• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

資訊時代之非營利組織 / The Nonprofit Organization of Information age

韓意勤, Hahn, Yi-Chin Unknown Date (has links)
相對於政府和企業,第三部門的資訊化成熟度普遍不足。分析此一現象背後的原因固然重要,但筆者認為採取一個更為全面和鉅視的策略,以探究非營利組織資訊化課題的做法將更具意義。本文便是從這樣的問題意識出發,藉由文獻和個案研究的方式,來剖析非營利組織何以需要積極進行資訊化改革?如何適切使用資訊技術?以及其資訊化的可能型態為何?經整理及歸納,如下: 首先,在非營利組織何以需要進行資訊化改革之部分:本文嚐試從資訊社會的形貌和特性加以剖析,最後提出兩種詮釋-亦即從「網絡」和「控制」的觀點,來強調資訊化改革對第三部門的功能性和迫切性。 其次,在非營利組織資訊化的做法和內涵部分:第一,本文強調其應以本身的使命做為資訊化之最主要目的;第二,循著上述「網絡」和「控制」的兩個脈絡,非營利組織可以採取將資訊技術劃分為「通訊管理」和「資訊管理」兩類範疇的做法,來因應和面對資訊社會高度「網絡化」和「複雜化」的特質。 最後,在非營利組織資訊化的可能型態和樣貌部分:本文指出幾種理念型態,諸如網絡溝通型和資訊導向型兩種樣貌,以做為未來分析和解釋的基礎。 綜合上述,本文認為相對於龐然大物般的政府,小而美的非營利組織可以借由通訊工具來彼此分享、交流和溝通,如此不僅可以適應網絡型態的未來社會,同時還能夠增強非營利組織之間的連結,從而發揮第三部門整體的影響力。其次,相對於企業資訊化目的在於「利潤」極大化,非營利組織資訊化之目的則在於透過資訊技術和工具來達成公益和利他的本質,亦即使其能夠更加精確的掌握本身的使命、服務和資源,以有效克服高度複雜和變遷快速的外在環境。
12

Heterogeneous IoT Network Architecture Design for Age of Information Minimization

Xia, Xiaohao 01 February 2023 (has links) (PDF)
Timely data collection and execution in heterogeneous Internet of Things (IoT) networks in which different protocols and spectrum bands coexist such as WiFi, RFID, Zigbee, and LoRa, requires further investigation. This thesis studies the problem of age-of-information minimization in heterogeneous IoT networks consisting of heterogeneous IoT devices, an intermediate layer of multi-protocol mobile gateways (M-MGs) that collects and relays data from IoT objects and performs computing tasks, and heterogeneous access points (APs). A federated matching framework is presented to model the collaboration between different service providers (SPs) to deploy and share M-MGs and minimize the average weighted sum of the age-of-information and energy consumption. Further, we develop a two-level multi-protocol multi-agent actor-critic (MP-MAAC) to solve the optimization problem, where M-MGs and SPs can learn collaborative strategies through their own observations. The M-MGs' strategies include selecting IoT objects for data collection, execution, relaying, and/or offloading to SPs’ access points while SPs decide on spectrum allocation. Finally, to improve the convergence of the learning process we incorporate federated learning into the multi-agent collaborative framework. The numerical results show that our Fed-Match algorithm reduces the AoI by factor four, collects twice more packets than existing approaches, reduces the penalty by factor five when enabling relaying, and establishes design principles for the stability of the training process.
13

