• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 24
  • 11
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Activation of disease resistance and defense gene expression in Agrostis stolonifera and Nicotiana benthamiana by a copper-containing pigment and a benzothiadiazole derivative

Nash, Brady Tavis 15 September 2011 (has links)
Soil application of a known activator of Systemic Acquired Resistance (SAR), benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester (BTH), and Harmonizer, a polychlorinated copper (II) phthalocyanine pigment, reduced severity of Colletotrichum orbiculare in Nicotiana benthamiana by 99% and 38%, respectively. BTH induced expression of nine SAR/progammed cell death-related genes and primed expression of two Induced Systemic Resistance (ISR)-related genes, while Harmonizer induced expression of only one SAR-related gene. Soil application of Harmonizer also reduced severity of Sclerotinia homoeocarpa in Agrostis stolonifera up to 39%, whereas BTH was ineffective. Next generation sequencing identified over 1000 genes in A. stolonifera with two-fold or higher increased expression following Harmonizer treatment relative to a water control, and induced expression of three defense-related genes was confirmed by relative RT-PCR. These results demonstrate that Harmonizer can activate systemic resistance in a dicot and a monocot, but changes in expression of genes indicated that it differed from BTH-activated SAR. / Petro-Canada, Natural Sciences and Engineering Research Council of Canada, Ontario Turfgrass Research Foundation
12

Inter- and Intra-Specific Variation in Wear Mechanisms in Agrostis: I. Wear Tolerance and Recovery Ii. Anatomical, Morphological and Physiological Characteristics

Dowgiewicz, Jason M 01 January 2009 (has links) (PDF)
Creeping bentgrass (Agrostis stolonifera L.) and velvet bentgrass (Agrostis canina L.) are the principal grass species for golf course putting greens in northern latitudes. Wear injury is a major physical stress that limits the function and quality of turfgrass. Wear evaluations in Agrostis species are limited and no studies have been conducted to evaluate recovery from wear and associated wear mechanisms. To that end, Agrostis species and genotypes were evaluated for wear tolerance and recovery on a golf green built according to USGA specifications. Equal numbers of creeping bentgrass and velvet bentgrass genotypes were tested. Wear was applied using a grooming brush over a 3-year period and plots were visually rated for wear and recovery. As much as 90% of the total variation in Agrostis wear tolerance was due to interspecific variation. Velvet entries provided significantly better wear tolerance than creeping bentgrass. Velvet bentgrass genotypes provided acceptable wear tolerance and full recovery in most years with the exception of SR-7200. None of the creeping bentgrass entries evaluated exhibited acceptable wear tolerance or achieved full recovery. Fourteen Agrostis genotypes, which included equal numbers of creeping and velvet species were selected for further evaluation of anatomical, morphological and physiological characterstics associated with wear tolerance. Eleven characteristics were measured comparing greenhouse grown spaced-plants established from field plots and seed. Characteristics included tiller density, shoot dry weight, shoot water content, relative water content (RWC), leaf width, leaf strength, leaf angle, crown type and leaf cell wall constituents. Siginificant interspecific difference in charactersitics were found. Little difference at the intraspecific level was obserevd especially within creeping bentgrass. Wear tolerant velvet genotypes were associated with a more vertical tiller and leaf angle, greater cell wall content and greater shoot density. Lignocellulose content accounted for as much as 62.8 to 72.3% of the variation in Agrostis wear tolerance while tiller density accounted for as much as 65.9 to 75.8%. Wear tolerance in Agrostis can be improved by giving priority to breeding for greater density and cell wall content with secondary emphasis to breeding for a more upright growth habit (tiller and leaf).
13

Bioprospecção de actinobactérias associadas à esponja marinha Aplysina fulva: isolamento, caracterização e produção de compostos bioativos / Bioprospecting of actinobacteria associated with marine sponge Aplysina fulva: isolation, characterization and production of bioactive compounds

