• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the male-driven evolution hypothesis using human <i>Alu</i>repeat elements

Ramachandran, Sridhar 19 December 2006 (has links)
No description available.
2

Structure, function and evolution of human subtelomeres /

Linardopoulou, Elena, January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 214-243).
3

Caractérisation de l'expression des éléments Alu et du phénomène d'édition de l'ARN chez l'humain et la souris / Characterization of Alu element expression and A-to-I RNA editing in mammals

Cattenoz, Pierre 05 June 2012 (has links)
Les éléments Alu sont les retrotransposons les plus prolifiques chez l’humain avec plus d’1 million de copies occupant plus de 10% du génome. Afin de contrecarrer l’expansion des rétro-éléments, les organismes ont développés différents mécanismes pour préserver l’intégrité de leurs génomes. Le plus proéminent, également utilisé pour lutter contre la réinsertion d’ADN viral dans le génome hôte, est l’édition de l’ARN. Chez les mammifères, la plus courante est la déamination de l’adénine en inosine catalysée par la famille de protéine ADAR dont Les principales cibles sont les éléments Alu chez l’humain. L’édition des éléments Alu conduit à leur séquestration dans le noyau des cellules, mute leurs promoteurs internes, cible de l’ARN polymérase III (POLIII), et leurs queues poly-A, prévenant ainsi leur future rétrotransposition. Dans la première partie de cette étude, l’analyse de données de séquençage haut-débit révèle que ~40% des éléments Alu sont reconnus par POLIII, qu’ils sont présents en tant que petits ARN dans le cytoplasme et le noyau des cellules, que certain d’entre eux sont associés à la chromatine, et que la transcription des éléments Alu est un phénomène courant dans les tissus somatiques qui concorde avec l’expression d’éléments LINE1 fonctionnels. Ceci suggère que la rétrotransposition peut être un mécanisme normal dans la plupart des tissus humains. Enfin, l’analyse de l’expression des éléments Alu et LINE1 chez la souris montre que la transcription de rétrotransposons n’est pas spécifique de l’humain. Dans la seconde partie de cette étude, une nouvelle méthode a été développée pour explorer l’impact de l’édition de l’ARN sur le transcriptome en identifiant les ARN édités par séquençage haut-débit. Dans un premier temps, un anticorps ciblant ADAR a été utilisé pour extraire les ARN associés aux protéines de l’édition. Cette méthode n’étant pas suffisamment efficace, une autre stratégie, qui extrait directement les ARN contenant de l’inosine, a été développée : dans un premier temps, l’ARN est fixé à des billes magnétiques par leurs extrémités 3’, ensuite, les billes sont traitées au glyoxal/acide borique et à la RNAse T1 pour libérer la région 5’ des ARN contenant une ou plusieurs inosines, et enfin, les ARN libérés sont séquencés par séquençage haut débit. En utilisant cette méthode, 1822 sites d’éditions ont été identifiés dans l’ARN de cerveau de souris, incluant 28 nouveaux sites présents dans des séquences codantes qui conduisent à des mutations non-synonymes des futures protéines. Des sites d’éditions ont aussi été observés pour la première fois dans les ARN ribosomaux, les snoRNA et les snRNA. / The Alu repeats comprise more than 10% of the human genome. They spread in the genome by retrotransposition. As a response to this invasion, organisms developed mechanisms to preserve the integrity of their genome, such as RNA editing. The most abundant type of editing in mammals is A-to-I editing where the ADAR proteins transform adenosine into inosine and targets mainly Alu elements in human. Editing of the Alu elements leads to their sequestration in the nucleus and mutates their internal POLIII promoter and their poly-A tail, thus preventing their subsequent transposition. In the first part of this study, we challenged the view that Alu elements are dormant occupant of the genome by characterizing their activity. Deep-sequencing data analyses revealed that ~40% of Alu elements can bind POLIII, they present a definite localization in the cell and associate with chromatin and polysomes, and that Alu elements transcription is a widespread phenomenon in normal tissues which correlates with functional LINE1 elements expression. This suggested that Alu element retrotransposition may be a natural mechanism in most normal human tissues. Further analyses showed that SINE and LINE expression in somatic tissues was not exclusive to human but also occurs in mouse. Finally, attempts were made to identify tissue specific insertions in the human genome resulting from retrotransposition events. In the second part of this study, a new method was developed to understand the full impact of RNA editing on transcriptomes by characterizing the edited RNA in a high-throughput fashion. First, immunoprecipitation was attempted to pull-down RNA associated with the editing enzymes ADARs. Since this method was inefficient, another approach purifying directly the edited RNA was developed. First, the RNA was sequestered on magnetic beads. Then an inosine specific cleavage based on RNAseT1 treatment of RNA protected with glyoxal and borate allowed the separation of the edited RNA from the total RNA. Finally, deep sequencing was used to identify edited RNA. 1,822 editing sites were found in mouse brain RNA by this method, including 28 new editing sites modifying the coding sequences of genes and editing in rRNA, snoRNA and snRNA which were never observed before.
4

