Spelling suggestions: "subject:"algal biomass"" "subject:"algal iomass""
11 |
Phaeodactylum tricornutum – Compositional Analysis, Carbohydrate-Active Enzymes and Potential Applications of Residual Algal Biomass from Omega 3 ProductionNorell, Isabella January 2020 (has links)
Microalgae are gaining more attention for several reasons such as being potential producers of sustainable fuel, for use as health supplements and in skincare. Simris Alg is a Swedish company that produces Omega 3 supplements from a primary producer of these fatty acids - the algal diatom Phaeodactylum tricornutum, which is a sustainable alternative to Omega 3 derived from fish. Omega 3 fatty acids constitute a small fraction of the total algal biomass, and to increase profitability and utilize all of the biomass, the purpose of this thesis project is to present potential applications for the residual material that is left after oil extraction. A general composition study was made of Simris Alg algal residue material, and results are compared to those found in previous studies of P. tricornutum biomass. An optimization of the fractionation is needed to separate the storage carbohydrate chrysolaminarin and cell wall component glucuronomannan, followed by analysis for confirmation. Also, it would be interesting to separate chitin, if there is any, since despite the presence of chitin synthases, it is unclear whether the diatom actually produces chitin. When gathering information, no actual experimental characterization of carbohydrate active enzymes involved in synthesis of the main carbohydrates investigated were found. Such information would be useful to increase production of the carbohydrate of interest, if valuable applications are found. Potential applications of various cell components, such as carbohydrates, in skincare would be interesting to investigate, as well as optimizing fucoxanthin extraction for use as an additional high value product next to Omega 3.
|
12 |
Otimização do cultivo da microalga Haematococcus pluvialis em sistema mixotrófico e potencial uso na alimentação do camarão Macrobrachium amazonicum /Scardoeli-Truzzi, Bruno January 2019 (has links)
Orientador: Lucia Helena Sipauba Tavares / Resumo: A microalga Haematococcus pluvialis apresenta elevado interesse biotecnológico e comercial devido sua capacidade de síntese de compostos de alto valor e composição nutricional rica em proteínas, aminoácidos e outros compostos. Dentre os entraves em sua produção comercial, a obtenção de elevada biomassa tem sido o foco de diversas pesquisa que buscam otimizar o cultivo desta espécie. O cultivo mixotrófico é uma ferramenta que pode auxiliar na obtenção de elevadas produtividades, no entanto a fonte de carbono utilizada nestes cultivos deve ser adequada e disponibilizada de forma correta para completa absorção. O melaço de cana de açúcar é uma fonte de carbono rica em sacarose e nutrientes podendo ser empregado no cultivo de H. pluvialis, no entanto, requer pré-tratamento antes de seu uso. A hidrólise auxilia na redução das moléculas de sacarose em glicose e frutose, aumentando a disponibilidade de carbono e facilitando sua assimilação. Comparado ao melaço in natura, a hidrolise do melaço demonstrou melhores resultados aumentando a produtividade e alta composição bioquímica. Outra ferramenta importante utilizada na otimização dos cultivos algais em condições mixotróficas é o uso de ciclos de luz, uma vez que a luminosidade está relacionada diretamente ao metabolismo algal auxiliando na assimilação dos nutrientes e do carbono. O período de iluminação fornecida varia de espécie para espécie, podendo ou não ser necessário. Neste estudo e para estas condições de cultivo, foram obser... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The Haematococcus pluvialis microalgae displays high biotechnological and commercial interest due to its capacity to synthesize high nutritional value in protein, amino acids and other compounds. Besides the difficulties in commercial production, the obtaining of high biomass amounts has been the objective of several researches which seek to optimize the production of this species. The mixotrophic culture is a tool which may improve the obtention of higher productivity. However, the carbon source for the cultures have to be adequate and has to be in an available form in order to be completely absorbed. The cane molasse is a carbon source rich in saccharose and nutrients and might be employed in H. pluvialis