Silva, Fábio Sérgio Paulino da 03 November 2015 (has links)
Este estudo descreve a diversidade de actinobactérias isoladas da esponja marinha Aplysina fulva e o potencial destes microorganismos como produtores de metabólitos bioativos com propriedades fungicidas e herbicidas. Actinobactérias são prolíficas produtoras de compostos farmacologicamente importantes, pois cerca de 70% dos antibióticos naturalmente derivados que estão atualmente em uso clínico são produzidos por estes microorganismos. Entretanto este valor é ainda inexpressivo na indústria agrícola. Agroquímicos sintéticos ainda são dominantes no mercado apesar de estarem menos efetivos contra plantas daninhas e patógenos cada vez mais resistentes. Neste trabalho, um total de 21 actinobactérias foram isoladas com a utilização de meios seletivos. Análises filogenéticas baseadas no sequenciamento parcial do gene que codifica para o rRNA 16S mostrou que estes microorganismos pertencem a oito gêneros do filo Actinobacteria: Kocuria; Citricoccus; Terrabacter; Gordonia; Agrococcus; Tsukamurella; Brevibacterium e Streptomyces. Os extratos de todos os isolados foram testados para verificar a produção de metabólitos secundários com propriedades fungicidas contra os fungos fitopagênicos de importância agrícola: Pythium aphanidermatum; Phytophthora capsici e Magnaporthe grisea. O extrato bruto de 43% dos isolados mostrou atividade fungicida para ao menos um dos patógenos. O perfil químico do extrato dos isolados com bioatividade positiva foram similares mesmo entre gêneros diferentes. Os metabólitos do Streptomyces ASPSP 103 foram mais eficientes devido à forte inibição contra todos os patógenos testados. Portanto este isolado foi selecionado e testado para atividade herbicida por meio de screening que teve início com testes de atividade algicida contra a microalga Selenastrum capricornutum. Acreditamos que actinobactérias associadas a esponjas marinhas desempenham um papel de defesa química contra microalgas que possam obstruir os porócitos asfixiando o animal, e que estes compostos algicidas possivelmente tenham ação herbicida. Foi verificada atividade do extrato bruto do Streptomyces ASPSP 103 contra S. capricornutum, e a atividade herbicida pré-emergência com um efeito fraco em Lactuca sativa (dicotiledônea) e uma forte inibição em Agrostis stolonifera (monocotiledônea). A purificação do extrato bruto para isolamento do composto bioativo foi guiado por bioensaio contra Pythium aphanidermatum, um oomiceto de rápido crescimento e sensível aos metabólitos de ASPSP 103 previamente testados. Foi identificado o composto da classe butenolida com atividade herbicida préemergência contra Agrostis stolonifera (IC50 33.43 μg/mL). Este é o primeiro relato da atividade de butenolida para atividade herbicida. Estudos aprofundados em taxonomia mostraram que as características filogenéticas, morfológicas e químicas do isolado ASPSP 103 são consistentes com o gênero Streptomyces. Portanto devido algumas diferenças em parâmetros taxonômicos, ASPSP 103T foi proposto como linhagem tipo para uma nova espécie de Streptomyces, para qual o nome Streptomyces atlanticus sp. nov. foi sugerido. Estes resultados enfatizam o potencial de Streptomyces marinhos para produzir compostos bioativos com potencial de aplicação em agrobiotecnologia. / Actinobacteria are producers of important pharmacological compounds. About 70% of natural antibiotics are derived from these microorganisms. However, the use of natural compounds are still limited in the agricultural industry, even considering that synthetic pesticides are less effective against pathogens and weed plants. This study describes the diversity of actinobacteria associated with the marine sponge Aplysina fulva and their potential as producers of bioactive compounds with fungicidal and herbicidal properties. In this study, a total of 21 actinomycetes were isolated with the use of selective media. Phylogenetic analyzes based on partial sequencing of the gene encoding for 16S rRNA showed that these microorganisms belong to eight Actinobacteria genera, including Kocuria, Citricoccus, Terrabacter, Gordonia, Agrococcus, Tsukamurella, Brevibacterium and Streptomyces. The extracts of all isolates were tested for the production of secondary metabolites with fungicidal properties against the following phytopathogenic fungi: of Pythium aphanidermatum, Phytophthora capsici and Magnaporthe grisea. The crude extract of 43% of the isolates showed fungicidal activity for at least one of the pathogens. The chemical profiles of the actinobacteria extracts with positive bioactivity were similar even among different genus. The metabolites of Streptomyces ASPSP 103 were more efficient because of the strong inhibition against all tested pathogens. So, the isolate ASPSP 103 was selected and tested for herbicide activity through screening for algaecide activity towards microalgae Selenastrum capricornutum. We believe that actinobacteria associated with marine sponges play a role in chemical defense against algae that can obstruct the pores, choking the animal. These algaecides compounds possibly have herbicide action. Activity of the Streptomyces ASPSP 103 crude extract against S. capricornutum was observed. In addition, it was observed a weak pre-emergence herbicide activity on Lactuca sativa (dicot) and a strong inhibition in Agrostis stolonifera (monocot). The purification of the crude extract to isolate the bioactive compound was guided by bioassay against Pythium aphanidermatum, a fast growing oomycete and sensitive to metabolites from ASPSP 103 previously tested. The butenolide compound was identified with pre-emergence herbicidal activity against Agrostis stolonifera (IC50 33.43 μg/mL). This is the first report of butenolide activity with herbicide activity. Taxonomy studies showed that the phylogenetic, morphological and chemical characteristics of the isolated ASPSP 103 are consistent with the Streptomyces genus. Then, considering some differences in taxonomic parameters, ASPSP 103T was proposed as line type for a new species of Streptomyces, for which the name Streptomyces atlanticus sp. nov. was suggested. These results emphasize the potential of marine Streptomyces to produce bioactive compounds with potential biotechnological application in agricultural industry.
14