Information Freshness and Delay Optimization in Unreliable Wireless Systems

Yao, Guidan 02 September 2022 (has links)
No description available.
14

Age of Information: Fundamentals, Distributions, and Applications

Abd-Elmagid, Mohamed Abd-Elaziz 11 July 2023 (has links)
A typical model for real-time status update systems consists of a transmitter node that generates real-time status updates about some physical process(es) of interest and sends them through a communication network to a destination node. Such a model can be used to analyze the performance of a plethora of emerging Internet of Things (IoT)-enabled real-time applications including healthcare, factory automation, autonomous vehicles, and smart homes, to name a few. The performance of these applications highly depends upon the freshness of the information status at the destination node about its monitored physical process(es). Because of that, the main design objective of such real-time status update systems is to ensure timely delivery of status updates from the transmitter node to the destination node. To measure the freshness of information at the destination node, the Age of Information (AoI) has been introduced as a performance metric that accounts for the generation time of each status update (which was ignored by conventional performance metrics, specifically throughput and delay). Since then, there have been two main research directions in the AoI research area. The first direction aimed to analyze/characterize AoI in different queueing-theoretic models/disciplines, and the second direction was focused on the optimization of AoI in different communication systems that deal with time-sensitive information. However, the prior queueing-theoretic analyses of AoI have mostly been limited to the characterization of the average AoI and the prior studies developing AoI/age-aware scheduling/transmission policies have mostly ignored the energy constraints at the transmitter node(s). Motivated by these limitations, this dissertation develops new queueing-theoretic methods that allow the characterization of the distribution of AoI in several classes of status updating systems as well as novel AoI-aware scheduling policies accounting for the energy constraints at the transmitter nodes (for several settings of communication networks) in the process of decision-making using tools from optimization theory and reinforcement learning. The first part of this dissertation develops a stochastic hybrid system (SHS)-based general framework to facilitate the analysis of characterizing the distribution of AoI in several classes of real-time status updating systems. First, we study a general setting of status updating systems, where a set of source nodes provide status updates about some physical process(es) to a set of monitors. For this setting, the continuous state of the system is formed by the AoI/age processes at different monitors, the discrete state of the system is modeled using a finite-state continuous-time Markov chain, and the coupled evolution of the continuous and discrete states of the system is described by a piecewise linear SHS with linear reset maps. Using the notion of tensors, we derive a system of linear equations for the characterization of the joint moment generating function (MGF) of an arbitrary set of age processes in the network. Afterwards, we study a general setting of gossip networks in which a source node forwards its measurements (in the form of status updates) about some observed physical process to a set of monitoring nodes according to independent Poisson processes. Furthermore, each monitoring node sends status updates about its information status (about the process observed by the source) to the other monitoring nodes according to independent Poisson processes. For this setup, we develop SHS-based methods that allow the characterization of higher-order marginal/joint moments of the age processes in the network. Finally, our SHS-based framework is applied to derive the stationary marginal and joint MGFs for several queueing disciplines and gossip network topologies, using which we derive closed-form expressions for marginal/joint high-order statistics of age processes, such as the variance of each age process and the correlation coefficients between all possible pairwise combinations of age processes. In the second part of this dissertation, our analysis is focused on understanding the distributional properties of AoI in status updating systems powered by energy harvesting (EH). In particular, we consider a multi-source status updating system in which an EH-powered transmitter node has multiple sources generating status updates about several physical processes. The status updates are then sent to a destination node where the freshness of each status update is measured in terms of AoI. The status updates of each source and harvested energy packets are assumed to arrive at the transmitter according to independent Poisson processes, and the service time of each status update is assumed to be exponentially distributed. For this setup, we derive closed-form expressions of MGF of AoI under several queueing disciplines at the transmitter, including non-preemptive and source-agnostic/source-aware preemptive in service strategies. The generality of our analysis is demonstrated by recovering several existing results as special cases. A key insight from our characterization of the distributional properties of AoI is that it is crucial to incorporate the higher moments of AoI in the implementation/optimization of status updating systems rather than just relying on its average (as has been mostly done in the existing literature on AoI). In the third and final part of this dissertation, we employ AoI as a performance metric for several settings of communication networks, and develop novel AoI-aware scheduling policies using tools from optimization theory and reinforcement learning. First, we investigate the role of an unmanned aerial vehicle (UAV) as a mobile relay to minimize the average peak AoI for a source-destination pair. For this setup, we formulate an optimization problem to jointly optimize the UAV's flight trajectory as well as energy and service time allocations for packet transmissions. This optimization problem is subject to the UAV's mobility constraints and the total available energy constraints at the source node and UAV. In order to solve this non-convex problem, we propose an efficient iterative algorithm and establish its convergence analytically. A key insight obtained from our results is that the optimal design of the UAV's flight trajectory achieves significant performance gains especially when the available energy at the source node and UAV is limited and/or when the size of the update packet is large. Afterwards, we study a generic system setup for an IoT network in which radio frequency (RF)-powered IoT devices are sensing different physical processes and need to transmit their sensed data to a destination node. For this generic system setup, we develop