Spelling suggestions: "subject:"algoritmo EM"" "subject:"lgoritmo EM""
31 |
Estimação via EM e diagnóstico em modelos misturas assimétricas com regressãoLouredo, Graciliano Márcio Santos 26 February 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-04-10T15:11:39Z
No. of bitstreams: 1
gracilianomarciosantoslouredo.pdf: 1813142 bytes, checksum: b79d02006212c4f63d6836c9a417d4bc (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-04-11T15:25:36Z (GMT) No. of bitstreams: 1
gracilianomarciosantoslouredo.pdf: 1813142 bytes, checksum: b79d02006212c4f63d6836c9a417d4bc (MD5) / Made available in DSpace on 2018-04-11T15:25:36Z (GMT). No. of bitstreams: 1
gracilianomarciosantoslouredo.pdf: 1813142 bytes, checksum: b79d02006212c4f63d6836c9a417d4bc (MD5)
Previous issue date: 2018-02-26 / FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais / O objetivo deste trabalho é apresentar algumas contribuições para a melhoria
do processo de estimação por máxima verossimilhança via algoritmo EM em
modelos misturas assimétricas com regressão, além de realizar neles a análise de
influência local e global. Essas contribuições, em geral de natureza computacional,
visam à resolução de problemas comuns na modelagem estatística de maneira
mais eficiente. Dentre elas está a substituição de métodos utilizados nas versões
dos algoritmos GEM por outras que reduzem o problema aproximadamente a um
algoritmo EM clássico nos principais exemplos das distribuições misturas de escala
assimétricas de normais. Após a execução do processo de estimação, discutiremos
ainda as principais técnicas existentes para o diagnóstico de pontos influentes com
as adaptações necessárias aos modelos em foco. Desejamos com tal abordagem
acrescentar ao tratamento dessa classe de modelos estatísticos a análise de regressão nas distribuições mais recentes na literatura. Também esperamos abrir caminho para o uso de técnicas similares em outras classes de modelos. / The objective of this work is to present some contributions to improvement the
process of maximum likelihood estimation via the EM algorithm in skew mixtures
models with regression, as well as to execute in them the global and local influence
analysis. These contributions, usually with computational nature, aim to solving
common problems in statistical modeling more efficiently. Among them is the
replacement of used methods in the versions of the GEM algorithm by other
techniques that reduce the problem approximately to a classic EM algorithm in the
main examples of skew scale mixtures of normals distributions. After performing
the estimation process, we will also discuss the main existing techniques for the
diagnosis of influential points with the necessaries adaptations to the models in
focus. We wish with this approach to add for the treatment of this statistical model
class the regression analysis in the most recent distributions in the literature. We
too hope to paving the way for use of similar techniques in other models classes.
|
32 |
An extension of Birnbaum-Saunders distributions based on scale mixtures of skew-normal distributions with applications to regression models / Uma extensão da distribuição Birnbaum-Saunders baseado nas misturas de escala skew-normal com aplicações a modelos de regressãoSánchez, Rocio Paola Maehara 06 April 2018 (has links)
The aim of this work is to present an inference and diagnostic study of an extension of the lifetime distribution family proposed by Birnbaum and Saunders (1969a,b). This extension is obtained by considering a skew-elliptical distribution instead of the normal distribution. Specifically, in this work we develop a Birnbaum-Saunders (BS) distribution type based on scale mixtures of skew-normal distributions (SMSN). The resulting family of lifetime distributions represents a robust extension of the usual BS distribution. Based on this family, we reproduce the usual properties of the BS distribution, and present an estimation method based on the EM algorithm. In addition, we present regression models associated with the BS distributions (based on scale mixtures of skew-normal), which are developed as an extension of the sinh-normal distribution (Rieck and Nedelman, 1991). For this model we consider an estimation and diagnostic study for uncensored data. / O objetivo deste trabalho é apresentar um estudo de inferência e diagnóstico em uma extensão da família de distribuições de tempos de vida proposta por Birnbaum e Saunders (1969a,b). Esta extensão é obtida ao considerar uma distribuição skew-elíptica em lugar da distribuição normal. Especificamente, neste trabalho desenvolveremos um tipo de distribuição Birnbaum-Saunders (BS) baseda nas distribuições mistura de escala skew-normal (MESN). Esta família resultante de distribuições de tempos de vida representa uma extensão robusta da distribuição BS usual. Baseado nesta família, vamos reproduzir as propriedades usuais da distribuição BS, e apresentar um método de estimação baseado no algoritmo EM. Além disso, vamos apresentar modelos de regressão associado à distribuições BS (baseada na distribuição mistura de escala skew-normal), que é desenvolvida como uma extensão da distribuição senh-normal (Rieck e Nedelman, 1991), para estes vamos considerar um estudo de estimação e diagnóstisco para dados sem censura.