Bioprospecção de actinobactérias associadas à esponja marinha Aplysina fulva: isolamento, caracterização e produção de compostos bioativos / Bioprospecting of actinobacteria associated with marine sponge Aplysina fulva: isolation, characterization and production of bioactive compounds

Fábio Sérgio Paulino da Silva 03 November 2015 (has links)
Este estudo descreve a diversidade de actinobactérias isoladas da esponja marinha Aplysina fulva e o potencial destes microorganismos como produtores de metabólitos bioativos com propriedades fungicidas e herbicidas. Actinobactérias são prolíficas produtoras de compostos farmacologicamente importantes, pois cerca de 70% dos antibióticos naturalmente derivados que estão atualmente em uso clínico são produzidos por estes microorganismos. Entretanto este valor é ainda inexpressivo na indústria agrícola. Agroquímicos sintéticos ainda são dominantes no mercado apesar de estarem menos efetivos contra plantas daninhas e patógenos cada vez mais resistentes. Neste trabalho, um total de 21 actinobactérias foram isoladas com a utilização de meios seletivos. Análises filogenéticas baseadas no sequenciamento parcial do gene que codifica para o rRNA 16S mostrou que estes microorganismos pertencem a oito gêneros do filo Actinobacteria: Kocuria; Citricoccus; Terrabacter; Gordonia; Agrococcus; Tsukamurella; Brevibacterium e Streptomyces. Os extratos de todos os isolados foram testados para verificar a produção de metabólitos secundários com propriedades fungicidas contra os fungos fitopagênicos de importância agrícola: Pythium aphanidermatum; Phytophthora capsici e Magnaporthe grisea. O extrato bruto de 43% dos isolados mostrou atividade fungicida para ao menos um dos patógenos. O perfil químico do extrato dos isolados com bioatividade positiva foram similares mesmo entre gêneros diferentes. Os metabólitos do Streptomyces ASPSP 103 foram mais eficientes devido à forte inibição contra todos os patógenos testados. Portanto este isolado foi selecionado e testado para atividade herbicida por meio de screening que teve início com testes de atividade algicida contra a microalga Selenastrum capricornutum. Acreditamos que actinobactérias associadas a esponjas marinhas desempenham um papel de defesa química contra microalgas que possam obstruir os porócitos asfixiando o animal, e que estes compostos algicidas possivelmente tenham ação herbicida. Foi verificada atividade do extrato bruto do Streptomyces ASPSP 103 contra S. capricornutum, e a atividade herbicida pré-emergência com um efeito fraco em Lactuca sativa (dicotiledônea) e uma forte inibição em Agrostis stolonifera (monocotiledônea). A purificação do extrato bruto para isolamento do composto bioativo foi guiado por bioensaio contra Pythium aphanidermatum, um oomiceto de rápido crescimento e sensível aos metabólitos de ASPSP 103 previamente testados. Foi identificado o composto da classe butenolida com atividade herbicida préemergência contra Agrostis stolonifera (IC50 33.43 μg/mL). Este é o primeiro relato da atividade de butenolida para atividade herbicida. Estudos aprofundados em taxonomia mostraram que as características filogenéticas, morfológicas e químicas do isolado ASPSP 103 são consistentes com o gênero Streptomyces. Portanto devido algumas diferenças em parâmetros taxonômicos, ASPSP 103T foi proposto como linhagem tipo para uma nova espécie de Streptomyces, para qual o nome Streptomyces atlanticus sp. nov. foi sugerido. Estes