-prepared dodecanethiol-capped Au or Ag colloids with Pd colloid resulted in Au@Pd and Ag@Pd core-shell nanoparticles, respectively; attempts to transform the core-shell structures into alloy phases even at high temperatures were unsuccessful. Phosphine-capped Au nanoparticles were also prepared by the SMAD method and refluxing of this colloid resulted in an Ostwald ripening process rather than the expected digestive ripening due to the labile nature of bound PPh3. The labile nature of the bound phosphine was studied using 31P NMR spectroscopy and utilized in the adsorption of CO. Palladium nanoparticles obtained from the SMAD Pd-butanone colloids and Pd@PdO nanoparticles prepared by the solventless thermolysis of Pd-dodecanethiolate complex were found to be good catalysts for the generation of H2 from AB via either hydrolysis and methanolysis. The active hydrogen atoms produced during the hydrolysis and methanolysis diffuse into the Pd lattice. It was also noticed that hydrogen atoms that were buried deep inside the Pd lattice cannot be removed completely by heating the sample even at 600°C. Wet chemical reduction method was employed for the synthesis of PVP capped, nearly monodisperse, spherical Ir nanoparticles which undergo a polymer driven self-assembly at 80°C to afford rectangular structures and interlinked particles.
10

Novel Cationic Gemini Lipids, Click Chemistry Based Adducts And Amphiphile-Capped Silver Nanostructures : Synthesis, Aggregation And Biological Properties

Biswas, Joydeep 07 1900 (has links) (PDF)
The thesis entitled “Novel Cationic Gemini Lipids, Click Chemistry Based Adducts and Amphiphile-Capped Silver Nanostructures: Synthesis, Aggregation and Biological Properties” elucidates the design, synthesis, aggregation and gene transfection properties of novel gemini cationic lipids based on cholesterol and pseudoglyceryl backbone, and click chemistry based adducts. This thesis also elucidates the synthesis and aggregation properties of silver nanoparticles loaded cationic liposomes and silver nanorods stabilized by micellar solutions of gemini surfactants. The work has been divided into six chapters. Chapter 1: Introduction: Membrane Formation from Cholesterol-based Cationic Lipids and their use as Non-Viral Gene Delivery Agents This chapter describes the importance of cholesterol in biological membranes, the aggregation properties of cholesterol-based cationic lipids and their interactions with phospholipid membranes. This chapter also gives a comprehensive account of the research towards the development of novel cationic cholesterol-based monomeric and gemini lipids. It also reviews the utilization of cholesterol-based cationic monomeric and gemini lipids in gene transfection properties. Chapter 2A: Effect of Hydroxyl group on the Cationic Headgroups of Cholesterol-based Gemini Lipids on their Aggregation, DNA Binding Properties and Interaction with Phospholipid Membranes This chapter describes the syntheses and aggregation properties of two series of cholesterol-based monomeric and gemini cationic lipids with and without hydroxyl functionality (Figure 1). The gemini lipids of a given series differ in their spacer polymethylene -(CH2)n- chain lengths between the cationic headgroups. Figure 1. Molecular structures of non-hydroxylated and hydroxylated cationic cholesterol-based gemini lipids and their monomeric counterparts. All monomeric and gemini lipids were found to generate stable suspensions in aqueous media. Electron microscopic studies showed that all the lipids form vesicular aggregates in aqueous media. The structures seen under TEM for the non-hydroxylated series of monomeric (C-M) and gemini lipids are of variable sizes, they appeared like separated vesicular aggregates. For the hydroxylated series of lipids, however, both the monomeric lipid aggregates (CH-M) and aggregates of their gemini counterparts were found to be ‘connected’ with each other to form elongated chain of aggregates of different length scales. XRD studies with the cast films of lipids revealed that the monomeric lipids of either series have higher bilayer width than the corresponding gemini lipids. Incorporation of the -(CH2)n- spacer units at the head group level joining the two monomeric units lowered the bilayer thicknesses of both series of the lipid aggregates. Thus the monomeric lipids (C-M and CH-M) appear to form nearly regular bilayer type arrangements whereas gemini lipids form