|
33 |
An extension of Birnbaum-Saunders distributions based on scale mixtures of skew-normal distributions with applications to regression models / Uma extensão da distribuição Birnbaum-Saunders baseado nas misturas de escala skew-normal com aplicações a modelos de regressãoRocio Paola Maehara Sánchez 06 April 2018 (has links)
The aim of this work is to present an inference and diagnostic study of an extension of the lifetime distribution family proposed by Birnbaum and Saunders (1969a,b). This extension is obtained by considering a skew-elliptical distribution instead of the normal distribution. Specifically, in this work we develop a Birnbaum-Saunders (BS) distribution type based on scale mixtures of skew-normal distributions (SMSN). The resulting family of lifetime distributions represents a robust extension of the usual BS distribution. Based on this family, we reproduce the usual properties of the BS distribution, and present an estimation method based on the EM algorithm. In addition, we present regression models associated with the BS distributions (based on scale mixtures of skew-normal), which are developed as an extension of the sinh-normal distribution (Rieck and Nedelman, 1991). For this model we consider an estimation and diagnostic study for uncensored data. / O objetivo deste trabalho é apresentar um estudo de inferência e diagnóstico em uma extensão da família de distribuições de tempos de vida proposta por Birnbaum e Saunders (1969a,b). Esta extensão é obtida ao considerar uma distribuição skew-elíptica em lugar da distribuição normal. Especificamente, neste trabalho desenvolveremos um tipo de distribuição Birnbaum-Saunders (BS) baseda nas distribuições mistura de escala skew-normal (MESN). Esta família resultante de distribuições de tempos de vida representa uma extensão robusta da distribuição BS usual. Baseado nesta família, vamos reproduzir as propriedades usuais da distribuição BS, e apresentar um método de estimação baseado no algoritmo EM. Além disso, vamos apresentar modelos de regressão associado à distribuições BS (baseada na distribuição mistura de escala skew-normal), que é desenvolvida como uma extensão da distribuição senh-normal (Rieck e Nedelman, 1991), para estes vamos considerar um estudo de estimação e diagnóstisco para dados sem censura.
|
34 |
Família composta Poisson-Truncada: propriedades e aplicaçõesARAÚJO, Raphaela Lima Belchior de 31 July 2015 (has links)
Submitted by Haroudo Xavier Filho (haroudo.xavierfo@ufpe.br) on 2016-04-05T14:28:43Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
dissertacao_Raphaela(CD).pdf: 1067677 bytes, checksum: 6d371901336a7515911aeffd9ee38c74 (MD5) / Made available in DSpace on 2016-04-05T14:28:43Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
dissertacao_Raphaela(CD).pdf: 1067677 bytes, checksum: 6d371901336a7515911aeffd9ee38c74 (MD5)
Previous issue date: 2015-07-31 / CAPES / Este trabalho analisa propriedades da família de distribuições de probabilidade Composta N e propõe a sub-família Composta Poisson-Truncada como um meio de compor distribuições de probabilidade. Suas propriedades foram estudadas e uma nova distribuição foi investigada: a distribuição Composta Poisson-Truncada Normal. Esta distribuição possui três parâmetros e tem uma flexibilidade para modelar dados multimodais. Demonstramos que sua densidade é dada por uma mistura infinita de densidades normais em que os pesos são dados pela função de massa de probabilidade da Poisson-Truncada. Dentre as propriedades exploradas desta distribuição estão a função característica e expressões para o cálculo dos momentos. Foram analisados três métodos de estimação para os parâmetros da distribuição Composta Poisson-Truncada Normal, sendo eles, o método dos momentos,
o da função característica empírica (FCE) e o método de máxima verossimilhança (MV)
via algoritmo EM. Simulações comparando estes três métodos foram realizadas e, por fim, para ilustrar o potencial da distribuição proposta, resultados numéricos com modelagem de dados reais são apresentados. / This work analyzes properties of the Compound N family of probability distributions and
proposes the sub-family Compound Poisson-Truncated as a means of composing probability distributions. Its properties were studied and a new distribution was investigated: the Compound Poisson-Truncated Normal distribution. This distribution has three parameters and has the flexibility to model multimodal data. We demonstrated that its density is given by an infinite mixture of normal densities where in the weights are given by the Poisson-Truncated probability mass function. Among the explored properties of this distribution are the characteristic function end expressions for the calculation of moments. Three estimation methods were analyzed for the parameters of the Compound Poisson-Truncated Normal distribution, namely, the method of moments, the empirical characteristic function (ECF) and the method of maximum likelihood (ML) by EM algorithm. Simulations comparing these three methods were performed and, finally, to illustrate the potential of the proposed distribution numerical results with real data modeling are presented.