resultados enfatizam o potencial de Streptomyces marinhos para produzir compostos bioativos com potencial de aplicação em agrobiotecnologia. / Actinobacteria are producers of important pharmacological compounds. About 70% of natural antibiotics are derived from these microorganisms. However, the use of natural compounds are still limited in the agricultural industry, even considering that synthetic pesticides are less effective against pathogens and weed plants. This study describes the diversity of actinobacteria associated with the marine sponge Aplysina fulva and their potential as producers of bioactive compounds with fungicidal and herbicidal properties. In this study, a total of 21 actinomycetes were isolated with the use of selective media. Phylogenetic analyzes based on partial sequencing of the gene encoding for 16S rRNA showed that these microorganisms belong to eight Actinobacteria genera, including Kocuria, Citricoccus, Terrabacter, Gordonia, Agrococcus, Tsukamurella, Brevibacterium and Streptomyces. The extracts of all isolates were tested for the production of secondary metabolites with fungicidal properties against the following phytopathogenic fungi: of Pythium aphanidermatum, Phytophthora capsici and Magnaporthe grisea. The crude extract of 43% of the isolates showed fungicidal activity for at least one of the pathogens. The chemical profiles of the actinobacteria extracts with positive bioactivity were similar even among different genus. The metabolites of Streptomyces ASPSP 103 were more efficient because of the strong inhibition against all tested pathogens. So, the isolate ASPSP 103 was selected and tested for herbicide activity through screening for algaecide activity towards microalgae Selenastrum capricornutum. We believe that actinobacteria associated with marine sponges play a role in chemical defense against algae that can obstruct the pores, choking the animal. These algaecides compounds possibly have herbicide action. Activity of the Streptomyces ASPSP 103 crude extract against S. capricornutum was observed. In addition, it was observed a weak pre-emergence herbicide activity on Lactuca sativa (dicot) and a strong inhibition in Agrostis stolonifera (monocot). The purification of the crude extract to isolate the bioactive compound was guided by bioassay against Pythium aphanidermatum, a fast growing oomycete and sensitive to metabolites from ASPSP 103 previously tested. The butenolide compound was identified with pre-emergence herbicidal activity against Agrostis stolonifera (IC50 33.43 μg/mL). This is the first report of butenolide activity with herbicide activity. Taxonomy studies showed that the phylogenetic, morphological and chemical characteristics of the isolated ASPSP 103 are consistent with the Streptomyces genus. Then, considering some differences in taxonomic parameters, ASPSP 103T was proposed as line type for a new species of Streptomyces, for which the name Streptomyces atlanticus sp. nov. was suggested. These results emphasize the potential of marine Streptomyces to produce bioactive compounds with potential biotechnological application in agricultural industry.
15

Growth strategies, competition and defoliation in five grassland plants /

Glimskär, Anders, January 1900 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 4 uppsatser.
16

Etude de l'évolution de la spéciation du zinc dans la phase solide d'un sédiment de curage contaminé, induit par phytostabilisation