interdigited and tilted bilayer arrangements in their aggregates. Calorimetry studies of the coaggregates showed that ~10 mol-% of most of the cholesterol gemini lipids is enough to abolish the phase transition of DPPC membranes whereas more than 10 mol-% is required in case of their monomeric counterparts. Further these thermotropic properties depend upon the length of the spacer of the gemini lipid included in the mixture. We have observed greater quenching of the thermal phase transition of DPPC membranes with 10 mol-% of C-M as compared to CH-M doped liposomes. At 10 mol-% of all the cationic lipid doped DPPC covesicles, only CG-3 doped liposomes showed an observable transition temperature. Maximum broadening of the DPPC transition peak was observed in the case of the gemini lipids, CHG-6 and CHG-12. DNA binding and release studies show that the interactions between gemini lipids and DNA depend upon the nature of the head group as well as the length of the spacer between the cationic head groups. For the non-hydroxylated cholesterol-based cationic lipid series, the monomeric liposomes of C-M facilitates the dissociation of EB from the EB-DNA complex to an extent of 93% at a maximum lipid:DNA ratio of 3.0 whereas the liposomes of CG-4 and CG-12 showed the lowest extent of maximum EB exclusion (~74%) from the EB-DNA complex at lipid:DNA ratio of 3.0. For hydroxylated cholesterol-based cationic lipid series, the monomeric liposomes of CH-M facilitate the dissociation of EB from the intercalated EB-DNA complex to an extent of 81 % whereas the liposomes of CHG-3 showed the minimum binding to DNA. Thus the two monomeric liposomes C-M and CH-M were the more efficient formulations that allow dissociation of DNA from the corresponding lipoplexes. These findings have important being in their gene transfection activity compared their respective gemini lipid counterparts. Chapter 2B: Novel Cholesterol-based Cationic Gemini Lipids possessing Hydroxyethyl group on the Headgroup: Transfection Efficacy and Cell Toxicity Properties This chapter describes the transfection efficacy and cell toxicity properties of five cholesterol based gemini cationic lipids possessing hydroxyethyl functionality on each head group, which differ in the length of the polymethylene spacer [-(CH2)n-] chain (Figure 2). These gemini lipids are important to gene delivery processes as they possess pre-optimized molecular features, e.g., cholesterol backbone, ether linkage and a variable spacer chain between both the headgroups of the gemini lipids. Cationic liposomes were prepared from each of these lipids individually and as a mixture of individual cationic gemini lipid and 1,2-dioleoylphosphatidylethanolamine (DOPE). The gemini lipid with a hydroxyethylated headgroup and a -(CH2)5- spacer, CHG-5 showed the highest transfection activity at N/P (lipid/DNA) ratio of 0.5 and lipid:DOPE molar ratio of 2. Upon comparison of the relevant parameters, e.g., % transfected cells, the amount of DNA transfected to each cell and % cell viability all together against LipofectAMINE 2000, one of the most potent commercially available transfecting agents, the optimized lipid formulation based on CHG-5/DOPE was found to be comparable. In terms of its ability to induce gene-transfer in presence of serum and shelf-life CHG-5/DOPE liposome was found to be better than its commercial counterpart. Recording of confocal images confirmed that in presence of 10% serum using 1.2 µg DNA per well and lipid:DOPE ratio of 1:4 and N/P charge ratio of 0.75, CHG-5 is better than LipofectAMINE 2000. These properties render them to be reagents of practical value for various gene delivery applications. Figure 2. Molecular structures of cholesterol-based cationic monomeric lipid and gemini lipids possessing hydroxyethyl group on the headgroup synthesized. Chapter 3: Bilayer Membrane and Stable Monolayer Forming Properties of Cationic Pseudoglyceryl Gemini Lipids having Polymethylene Spacers and Oxyethylene Linkages This chapter describes the synthesis of five new cationic pseudoglyceryl gemini lipid versions of their monomeric counterpart (Figure 3). Each cationic lipid aggregate in aqueous media was found to form vesicular structures as evidenced from the negatively stained TEM experiments and DLS measurements. XRD experiments with their cast films of aqueous dispersions revealed that introduction of the polymethylene -(CH2)n-spacer chain joining the two monomers