|
35 |
Essays on multivariate generalized Birnbaum-Saunders methodsMARCHANT FUENTES, Carolina Ivonne 31 October 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-04-26T17:07:37Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Carolina Marchant.pdf: 5792192 bytes, checksum: adbd82c79b286d2fe2470b7955e6a9ed (MD5) / Made available in DSpace on 2017-04-26T17:07:38Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Carolina Marchant.pdf: 5792192 bytes, checksum: adbd82c79b286d2fe2470b7955e6a9ed (MD5)
Previous issue date: 2016-10-31 / CAPES; BOLSA DO CHILE. / In the last decades, univariate Birnbaum-Saunders models have received considerable attention
in the literature. These models have been widely studied and applied to fatigue, but
they have also been applied to other areas of the knowledge. In such areas, it is often necessary
to model several variables simultaneously. If these variables are correlated, individual
analyses for each variable can lead to erroneous results. Multivariate regression models are
a useful tool of the multivariate analysis, which takes into account the correlation between
variables. In addition, diagnostic analysis is an important aspect to be considered in the
statistical modeling. Furthermore, multivariate quality control charts are powerful and simple
visual tools to determine whether a multivariate process is in control or out of control.
A multivariate control chart shows how several variables jointly affect a process. First, we
propose, derive and characterize multivariate generalized logarithmic Birnbaum-Saunders
distributions. Also, we propose new multivariate generalized Birnbaum-Saunders regression
models. We use the method of maximum likelihood estimation to estimate their parameters
through the expectation-maximization algorithm. We carry out a simulation study
to evaluate the performance of the corresponding estimators based on the Monte Carlo
method. We validate the proposed models with a regression analysis of real-world multivariate
fatigue data. Second, we conduct a diagnostic analysis for multivariate generalized
Birnbaum-Saunders regression models. We consider the Mahalanobis distance as a global
influence measure to detect multivariate outliers and use it for evaluating the adequacy of
the distributional assumption. Moreover, we consider the local influence method and study
how a perturbation may impact on the estimation of model parameters. We implement the
obtained results in the R software, which are illustrated with real-world multivariate biomaterials
data. Third and finally, we develop a robust methodology based on multivariate quality
control charts for generalized Birnbaum-Saunders distributions with the Hotelling statistic.