culture. Nevertheless, it requires a pre-treatment for its use. The hydrolysis promotes the reduction of saccharose molecules into glycose and fructose, improving the carbon availability and assimilation. In comparison to in natura molasses, the hydrolysis improved the results by increasing productivity. Light cycle is another important tool for algae culture in mixotrophic conditions, since light is directly related to the algae metabolism, which improves the carbon and nutrients assimilation. The light interval varies according to species and may or may not be necessary to be employed. In this study, an increase in biomass and biochemical composition was observed when H. pluvialis was exposed to light cycles. The best results were obtained with a 20:4 hours cycle (light/... (Complete abstract click electronic access below) / Doutor
|
13 |
Anaerobic Co-Digestion of Algal Biomass and a Supplemental Carbon Source Material to Produce MethaneSoboh, Yousef 01 May 2015 (has links)
Algae that are grown in wastewater treatment lagoons could be an important substrate for biofuel production; however, the low C/N ratio of algae is not conducive to anaerobic digestion of algae with economically attractive methane production rates. Increasing the C/N ratio in anaerobic, laboratory scale, batch reactors by blending algal biomass with sodium acetate resulted i increased methane production rates as the C/N ratio increased. The highest amount of methane was produced when the C/N was 21/1. When the C/N was 24/1, the biogas production rate decreased. Batch experiments were done to evaluate the effect of optimizing the C/N ratio on methane production from algae and to identify the most essential information needed to conduct research on co-digestion of algal biomass using the continuous, high-rate, up-flow anaerobic sludge blanket (UASB) reactor system. Based on the results obtained from batch reactor experiments, anaerobic co-digestion of algal biomass, obtained by continuous centrifugation from the Logan City, Utah, 5th stage wastewater treatment lagoon, and sodium acetate was conducted using laboratory scale UASB reactors with the C/N ratio in the feedstock adjusted to 21/1. Duplicate, 34 L UASB reactor systems were built of poly(methyl methacrylate). Both reactors were seeded with 11 L of anaerobic sediment from the 3rd stage lagoon. The pH of the feedstock was adjusted to the neutral range. The feedstock was initially introduced at a low organic loading rate of 0.9 g/L.d with a hydraulic retention time (HRT) of 7.2 days and then increased up to 5.4 g/L.d and a HRT of 5.5 days. These organic loading rates corresponded to an initial influent chemical oxygen demand (COD) of 6.25 g/L and increased to 27.2 g/L. Methane production increased from 270 mL/g to 349 mL/g COD biodegraded. COD removal efficiency was 80% and biogas methane composition was 90% at steady state. Algal biomass contributed 33-50% of the COD in the feed stock depending on the COD of the algae paste from centrifugation. The shortest HRT at which steady state was not affected was 5.5 days. At lower HRT all monitored parameters showed a slight decrease after the 75th day of operation.
|
14 |
Otimização de sistema de cultivo de baixo custo de Nannochloropsis gaditana Lubián 1982 para produção de biodiesel / Optimization of low cost culture system of Nannochloropsis gaditna Lubián, 1982 for biodiesel productionKanemoto, Fernando Takashi 15 February 2013 (has links)
O desenvolvimento de fontes de energia renováveis tem se tornado cada vez mais necessário e, nesse contexto, os biocombustíveis têm um importante papel. Este trabalho teve como objetivo otimizar a produtividade de biomassa e de lipídios da microalga Nannochloropsis gaditana, em cultivos de baixo-custo visando à produção de biodiesel. Um sistema de cultivo foi concebido com materiais acessíveis e os experimentos testaram o efeito de diferentes exposições das células ao claro-escuro, sob irradiância de 800?E m-2 s-1. Foram testadas três profundidades de cultivo (2, 4 e 8 cm) e duas taxas de aeração (0,25 e 1,00 L min-1 por L de cultivo). A penetração de luz nos cultivos e o rendimento de biomassa seca foram monitorados diariamente. Altos rendimentos de biomassa e lipídios foram alcançados. Os valores máximos foram observados no experimento com 4 cm de profundidade e maior taxa de aeração: 13,83 g m-2 d-1 de produtividade de biomassa e 20,50% de teor lipídico, resultando em uma produtividade lipídica de 2,84 g m-2 d-1. Estes resultados