Panfili, Frédéric 09 June 2004 (has links) (PDF)
Le curage des sédiments des cours d'eau est nécessaire pour limiter les risques d'inondations et permettre la navigation fluviale. A cause des activités humaines, les sédiments de curage sont souvent contaminés en métaux, ce qui rend leur gestion problématique. Dans ce contexte,la phytostabilisation, une technique de traitement consistant à utiliser des plantes et des amendements minéraux pour réduire la mobilité des métaux dans des matrices solides contaminées, a été testée sur un sédiment de curage prélevé à proximité d'une fonderie de zinc et contaminé principalement par cet élément. Les plantes (Agrostis tenuis et Festuca rubra) ont été cultivées en serre, dans des mésocosmes d'environ 40 kg, qui contenaient l'un des trois substrats suivants : sédiment, sédiment + hydroxylapatite et sédiment + amendement sidérurgique ; des mésocosmes témoins non-végétalisés ont été placés dans les mêmes conditions. L'objectif principal de ce travail était de caractériser l'évolution de la spéciation du zinc induite par deux ans de phytostabilisation. Dans un premier temps, les associations géochimiques du zinc dans les différents milieux ont été observées sur des lames minces à l'échelle du micromètre grâce à l'utilisation combinée de techniques de micro-analyse (MEB-EDS, μXSRF). La spéciation du zinc dans chacune de ces associations a ensuite été déterminée par spectroscopie EXAFS résolue latéralement (μEXAFS). Le traitement des spectres μEXAFS par analyse en composantes principales (ACP) a permis l'identification de la sphalérite (ZnS), de la gahnite (ZnAl2O4) et de la franklinite (ZnFe2O4), qui sont des minéraux primaires certainement d'origine anthropique, et de la ferrihydrite (oxyhydroxyde de fer mal cristallisé) zincifère, d'une association zinc-phosphate, d'un phyllosilicate zincifère et de l'hydrotalcite (oxyhydroxyde d'aluminium) zincifère. Dans un second temps, les espèces zincifères ainsi identifiées ont été quantifiées à l'échelle macroscopique par spectroscopie EXAFS sur poudre. Les spectres EXAFS ainsi obtenus ont été simulés par combinaisons linéaires des spectres EXAFS des espèces zincifères précédemment identifiées, ce qui a permis d'évaluer l'effet du traitement sur la spéciation moyenne du zinc. En deux ans, elle a évolué de façon significative dans les mésocosmes amendés non-végétalisés, puisque l'on observe une diminution de la proportion de ZnS, la phase zincifère initialement majoritaire dans le sédiment, et la néoformation d'un phosphate de zinc. L'évolution de la spéciation du zinc est spectaculaire dans les mésocosmes végétalisés (amendés ou non), puisque dans ce cas, ZnS a été totalement oxydée et d'autres phases zincifères, telles qu'un phosphate de zinc et un phyllosilicate zincifère et / ou de l'hydrotalcite zincifère, se sont formées. La gahnite et la franklinite n'ont été observées qu'à l'échelle microscopique et sont donc des phases minoritaires. L'étude de la surface des racines des plantes par MEB-EDS, μSXRF et μEXAFS a permis de mettre en évidence la présence de précipités d'oxydes de manganèse (birnessite) riches en zinc, et parfois en plomb et en cuivre. Cette espèce chimique a été observée uniquement à la surface des racines et représente probablement une contribution minoritaire au processus global de l'immobilisation du zinc. Au bout de deux années, la phytostabilisation a permis la formation de phases zincifères plus stables que ZnS dans les conditions atmosphériques d'un dépôt de surface, indiquant que le zinc présent dans le sédiment phytostabilisé est potentiellement moins mobile que dans le sédiment seul. Ainsi, dans notre cas, la phytostabilisation limiterait donc la dispersion du zinc dans l'environnement.
17

Ekologické determinanty klonálního růstu rostlin / Ecological determinants of plant clonal growth

Martincová, Nina January 2016 (has links)
The aim of this study is to provide a further insight into influence of environment on clonal plants. The study focuses particularly on effects of fertilization level and light availability on production and growth of clonal organs. Three experiments were carried out within the study, targeted to elicit influence of these environmental conditions or clonal interactions on six species of clonal plants. Interspecies dependencies on these conditions was compared, regarding habitat occurrence of these species. A comparison was made also between species producing rhizomes and stolons. The experiments revealed that five of six studied species show significant relationship among at least one environmental condition and parameters of clonal reproduction. Most of the species showed higher elongation and production of clonal organs in relation to fertilization level. On the contrary, only three species reacted significantly to the light availability level by alternation of at least one parameter of clonal reproduction and the light availability level affected each species differently. A strong influence on production and elongation of clonal organs had also a size of a plant. There was not found significant difference in influence of environmental conditions on clonal reproduction among plant families. It...
18

The effectiveness of induced plant disease resistance: genotypic variation and quantification by chlorophyll fluorescence