a novel reinforcement learning-based framework that characterizes the optimal sampling policy for IoT devices with the objective of minimizing the long-term weighted sum of average AoI values in the network. Our analytical results characterize the structural properties of the age-optimal policy, and demonstrate that it has a threshold-based structure with respect to the AoI values for different processes. They further demonstrate that the structures of the age-optimal and throughput-optimal policies are different. Finally, we analytically characterize the structural properties of the AoI-optimal joint sampling and updating policy for wireless powered communication networks while accounting for the costs of generating status updates in the process of decision-making. Our results demonstrate that the AoI-optimal joint sampling and updating policy has a threshold-based structure with respect to different system state variables. / Doctor of Philosophy / A typical model for real-time status update systems consists of a transmitter node that generates real-time status updates about some physical process(es) of interest and sends them through a communication network to a destination node. Such a model can be used to analyze the performance of a plethora of emerging Internet of Things (IoT)-enabled real-time applications including healthcare, factory automation, autonomous vehicles, and smart homes, to name a few. The performance of these applications highly depends upon the freshness of the information status at the destination node about its monitored physical process(es). Because of that, the main design objective of such real-time status update systems is to ensure timely delivery of status updates from the transmitter node to the destination node. To measure the freshness of information at the destination node, the Age of Information (AoI) has been introduced as a performance metric that accounts for the generation time of each status update (which was ignored by conventional performance metrics, specifically throughput and delay). Since then, there have been two main research directions in the AoI research area. The first direction aimed to analyze/characterize AoI in different queueing-theoretic models/disciplines, and the second direction was focused on the optimization of AoI in different communication systems that deal with time-sensitive information. However, the prior queueing-theoretic analyses of AoI have mostly been limited to the characterization of the average AoI and the prior studies developing AoI/age-aware scheduling/transmission policies have mostly ignored the energy constraints at the transmitter node(s). Motivated by these limitations, this dissertation first develops new queueing-theoretic methods that allow the characterization of the distribution of AoI in several classes of status updating systems. Afterwards, using tools from optimization theory and reinforcement learning, novel AoI-aware scheduling policies are developed while accounting for the energy constraints at the transmitter nodes for several settings of communication networks, including unmanned aerial vehicles (UAVs)-assisted and radio frequency (RF)-powered communication networks, in the process of decision-making. In the first part of this dissertation, a stochastic hybrid system (SHS)-based general framework is first developed to facilitate the analysis of characterizing the distribution of AoI in several classes of real-time status updating systems. Afterwards, this framework is applied to derive the stationary marginal and joint moment generating functions (MGFs) for several queueing disciplines and gossip network topologies, using which we derive closed-form expressions for marginal/joint high-order statistics of age processes, such as the variance of each age process and the correlation coefficients between all possible pairwise combinations of age processes. In the second part of this dissertation, our analysis is focused on understanding the distributional properties of AoI in status updating systems powered by energy harvesting (EH). In particular, we consider a multi-source status updating system in which an EH-powered transmitter node has multiple sources generating status updates about several physical processes. The status updates are then sent to a destination node where the freshness of each status update is measured in terms of AoI. For this setup, we derive closed-form expressions of MGF of AoI under several queueing disciplines at the transmitter. The generality of our analysis is demonstrated by recovering several existing results as special cases. A key insight from our characterization of the distributional properties of AoI is that it is crucial to incorporate the higher moments of AoI in the implementation/optimization of status updating systems rather than just relying on its average (as has been mostly done in the existing literature on AoI). In the third and final part of this dissertation, we employ AoI as a performance metric for several settings of communication networks, and develop novel AoI-aware scheduling policies using tools from optimization theory and reinforcement learning. First, we investigate the role of a UAV as a mobile relay to minimize the average peak AoI for a source-destination pair. For this setup, we formulate an optimization problem to jointly optimize the UAV's flight trajectory as well as energy and service time allocations for packet transmissions. This optimization problem is subject to the UAV's mobility constraints and the total available energy constraints at the source node and UAV. A key insight obtained from our results is that the optimal design of the UAV's flight trajectory achieves significant performance gains especially when the available energy at the source node and UAV is limited and/or when the size of the update packet is large. Afterwards, we study a generic system setup for an IoT network in which RF-powered IoT devices are sensing different physical processes and need to transmit their sensed data to a destination node. For this generic system setup, we develop a novel reinforcement learning-based framework that characterizes the optimal sampling policy for IoT devices with the objective of minimizing the long-term weighted sum of average AoI values in the network. Our analytical results characterize the structural properties of the age-optimal policy, and demonstrate that it has a threshold-based structure with respect to the AoI values for different processes. They further demonstrate that the structures of the age-optimal and throughput-optimal policies are different. Finally, we analytically characterize the structural properties of the AoI-optimal joint sampling and updating policy for wireless powered communication networks while accounting for the costs of generating status updates in the process of decision-making. Our results demonstrate that the AoI-optimal joint sampling and updating policy has a threshold-based structure with respect to different system state variables.
15