DNA methylation of the POMC gene

Mischke, Mona 24 January 2012 (has links)
Adipositas ist eine polymorphe chronische Erkrankung mit epidemischer Prävalenz. Im katabolen Leptin-Melanocortin-Signalweg ist das Proopiomelanocortin Gen (POMC) ein zentrales Element, das bei Dysfunktion massive Adipositas bewirken kann. Auch eine kürzlich identifizierte intragenische Methylierungsvariante des POMC wurde mit Adipositas assoziiert und deutet somit auf eine mögliche epigenetische Modulation des Gewichtsphänotyps hin. Zur Aufklärung der Relevanz, Stabilität und Entwicklung dieser epigenetischen Modifikation wurden die Funktionalität, Ontogenese und Phylogenese der POMC DNA-Methylierung untersucht. In vitro Analysen zeigten DNA-Methylierungsabhängige Promoteraktivität beider CpG-Inseln (CGIs) des POMC. Diese hier erstmals beschriebene Transkriptionsaktivität der intragenischen CGI weist auf einen alternativen Promoter des POMC hin. Hinsichtlich der Ontogenese konnten in Mensch und Maus postnatal stabile DNA-Methylierungsmuster mit interindividueller Konservierung für beide CGIs des POMC identifiziert werden. Zusätzlich erwiesen sich Gewebeunabhängigkeit der DNA-Methylierungsmuster und ihre pränatale Ausbildung zwischen dem Blastocystenstadium und der frühen Organogenese in der Maus. Die POMC DNA-Methylierungsmuster upstream des Exon3 unterscheiden sich in Mensch und Maus. Der mögliche Einfluss von primatenspezifischen Alu-Elementen im Intron2 des POMC hierauf wurde in verschiedenen Primatenfamilien analysiert. Die Ergebnisse zeigen eine bedingte Assoziation der Alu-Elemente mit der DNA-Methylierung in der entsprechenden Region, lassen jedoch auch weitere Einflussfaktoren vermuten. Insgesamt zeigt diese Arbeit, dass die POMC DNA-Methylierung artspezifisch konserviert ist und in der frühen Embryogenese, vermutlich Alu-abhängig, ausgebildet wird. Dabei könnten stochastische Variationen der DNA-Methylierung die POMC-Aktivität beeinflussen und somit das Risiko für Adipositas erhöhen. / Obesity is a polymorphic chronic disease with epidemic prevalence. Within the catabolic leptin-melanocortin signaling pathway pre-proopiomelanocortin (POMC) is a pivotal element. Dysfunction of POMC, e.g. due to mutations, can cause severe obesity. Moreover, a recently identified intragenic methylation variant of POMC was found to be associated with obesity. Therefore, this indicates potential epigenetic modulation of the weight phenotype. To gain further insight into the relevance, stability, and origin of this epigenetic modification, the functionality, ontogenesis, and phylogenesis of the POMC DNA methylation patterns were analyzed. In vitro analyses revealed DNA methylation-dependent promoter activity of both CpG islands (CGIs) of POMC. Thereby, the intragenic CGI was identified as a potential alternative promoter of POMC, which has not been described before. Regarding the ontogenesis, postnatally stable POMC DNA methylation patterns with interindividual conservation were detected for both CGIs in humans and mice. In addition, it was observed that the POMC DNA methylation patterns are non-tissue-specific, stable upon long time administration of a high fat diet, and develop prenatally between the blastocystal stage and the early organogenesis. The POMC DNA methylation pattern upstream of exon3 differs in humans and mice. A possible influence of primate-specific Alu elements within the intron2 region of POMC was analyzed in various primate families. Results evince a partial association of the Alu elements with the DNA methylation pattern in this particular region, but also suggest an influence of additional factors. Overall, this work demonstrates that DNA methylation of the POMC locus is species-specific highly conserved, and that it is established during early embryogenesis, possibly Alu-triggered. In the course of this, stochastic variances of the POMC DNA methylation might influence the POMC activity and consequently alter the risk to develop obesity.

Page generated in 0.0943 seconds