Tung, Jonathan 16 September 2011 (has links)
Cultivars of Agrostis stolonifera showed weak and strong responsiveness to the systemic acquired resistance (SAR) activator, benzothiadiazole (BTH), or the induced systemic resistance (ISR) activator, 2R, 3R-butanediol (BD). Next Generation RNA sequencing was used to identify 2163 putative transcripts with increased expression in BTH versus water-treated A. stolonifera. Among three BTH-induced genes, AsASP-2 and AsHIR-1 were induced faster, while AsLOX-1 had stronger transient induction, in one out of two strongly BTH-responsive cultivars. Three ISR-responsive genes, AsGNS-5, AsOPR-4 and AsAOS-1, showed no greater induction or priming in the strongly versus weakly BD-responsive cultivars. Cultivars of A. stolonifera vary significantly in their response to defense activators, however this is not consistently related to defense gene expression. To quantify disease severity, chlorophyll fluorescence imaging of the maximum quantum efficiency of photosystem II (Fv/Fm) was tested on Nicotiana benthamiana infected with Colletotrichum orbiculare. Leaf areas of healthy, non-necrotic affected and necrotic tissue could be individually quantified, which demonstrated that BD delayed symptom development by approx. 24-hour and reduced non-necrotic affected tissue compared to controls. Chlorophyll fluorescence imaging can quantify and reveal novel features about induced disease resistance.
19

Optimizing Topramezone and Other Herbicide Programs for Weed Control in Bermudagrass and Creeping Bentgrass Turf

Brewer, John Richard 02 April 2021 (has links)
Goosegrass [Eleusine indica (L.) Gaertn.] and smooth crabgrass [Digitaria ischaemum (Schreb.) Schreb. ex Muhl.] are problematic weeds in bermudagrass and creeping bentgrass turf. Increased incidences of herbicide resistant weed populations and severe use restrictions on formerly available herbicides have increased need for selective, postemergence control options for these weeds in creeping bentgrass and bermudagrass turf. This weed management exigency has led turf managers to utilize less effective, more expensive, and more injurious options to manage goosegrass and smooth crabgrass. Although potentially injurious, topramezone can control these weeds, especially goosegrass, at low doses. Low-dose topramezone may also improve bermudagrass and creeping bentgrass response. An initial investigation of three 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibiting herbicides in different turf types showed that Kentucky bluegrass, perennial ryegrass, and tall fescue were highly tolerant to topramezone, while creeping bentgrass and bermudagrass could tolerate topramezone doses that may control grassy weeds. Further investigation suggested that frequent, low-dose topramezone applications or metribuzin admixtures could enhance weed control and may conserve turfgrass quality. A novel mixture of topramezone at 3.7 g ae ha-1 and metribuzin at 210 g ai ha-1 controlled goosegrass effectively and reduced bermudagrass foliar bleaching associated with topramezone 10-fold compared to higher doses of topramezone alone in 19 field and 2 greenhouse trials. In an attempt to further enhance bermudagrass tolerance to topramezone, post-treatment irrigation was applied at various timings. When bermudagrass turf was irrigated with 0.25-cm water at 15 or 30 minutes after herbicide treatment, bermudagrass injury was reduced to acceptable levels when following low-dose topramezone plus metribuzin but not when following high-dose topramezone alone. Goosegrass control was reduced significantly by post-treatment irrigation in all cases, while irrigation reduced goosegrass control by low-dose topramezone plus metribuzin to below-commercially-acceptable levels. Novel, low-dose, frequent application programs containing topramezone or siduron were developed for season-long crabgrass or goosegrass control on creeping bentgrass greens. Greens-height creeping bentgrass quality was preserved following five biweekly treatments of siduron at rates between 3,400 to 13,500 g ai ha-1 and topramezone at 3.1 g ha-1. Siduron programs controlled smooth crabgrass and suppressed goosegrass while topramezone programs controlled goosegrass and suppressed smooth crabgrass. In laboratory and controlled-environment experiments, goosegrass absorbed three times more 14C than bermudagrass within 48 hours of 14C-topramezone treatment. Bermudagrass also metabolized topramezone twice as fast as goosegrass. Metribuzin admixture reduced absorption by 25% in both species. When herbicides were placed exclusively on soil, foliage, or soil plus foliage, topramezone controlled goosegrass only when applied to foliage and phytotoxicity of both bermudagrass and goosegrass was greater from topramezone than from metribuzin. Metribuzin was shown to reduce 21-d cumulative clipping weight and tiller production of both species while topramezone caused foliar discoloration to newly emerging