OPTIMIZING DATA FRESHNESS IN INFORMATION UPDATE SYSTEMS

Bedewy, Ahmed M. 30 September 2021 (has links)
No description available.
16

Network Utility Maximization Based on Information Freshness

Cho-Hsin Tsai (12225227) 20 April 2022 (has links)
<p>It is predicted that there would be 41.6 billion IoT devices by 2025, which has kindled new interests on the timing coordination between sensors and controllers, i.e., how to use the waiting time to improve the performance. Sun et al. showed that a <i>controller</i> can strictly improve the data freshness, the so-called Age-of-Information (AoI), via careful scheduling designs. The optimal waiting policy for the <i>sensor</i> side was later characterized in the context of remote estimation. The first part of this work develops the jointly optimal sensor/controller waiting policy. It generalizes the above two important results in that not only do we consider joint sensor/controller designs, but we also assume random delay in both the forward and feedback directions. </p> <p> </p> <p>The second part of the work revisits and significantly strengthens the seminal results of Sun et al on the following fronts: (i) When designing the optimal offline schemes with full knowledge of the delay distributions, a new <i>fixed-point-based</i> method is proposed with <i>quadratic convergence rate</i>; (ii) When the distributional knowledge is unavailable, two new low-complexity online algorithms are proposed, which provably attain the optimal average AoI penalty; and (iii) the online schemes also admit a modular architecture, which allows the designer to <i>upgrade</i> certain components to handle additional practical challenges. Two such upgrades are proposed: (iii.1) the AoI penalty function incurred at the destination is unknown to the source node and must also be estimated on the fly, and (iii.2) the unknown delay distribution is Markovian instead of i.i.d. </p> <p> </p> <p>With the exponential growth of interconnected IoT devices and the increasing risk of excessive resource consumption in mind, the third part of this work derives an optimal joint cost-and-AoI minimization solution for multiple coexisting source-destination (S-D) pairs. The results admit a new <i>AoI-market-price</i>-based interpretation and are applicable to the setting of (i) general heterogeneous AoI penalty functions and Markov delay distributions for each S-D pair, and (ii) a general network cost function of aggregate throughput of all S-D pairs. </p> <p> </p> <p>In each part of this work, extensive simulation is used to demonstrate the superior performance of the proposed schemes. The discussion on analytical as well as numerical results sheds some light on designing practical network utility maximization protocols.</p>

Page generated in 0.1282 seconds