• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 314
  • 72
  • 47
  • 25
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 569
  • 569
  • 81
  • 63
  • 60
  • 58
  • 57
  • 52
  • 49
  • 48
  • 48
  • 43
  • 43
  • 42
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Fatigue Behavior of A356 Aluminum Alloy

Nelaturu, Phalgun 05 1900 (has links)
Metal fatigue is a recurring problem for metallurgists and materials engineers, especially in structural applications. It has been responsible for many disastrous accidents and tragedies in history. Understanding the micro-mechanisms during cyclic deformation and combating fatigue failure has remained a grand challenge. Environmental effects, like temperature or a corrosive medium, further worsen and complicate the problem. Ultimate design against fatigue must come from a materials perspective with a fundamental understanding of the interaction of microstructural features with dislocations, under the influence of stress, temperature, and other factors. This research endeavors to contribute to the current understanding of the fatigue failure mechanisms. Cast aluminum alloys are susceptible to fatigue failure due to the presence of defects in the microstructure like casting porosities, non-metallic inclusions, non-uniform distribution of secondary phases, etc. Friction stir processing (FSP), an emerging solid state processing technique, is an effective tool to refine and homogenize the cast microstructure of an alloy. In this work, the effect of FSP on the microstructure of an A356 cast aluminum alloy, and the resulting effect on its tensile and fatigue behavior have been studied. The main focus is on crack initiation and propagation mechanisms, and how stage I and stage II cracks interact with the different microstructural features. Three unique microstructural conditions have been tested for fatigue performance at room temperature, 150 °C and 200 °C. Detailed fractography has been performed using optical microscopy, scanning electron microscopy (SEM) and electron back scattered diffraction (EBSD). These tools have also been utilized to characterize microstructural aspects like grain size, eutectic silicon particle size and distribution. Cyclic deformation at low temperatures is very sensitive to the microstructural distribution in this alloy. The findings from the room temperature fatigue tests highlight the important role played by persistent slip bands (PSBs) in fatigue crack initiation. At room temperature, cracks initiate along PSBs in the absence of other defects/stress risers, and grow transgranularly. Their propagation is retarded when they encounter grain boundaries. Another major finding is the complete transition of the mode of fatigue cracking from transgranular to intergranular, at 200 °C. This occurs when PSBs form in adjacent grains and impinge on grain boundaries, raising the stress concentration at these locations. This initiates cracks along the grain boundaries. At these temperatures, cyclic deformation is no longer microstructure- dependent. Grain boundaries don’t impede the progress of cracks, instead aid in their propagation. This work has extended the current understanding of fatigue cracking mechanisms in A356 Al alloys to elevated temperatures.
562

Corrosion Protection of Aluminum Alloy 2024-T3 by Al-Rich Primer

Wang, Xi 17 October 2019 (has links)
No description available.
563

Correlation of Stress Intensity Range with Deviation of the Crack Front from the Primary Crack Plane in both Hand and Die Forged Aluminum 7085-T7452

Neely, Jared A. 30 May 2019 (has links)
No description available.
564

Неравномерность деформации в процессах правки растяжением листового проката из алюминиевых сплавов : магистерская диссертация / Deformation irregularity in the processes of straightening by tension of aluminum alloys sheets

Соболев, Д. О., Sobolev, D. O. January 2020 (has links)
В работе приведены основные свойства и виды плоских полуфабрикатов из алюминия и алюминиевых сплавов. Рассмотрена технология производства плоских полуфабрикатов, технология и оборудование для проведения правки растяжением. Приведены новые патентные разработки в области прокатки плоских полуфабрикатов из алюминиевых сплавов. Представлены результаты исследования неравномерности деформации в процессе правки растяжением листового проката из алюминиевых сплавов. Приведено решение задачи правки растяжением полос из алюминиевых сплавов методом конечных элементов в программном комплексе ABAQUS с целью определения уровня деформаций. Выполнен анализ распределения деформаций при правке растяжением горячекатаных полос из алюминиевых сплавов. Неодинаковые значения деформаций по координатным направлениям объяснены с позиций анизотропии свойств прокатанных полос. / The paper presents the main properties and types of flat semi-finished products made of aluminum and aluminum alloys. The technology of production of flat semi-finished products, technology and equipment for straightening by stretching are considered. New patent developments in the field of rolling flat semi-finished products from aluminum alloys are presented. The paper presents the results of a study of the non-uniformity of deformation in the process of tensile straightening of sheet metal made of aluminum alloys. The solution of the problem of tensile straightening of strips of aluminum alloys by the finite element method in the ABAQUS software package is presented in order to determine the level of deformations. The analysis of the strain distribution during tensile straightening of hot-rolled strips of aluminum alloys is carried out. Unequal values of deformations along coordinate directions are explained from the standpoint of anisotropy of properties of rolled strips.
565

Mechanical Property Evolution of Al-Mg Alloys Following Intermediate Temperature Thermal Exposure