We use the parametric bootstrap method to obtain the distribution of this statistic. A Monte
Carlo simulation study is conducted to evaluate the proposed methodology, which reports
its performance to provide earlier alerts of out-of-control conditions. An illustration with
air quality real-world data of Santiago-Chile is provided. This illustration shows that the
proposed methodology can be useful for alerting episodes of extreme air pollution. / Nas últimas décadas, o modelo Birnbaum-Saunders univariado recebeu considerável atenção na literatura. Esse modelo tem sido amplamente estudado e aplicado inicialmente à modelagem de fadiga de materiais. Com o passar dos anos surgiram trabalhos com aplicações em outras áreas do conhecimento. Em muitas das aplicações é necessário modelar diversas variáveis simultaneamente incorporando a correlação entre elas. Os modelos de regressão multivariados são uma ferramenta útil de análise multivariada, que leva em conta a correlação entre as variáveis de resposta. A análise de diagnóstico é um aspecto importante a ser considerado no modelo estatístico e verifica as suposições adotadas como também sua sensibilidade. Além disso, os gráficos de controle de qualidade multivariados são ferramentas visuais eficientes e simples para determinar se um processo multivariado está ou não fora de controle. Este gráfico mostra como diversas variáveis afetam conjuntamente um processo. Primeiro, propomos, derivamos e caracterizamos as distribuições Birnbaum-Saunders generalizadas logarítmicas multivariadas. Em seguida, propomos um modelo de regressão Birnbaum-Saunders generalizado multivariado. Métodos para estimação dos parâmetros do modelo, tal como o método de máxima verossimilhança baseado no algoritmo EM, foram desenvolvidos. Estudos de simulação de Monte Carlo foram realizados para avaliar o desempenho dos estimadores propostos. Segundo, realizamos uma análise de diagnóstico para modelos de regressão Birnbaum-Saunders generalizados multivariados. Consideramos a distância de Mahalanobis como medida de influência global de detecção de outliers multivariados utilizando-a para avaliar a adequacidade do modelo. Além disso, desenvolvemos medidas de diagnósticos baseadas em influência local sob alguns esquemas de perturbações. Implementamos a metodologia apresentada no software R, e ilustramos com dados reais multivariados de biomateriais. Terceiro, e finalmente, desenvolvemos uma metodologia robusta baseada em gráficos de controle de qualidade multivariados para a distribuição Birnbaum-Saunders generalizada usando a estatística de Hotelling. Baseado no método bootstrap paramétrico encontramos aproximações da distribuição desta estatística e obtivemos limites de controle para o gráfico proposto. Realizamos um estudo de simulação de Monte Carlo para avaliar a metodologia proposta indicando seu bom desempenho para fornecer alertas precoces de processos fora de controle. Uma ilustração com dados reais de qualidade do ar de Santiago-Chile é fornecida. Essa ilustração mostra que a metodologia proposta pode ser útil para alertar sobre episódios de poluição extrema do ar, evitando efeitos adversos na saúde humana.
|
36 |
Imputação de dados faltantes via algoritmo EM e rede neural MLP com o método de estimativa de máxima verossimilhança para aumentar a acurácia das estimativasRibeiro, Elisalvo Alves 14 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Database with missing values it is an occurrence often found in the real world, beiging of this problem caused by several reasons (equipment failure that transmits and stores the data, handler failure, failure who provides information, etc.). This may make the data inconsistent and unable to be analyzed, leading to very skewed conclusions. This dissertation aims to explore the use of Multilayer Perceptron Artificial Neural Network (ANN MLP), with new activation functions, considering two approaches (single imputation and multiple imputation). First, we propose the use of Maximum Likelihood Estimation Method (MLE) in each network neuron activation function, against the approach currently used, which is without the use of such a method or when is used only in the cost function (network output). It is then analyzed the results of these approaches compared with the Expectation Maximization algorithm (EM) is that the state of the art to treat missing data. The results indicate that when using the Artificial Neural Network MLP with Maximum Likelihood Estimation Method, both in all neurons and only in the output function, lead the an imputation with lower error. These experimental results, evaluated by metrics such as MAE (Mean Absolute Error) and RMSE (Root Mean Square Error), showed that the better results in most experiments occured when using the MLP RNA addressed in this dissertation to single imputation and multiple. / Base de dados com valores faltantes é uma ocorrência frequentemente encontrada no mundo real, sendo as causas deste problema são originadas por motivos diversos (falha no equipamento que transmite e armazena os dados, falha do manipulador, falha de quem fornece a informação, etc.). Tal situação pode tornar os dados inconsistentes e inaptos de serem analisados, conduzindo às conclusões muito enviesadas. Esta dissertação tem como objetivo explorar o emprego de Redes Neurais Artificiais Multilayer Perceptron (RNA MLP), com novas funções de ativação, considerando duas abordagens (imputação única e imputação múltipla). Primeiramente, é proposto o uso do Método de Estimativa de Máxima Verossimilhança (EMV) na função de ativação de cada neurônio da rede, em contrapartida à abordagem utilizada atualmente, que é sem o uso de tal método, ou quando o utiliza é apenas na função de custo (na saída da rede). Em seguida, são analisados os resultados destas abordagens em comparação com o algoritmo Expectation Maximization (EM) que é o estado da arte para tratar dados faltantes. Os resultados obtidos indicam que ao utilizar a Rede Neural Artificial MLP com o Método de Estimativa de Máxima Verossimilhança, tanto em todos os neurônios como apenas na função de saída, conduzem a uma imputação com menor erro. Os resultados experimentais foram avaliados via algumas métricas, sendo as principais o MAE (Mean Absolute Error) e RMSE (Root Mean Square Error), as quais apresentaram melhores resultados na maioria dos experimentos quando se utiliza a RNA MLP abordada neste trabalho para fazer imputação única e múltipla.