indicam o potencial da utilização de N. gaditana para aplicação em cultivos de larga escala, uma vez que o rendimento lipídico observado foi superior ao da soja, principal matéria-prima vegetal para produção de biodiesel. O sistema de cultivo desenvolvido pode ser inserido em um processo de scaling up em cultivos abertos de grande escala. / The development of renewable energy sources has becoming an increasing necessity and, in this context, biofuels have an important role. This study aimed to optimize the productivity of biomass and lipids of the microalgae Nannochloropsis gaditana in a low-cost system, focusing biofuel production. A culture system was designed with low-cost and accessible materials and the experiments tested the effect of different degrees of exposition of cells to light-dark, under 800?E m-2 s-1 irradiance. Three different culture depths (2, 4 e 8 cm) and two aeration ratios (0.25 e 1.00 L min-1 per L of culture) were tested. Light penetration into the cultures and the dry biomass yield were monitored daily. High yields of biomass and lipids were attained in the experiment with 4 cm depth and the high aeration ratio: 13.83g m-2 d-1 of biomass productivity and 20.50% lipid content, resulting in a lipid productivity of 2.84 g m-2 d-1. These results indicate the potential of N. gaditana for application in large-scale cultivation, since its lipid yield is higher than the soybean, the main feedstock plant for biodiesel production. The culture system developed can be inserted in a process of biomass scaling up for large-scale open microalgae cultures.
|
15 |
Otimização de sistema de cultivo de baixo custo de Nannochloropsis gaditana Lubián 1982 para produção de biodiesel / Optimization of low cost culture system of Nannochloropsis gaditna Lubián, 1982 for biodiesel productionFernando Takashi Kanemoto 15 February 2013 (has links)
O desenvolvimento de fontes de energia renováveis tem se tornado cada vez mais necessário e, nesse contexto, os biocombustíveis têm um importante papel. Este trabalho teve como objetivo otimizar a produtividade de biomassa e de lipídios da microalga Nannochloropsis gaditana, em cultivos de baixo-custo visando à produção de biodiesel. Um sistema de cultivo foi concebido com materiais acessíveis e os experimentos testaram o efeito de diferentes exposições das células ao claro-escuro, sob irradiância de 800?E m-2 s-1. Foram testadas três profundidades de cultivo (2, 4 e 8 cm) e duas taxas de aeração (0,25 e 1,00 L min-1 por L de cultivo). A penetração de luz nos cultivos e o rendimento de biomassa seca foram monitorados diariamente. Altos rendimentos de biomassa e lipídios foram alcançados. Os valores máximos foram observados no experimento com 4 cm de profundidade e maior taxa de aeração: 13,83 g m-2 d-1 de produtividade de biomassa e 20,50% de teor lipídico, resultando em uma produtividade lipídica de 2,84 g m-2 d-1. Estes resultados indicam o potencial da utilização de N. gaditana para aplicação em cultivos de larga escala, uma vez que o rendimento lipídico observado foi superior ao da soja, principal matéria-prima vegetal para produção de biodiesel. O sistema de cultivo desenvolvido pode ser inserido em um processo de scaling up em cultivos abertos de grande escala. / The development of renewable energy sources has becoming an increasing necessity and, in this context, biofuels have an important role. This study aimed to optimize the productivity of biomass and lipids of the microalgae Nannochloropsis gaditana in a low-cost system, focusing biofuel production. A culture system was designed with low-cost and accessible materials and the experiments tested the effect of different degrees of exposition of cells to light-dark, under 800?E m-2 s-1 irradiance. Three different culture depths (2, 4 e 8 cm) and two aeration ratios (0.25 e 1.00 L min-1 per L of culture) were tested. Light penetration into the cultures and the dry biomass yield were monitored daily. High yields of biomass and lipids were attained in the experiment with 4 cm depth and the high aeration ratio: 13.83g m-2 d-1 of biomass productivity and 20.50% lipid content, resulting in a lipid productivity of 2.84 g m-2 d-1. These results indicate the potential of N. gaditana for application in large-scale cultivation, since its lipid yield is higher than the soybean, the main feedstock plant for biodiesel production. The culture system developed can be inserted in a process of biomass scaling up for large-scale open microalgae cultures.