leaves and shoots with only marginal clipping weight reduction. These data suggest that selectivity between bermudagrass and goosegrass is largely due to differential absorption and metabolism that reduces bermudagrass exposure to topramezone. Post-treatment irrigation likely reduces topramezone rate load with a concomitant effect on plant phytotoxicity of both species. Metribuzin admixture decreases white discoloration of bermudagrass by decreased topramezone absorption rate and eliminating new foliar growth that is more susceptible to discoloration by topramezone. / Doctor of Philosophy / Goosegrass and smooth crabgrass are problematic weeds in bermudagrass and creeping bentgrass turf. Increased incidences of herbicide resistant weed populations and severe use restrictions on formerly available herbicides have increased need for selective, postemergence control options for these weeds in creeping bentgrass and bermudagrass turf. Although potentially injurious, topramezone (Pylex™) can control these weeds, especially goosegrass, at low doses. Low-dose Pylex™ may also improve bermudagrass and creeping bentgrass response. An initial investigation evaluating tembotrione (Laudis®), Pylex™, and mesotrione (Tenacity®) in different turfgrass species showed that Kentucky bluegrass, perennial ryegrass, and tall fescue were highly tolerant to Pylex™ at rates ranging from 0.75 to 2.25 fl. oz./A, while creeping bentgrass and bermudagrass were low to moderately tolerant to Pylex™. Further investigation suggested that frequent, low-dose (less than 0.25 fl. oz./A) Pylex™ applications or metribuzin (Sencor®) admixtures could enhance weed control and may conserve turfgrass quality. A novel mixture of Pylex™ at 0.15 fl. oz./A and Sencor® at 4 oz. wt./A controlled goosegrass effectively and reduced bermudagrass injury to near acceptable levels and significantly less than Pylex™ applied alone at 0.25 fl. oz/A. In an attempt to further enhance bermudagrass tolerance to Pylex™, post-treatment irrigation was applied at different timings. When bermudagrass turf was irrigated at 15 or 30 minutes after herbicide treatment, bermudagrass injury was reduced to acceptable levels when following Pylex™ at 0.25 fl. oz./A plus Sencor® at 4 oz but not when following Pylex™ applied alone at 0.5 fl. oz./A. Goosegrass control was reduced significantly by post-treatment irrigation in all cases, while irrigation reduced goosegrass control by low-dose Pylex™ plus Sencor® to below-commercially-acceptable levels. Novel, low-dose, frequent application programs containing Pylex™ or siduron (Tupersan®) were developed for season-long crabgrass or goosegrass control in creeping bentgrass greens. Greens-height creeping bentgrass quality was preserved following five biweekly treatments of Tupersan® at rates between 6 and 24 lb./A and Pylex™ at 0.125 fl. oz./A. Tupersan® programs controlled smooth crabgrass and suppressed goosegrass while Pylex™ programs controlled goosegrass and suppressed smooth crabgrass. The data from these studies indicate that utilizing low-dose Pylex™ in combination with Sencor® can impart acceptable bermudagrass safety while also controlling goosegrass effectively. For creeping bentgrass greens, the low-dose, frequent application of Tupersan® is the safest legal option for golf course superintendents to control smooth crabgrass effectively, while having some ability to suppress goosegrass.
20

Klonální integrace Agrostis stolonifera v živinově heterogenním prostředí / Clonal integration of Agrostis stolonifera in heterogeneous soil environment

Duchoslavová, Jana January 2014 (has links)
Clonal plants may be able to cope with spatial heterogeneity due to the physiological integration of ramets. Previous studies demonstrated that benefits of clonal integration increase with patch contrast between individual ramets. However, the same magnitude of contrast may be perceived differently in rich and poor environments. According to the theoretical work of Caraco and Kelly (1991), I expected these benefits to be the greatest in overall poor conditions and high between-patch contrast. To test this hypothesis, I conducted experiments with pairs of ramets of a stoloniferous grass, Agrostis stolonifera, grown in variously nutrient rich conditions. The experiment with pairs of ramet of similar developmental age showed only very weak effect of integration on growth of ramets, although integration significantly improved survival of ramets and also affected root-shoot ratio of ramets. Nevertheless, there were considerable benefits of integration in the experiment with developmentally older mother ramets and their daughter ramets. Contrary to the predictions, the benefits of integration were bigger in rich conditions and they decreased with increasing between-patch contrast. In addition, effect of integration on root-shoot ratio of ramets was opposite to the expected specialization for acquisition...

Page generated in 0.0604 seconds