decreased the bilayer widths of the gemini lipid aggregates. The inter-lipidic packing and the hydration of the lipid vesicles were examined using fluorescence anisotropy and generalized polarization measurements using membrane-soluble probes, DPH and Paldan respectively. Fluorescence anisotropy measurements showed that the aggregates of lipid 2c with -(CH2)5- spacer chain were highly packed and ordered in the vesicular aggregates than that of the other cationic lipid aggregates in the series. Paldan hydration studies showed that incorporation of the polymethylene -(CH2)n- spacer chains joining two monomeric units lowered the hydration of the gemini lipid aggregates in the solid gel state. Each of these cationic lipid aggregates showed sharp transition temperatures (Tm) as observed from differential scanning calorimetric studies. DSC studies further revealed that the incorporation of oxyethylene group at the linker region of cationic pseudoglyceryl gemini lipid 2a with (CH2)3- spacer chain length lowered the thermotropic phase transition temperature (Tm) of the aggregates in aqueous media when compared with the corresponding gemini analogue without oxyethylene linkages. Langmuir film balance studies showed that each cationic gemini lipid and their monomeric counterpart were able to form stable monolayers at the air-water interphase. We observed that the mean molecular area (collapse area) of each of the cationic lipid obtained from the Langmuir monolayer studies increased with increase in the spacer chain lengths. Figure 3. Molecular structures of the cationic pseudoglyceryl gemini lipids and their monomeric counterpart. Chapter 4: Vesicle and Stable Monolayer Formation from Simple ‘Click’ Chemistry Adducts in Water This chapter describes successful use of Cu(I) catalyzed “Click Chemistry” for the syntheses of a series of hitherto unknown amphiphilic adducts (M1, M2, D1 and T1) which on dispersal in water afforded vesicular aggregates as evidenced from dye entrapment, TEM, SEM, AFM and DLS studies (Figure 4). Figure 4. Molecular structures of triazole based adducts. XRD experiments with their cast films of aqueous suspensions indicate the formation of a tilted bilayer arrangement for the aggregates of M1 whereas regular bilayer structures are predominant for the aggregates derived from M2, D1 and T1. Measurement of pKa values using UV-Vis spectroscopy showed that the aggregates of monomeric click adducts (M1 and M2) possess less pKa value than that of the aggregates of dimeric (D1) and tetrameric (T1) analogues and the values lie within the range of 2.8-3.2. The hydrodynamic diameter of the aggregates of each click adduct increased with decrease in the pH of the media. Thus, the protonation of the triazole groups in the aggregates of each click adduct increased the hydrodynamic diameter. Dye entrapment studies showed that each click chemistry based adduct formed closed vesicular aggregates with inner aqueous compartment in aqueous media. The temperature induced order-to-disorder transitions of the aggregates and the accompanying changes in hydration were examined using high sensitive DSC, fluorescence anisotropy and generalized polarization measurements using a membranesoluble probe, DPH and Paldan respectively. In the solid state, M1 remains as the most hydrated species whereas in the fluidized phase, D1 maintains as the most hydrated aggregate. Clearly simple variation in the adduct molecular architecture bring about significant changes in their packing in aggregates and also the hydration of the resulting vesicles. Langmuir monolayer studies confirmed that these click adducts do form stable monolayers as well on water subphase at the air-water interface. We also calculated the mean molecular areas from the Langmuir monolayer studies and as perhaps expected the adduct T1 has the highest head group area. Thus click chemistry based simple triazole adducts, which can be very easily prepared, are good candidates for further investigations involving syntheses of novel self-assembling structures. Chapter 5: Lipid Mediated Synthesis of Silver Nanoparticles, their Physical Characterizations and DNA Binding Abilities In this chapter, work on the Ag-NP (silver nanoparticle) loaded liposomes preparation using four cationic lipids (1-4) in which the Ag-NPs were entrapped within lipid bilayer has been described. A novel method was developed to synthesize the Ag-NPs where the lipid itself capped and stabilized