|
16 |
Autoflocculating Mixotrophic Algal Consortia Approach to Sustainable Wastewater TreatementKrupa, D January 2014 (has links) (PDF)
The phenomenon of rapid algal blooms in response to nutrient overloads has been adapted to treat synthetic domestic wastewater. Various algal consortia collected from several eutrophied water bodies were subject to high density algal culture (upto 106-107 cells/mL) and screened for rapid algal growth, pollutant removal, nutrient recovery under mixotrophy and auto-flocculation. When tried in laboratory scale algal ponds, these algal consortia showed growth rates between 0.15 and 1.07 d-1. Results indicate that Chlorella occurred frequently among most consortia although not always the largest in number. While individual algal species varied in growth rates among these consortia, the log phase for most of these algae lasted 4-5 d after which the algal species began to flocculate between day 5-8 at different rates. The flocculation stage lasted between Day 6-8 wherein about 65% cells flocculated during monsoon and over 90% in winter. Although over 90% removal of N and 80% removal of P occurred in this period, the net N and P harvested as flocculated algae ranged from ~30-50% and ~40-70%, respectively. A consortia approach, wherein algal cells auto-flocculate after reaching a high cell density and nutrient removal provides an easy, low energy and sustainable approach to simultaneous wastewater treatment as well as energy and nutrient recovery from domestic wastewaters.
|
17 |
Temperature Influence and Heat Management Requirements of Microalgae Cultivation in PhotobioreactorsMehlitz, Thomas Hagen 01 February 2009 (has links) (PDF)
Microalgae are considered one of the most promising feedstocks for biofuel production for the future. The most efficient way to produce vast amounts of algal biomass is the use of closed tubular photobioreactors (PBR). The heat requirement for a given system is a major concern since the best algae growth rates are obtained between 25-30 °C, depending on the specific strain. A procedure to determine temperature influence on algal growth rates was developed for a lab-scale PBR system using the species Chlorella. A maximum growth rate of 1.44 doublings per day at 29 °C (optimal temperature) was determined. In addition, a dynamic mathematical model was developed to simulate heating and cooling energy requirements of tubular PBRs for any desired location. Operating the model with hourly weather data as input, heating and cooling loads can be calculated early in the planning stage of a project. Furthermore, the model makes it possible to compare the operation inside a greenhouse to the outdoor operations, and consequently provides fundamental information for an economic feasibility study. The best configuration for a specific location can be evaluated easily. The model was exemplary tested for a hypothetical 100,000 l photobioreactor located in San Luis Obispo, California, U.S.A. Average algae productivity rates of 23% and 67% for outdoor and indoor PBR operations, respectively, were obtained. Actual energy loads (heating and cooling) needed to maintain the PBR at optimal temperature were determined and compared. Sensitivity analyses had been performed for abrupt temperature and solar radiation steps, PBR row distances, ground reflectivities, and ventilation rates of the greenhouse. An optimal row distance of 0.75 m was determined for the specific PBR. The least amount of energy was needed for a ground reflectivity of 20%. The ventilation rate had no major influence on the productivity rate of the system. Results demonstrated the importance of a simulation model as well as the economic impact of a sophisticated heat management system. Energy savings due to an optimized heat management system will eventually increase proficiency of the systems, which will support a new sustainable industry and future developmental potential.
|
18 |
SALINE ADAPTATION OF THE MICROALGA Scenedesmus dimorphus FROM FRESH WATER TO BRACKISH WATERGigante, Bethany Marie 24 October 2013 (has links)
No description available.
|
Page generated in 0.0464 seconds