|
37 |
Confiabilidade em sistemas coerentes: um modelo bayesiano Weibull. / Reliability in coherent systems: a bayesian weibull modelBhering, Felipe Lunardi 28 June 2013 (has links)
O principal objetivo desse trabalho é introduzir um modelo geral bayesiano Weibull hierárquico para dados censurados que estima a função de confiabilidade de cada componente para sistemas de confiabilidade coerentes. São introduzidos formas de estimação mais sólidas, sem a inserção de estimativas médias nas funções de confiabilidade (estimador plug-in). Através desse modelo, são expostos e solucionados exemplos na área de confiabilidade como sistemas em série, sistemas em paralelo, sistemas k-de-n, sistemas bridge e um estudo clínico com dados censurados intervalares. As soluções consideram que as componentes tem diferentes distribuições, e nesse caso, o sistema bridge ainda não havia solução na literatura. O modelo construído é geral e pode ser utilizado para qualquer sistema coerente e não apenas para dados da área de confiabilidade, como também na área de sobrevivência, dentre outros. Diversas simulações com componentes com diferentes proporções de censura, distintas médias, três tipos de distribuições e tamanhos de amostra foram feitas em todos os sistemas para avaliar a eficácia do modelo. / The main purpose of this work is to introduce a general bayesian Weibull hierarchical model for censored data which estimates each reliability components function from coherent systems. Its introduced estimation procedures which do not consider plug-in estimators. Also, its exposed and solved with this model examples in reliability area such as series systems, parallel systems, k-out-of-n systems, bridge systems and a clinical study with interval censoring data. The problem of bridge system hadnt a solution before for the case of each component with different distribution. Actually, this model is general and can be used to analyse any kind of coherent system and censored data, not only reliability ones, but also survival data and others. Several components simulations with different censored proportions, distinct means, three kinds of distributions and sample size were made in all systems to evaluate model efficiency.
|
38 |
Confiabilidade em sistemas coerentes: um modelo bayesiano Weibull. / Reliability in coherent systems: a bayesian weibull modelFelipe Lunardi Bhering 28 June 2013 (has links)
O principal objetivo desse trabalho é introduzir um modelo geral bayesiano Weibull hierárquico para dados censurados que estima a função de confiabilidade de cada componente para sistemas de confiabilidade coerentes. São introduzidos formas de estimação mais sólidas, sem a inserção de estimativas médias nas funções de confiabilidade (estimador plug-in). Através desse modelo, são expostos e solucionados exemplos na área de confiabilidade como sistemas em série, sistemas em paralelo, sistemas k-de-n, sistemas bridge e um estudo clínico com dados censurados intervalares. As soluções consideram que as componentes tem diferentes distribuições, e nesse caso, o sistema bridge ainda não havia solução na literatura. O modelo construído é geral e pode ser utilizado para qualquer sistema coerente e não apenas para dados da área de confiabilidade, como também na área de sobrevivência, dentre outros. Diversas simulações com componentes com diferentes proporções de censura, distintas médias, três tipos de distribuições e tamanhos de amostra foram feitas em todos os sistemas para avaliar a eficácia do modelo. / The main purpose of this work is to introduce a general bayesian Weibull hierarchical model for censored data which estimates each reliability components function from coherent systems. Its introduced estimation procedures which do not consider plug-in estimators. Also, its exposed and solved with this model examples in reliability area such as series systems, parallel systems, k-out-of-n systems, bridge systems and a clinical study with interval censoring data. The problem of bridge system hadnt a solution before for the case of each component with different distribution. Actually, this model is general and can be used to analyse any kind of coherent system and censored data, not only reliability ones, but also survival data and others. Several components simulations with different censored proportions, distinct means, three kinds of distributions and sample size were made in all systems to evaluate model efficiency.
|
Page generated in 0.0693 seconds