the Ag-NPs. Consequently there was no need of inclusion of any other capping agents like citrate. Confocal microscopy confirmed that these Ag-nanoparticles are fluorescent in character. It was also demonstrated that silver nanoparticles are indeed entrapped in lipid bilayer with transmission electron microscopy (TEM). DLS experiments provided information about the hydrodynamic diameter of the lipid vesicles which increased with the increase in Ag concentrations. This could be due to the ‘loosening’ of the lipid packing in vesicles. Zeta potential measurements showed that the zeta potential value decreased with the increase in the concentration of Ag-NPs in the cationic lipid vesicles. XRD studies with the cast films of the lipid or Ag-NP loaded lipid suspensions revealed that when the Ag-NPs get entrapped into the bilayer of the multilamellar vesicles of the lipid in the aqueous media, the unit bilayer thickness of the aggregates increased. Paldan experiments showed that with the incorporation of Ag-NPs in the lipid vesicles, the hydration of the lipid vesicles increased to a significant extent but the phase transition temperatures remained practically unaltered for all the lipids. Fluorescence anisotropy experiments revealed that the hydrocarbon chain packing of the lipid vesicles ‘loosens’ with the incorporation of Ag-NPs. Ag-NP loaded liposomes showed enhanced DNA binding ability and also the presence of Ag-NPs in cationic liposomes induced the release of DNA from silver nanoparticle-loaded lipoplexes more effectively. Figure 5. Molecular structures of the cationic lipids mentioned in the present chapter. Chapter 6: Dependence of Spacer Chain Lengths in the Synthesis of Ag-Nanorods in Gemini Cationic Surfactant Micelles Figure 6. Chemical structures of cationic gemini surfactants. This chapter describes the synthesis of Ag-nanospecies by seed-mediated wet synthesis method using four gemini surfactants (16-2-16, 16-4-16, 16-5-16 and 16-1216) as the capping agents (Figure 6). For this, we first synthesized Ag-nanoseeds of diameter ~7 nm stabilized by trisodium citrate (as capping agent). Then the solution containing Ag-nanoseeds was used to synthesize Ag-nanorods of different aspect ratios. It was that with decreasing Ag-nanoseed concentration, the aspect ratios of Agnanorods stabilized by gemini surfactants (16-2-16 and 16-4-16) increased gradually as evidenced from TEM images. These Ag-nanoseeds and Ag-nanorods were further characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDAX) and X-ray diffraction (XRD). It was observed that when gemini surfactant 164-16 was used to stabilize Ag-nanorods, the λmax of the longitudinal band shifted more towards the red region (red-shift) as observed by UV-Vis spectroscopy when compared to that of gemini surfactant with shortest spacer, 16-2-16. Thus the gemini surfactants with shorter -(CH2)2- and -(CH2)4- spacer chains promoted the growth of Ag-nanorods in their micellar solutions whereas -(CH2)5- and -(CH2)12- spacer chains of gemini surfactants did not. So, the growth of Ag-nanorods in micellar solutions is found to be highly spacer-chain length specific. TEM micrographs revealed that the aspect ratios of Ag-nanorods stabilized by gemini surfactants 16-4-16 are larger than those compared to the Ag-nanorods stabilized by gemini surfactants 16-2-16 at a particular amount of Agnanoseed solution. TEM images of the samples containing micellar solutions of gemini surfactants 16-5-16 and 16-12-16 showed that the formation of only Ag-nanoparticles of larger sizes (compared to Ag-nanoseeds stabilized by trisodium citrate) and Agnanoprisms irrespective of the amount of Ag-nanoseed solution added. No Ag-nanorod formation in the micellar solutions of gemini surfactants 16-5-16 and 16-12-16 was observed. Gemini surfactants (16-2-16 and 16-4-16) formed bilayer arrangements to facilitate the growth and stabilization of Ag-nanorods in aqueous media where the inner layer is attached to the Ag-nanorod surface through the gemini surfactant ammonium headgroups. X-ray diffraction (XRD) studies showed that these Ag-nanorods stabilized by gemini surfactants 16-2-16 and 16-4-16 crystallized in the aqueous media via (111), (220) and (222) lattice faces. Thus this study demonstrated the way one can control structures and shapes of the silver nanoobjects using gemini surfactant micelles. (For structural formula pl refer the thesis)

Page generated in 0.0475 seconds