Brosi, Justin Keith 17 May 2010 (has links)
No description available.
566

The Effects of Load Ratio on Threshold Fatigue Crack Growth of Aluminum Alloys

Newman, John Andrew 10 November 2000 (has links)
The integrity of nearly all engineering structures are threatened by the presence of cracks. Structural failure occurs if a crack larger than a critical size exists. Although most well designed structures initially contain no critical cracks, subcritical cracks can grow to failure under fatigue loading, called fatigue crack growth (FCG). Because it is impossible or impractical to prevent subcritical crack growth in most applications, a damage tolerant design philosophy was developed for crack sensitive structures. Design engineers have taken advantage of the FCG threshold concept to design for long fatigue lives. FCG threshold (DKth) is a value of DK (crack-tip loading), below which no significant FCG occurs. Cracks are tolerated if DK is less than DKth. However, FCG threshold is not constant. Many variables influence DKth including microstructure, environment, and load ratio. The current research focuses on load ratio effects on DKth and threshold FCG. Two categories of load ratio effects are studied here: extrinsic and intrinsic. Extrinsic load ratio effects operate in the crack wake and include fatigue crack closure mechanisms. Intrinsic load ratio effects operate in the crack-tip process zone and include microcracking and void production. To gain a better understanding of threshold FCG load ratio effects (1) a fatigue crack closure model is developed to consider the most likely closure mechanisms at threshold, simultaneously, and (2) intrinsic load ratio mechanisms are identified and modeled. An analytical fatigue crack closure model is developed that includes the three closure mechanisms considered most important at threshold (PICC, RICC, and OICC). Crack meandering and a limited amount of mixed-mode loading are also considered. The rough crack geometry, approximated as a two-dimensional sawtooth wave, results in a mixed-mode crack-tip stress state. Dislocation and continuum mechanics concepts are used to determine mixed-mode crack face displacements. Plasticity induced crack closure is included by modifying an existing analytical model, and an oxide layer in the crack mouth is modeled as a uniform layer. Finite element results were used to verify the analytical solutions for crack-tip stress intensity factor and crack face displacements. These results indicate that closure for rough cracks can occur at two locations: (1) at the crack-tip, and (2) at the asperity nearest the crack-tip. Both tip contact and asperity contact must be considered for rough cracks. Tip contact is more likely for high Kmax levels, thick oxide layers, and shallow asperity angles, a. Model results indicate that closure mechanisms combine in a synergistic manner. That is, when multiple closure mechanisms are active, the total closure level is greater than the sum of individual mechanisms acting alone. To better understand fatigue crack closure where multiple closure mechanisms are active (i.e. FCG threshold), these interactions must be considered. Model results are well supported by experimental data over a wide range of DK, including FCG threshold. Closure-free load ratio effects were studied for aluminum alloys 2024, 7050, and 8009. Alloys 7050 and 8009 were selected because load ratio effects at FCG threshold are not entirely explained by fatigue crack closure. It is believed that closure-free load ratio mechanisms occur in these alloys. Aluminum alloy 2024 was selected for study because it is relatively well behaved, meandering most load ratio effects are explained by fatigue crack closure. A series of constant Kmax threshold tests on aluminum alloys were conducted to eliminate fatigue crack closure at threshold. Even in the absence of fatigue crack closure load ratio (Kmax) effects persist, and are correlated with increased crack-tip damage (i.e. voids) seen on the fatigue crack surfaces. Accelerated FCG was observed during constant Kmax threshold testing of 8009 aluminum. A distinct transition is seen the FCG data and is correlated with a dramatic increase in void production seen along the crack faces. Void production in 8009 aluminum is limited to the specimen interior (plane-strain conditions), promoting crack tunneling. At higher values of Kmax (+_ 22.0 MPaà m), where plane-stress conditions dominate, a transition to slant cracking occurs at threshold. The transition to slant cracking produces an apparent increase in FCG rate with decreasing DK. This unstable threshold behavior is related to constraint conditions. Finally, a model is developed to predict the accelerated FCG rates, at higher Kmax levels, in terms of crack-tip damage. The effect of humidity (in laboratory air) on threshold FCG was studied to ensure that environmental effects at threshold were separated from load ratio effects. Although changes in humidity were shown to strongly affect threshold FCG rates, this influence was small for ambient humidity levels (relative humidity between 30% and 70%). Transient FCG behavior, following an abrupt change in humidity level, indicated environmental damage accumulated in the crack-tip monotonic plastic zone. Previous research implies that hydrogen (a component of water vapor) is the likely cause of this environmental damage. Analysis suggests that bulk diffusion is not a likely hydrogen transport mechanism in the crack-tip monotonic plastic zone. Rather, dislocation-assisted diffusion is presented as the likely hydrogen transport mechanism. Finally, the (extrinsic) fatigue crack closure model and the (intrinsic) crack-tip damage model are put in the context of a comprehensive threshold model. The ultimate goal of the comprehensive threshold model is to predict fatigue lives of cyclically loaded engineering components from (small) crack nucleation, through FCG, and including failure. The models developed in this dissertation provide a basis for a more complete evaluation of threshold FCG and fatigue life prediction. The research described in this dissertation was performed at NASA-Langley Research Center in Hampton, Virginia. Funding was provided through the NASA GSRP program (Graduate Student Researcher Program, grant number NGT-1-52174). / Ph. D.
567

Fatigue Crack Growth Mechanisms in Al-Si-Mg Alloys

Lados, Diana Aida 04 February 2004 (has links)
Due to the increasing use of cyclically loaded cast aluminum components in automotive and aerospace applications, fatigue and fatigue crack growth characteristics of aluminum castings are of great interest. Despite the extensive research efforts dedicated to this topic, a fundamental, mechanistic understanding of these alloys' behavior when subjected to dynamic loading is still lacking. This fundamental research investigated the mechanisms active at the microstructure level during dynamic loading and failure of conventionally cast and SSM Al-Si-Mg alloys. Five model alloys were cast to isolate the individual contribution of constituent phases on fatigue resistance. The major constituent phases, alpha-Al dendrites, Al/Si eutectic phase, and Mg-Si strengthening precipitates were mechanistically investigated to relate microstructure to near-threshold crack growth (Delta Kth) and crack propagation regimes (Regions II and III) for alloys of different Si composition/morphology, grain size, secondary dendrite arm spacing, heat treatment. A procedure to evaluate the actual fracture toughness from fatigue crack growth data was successfully developed based on a complex Elastic-Plastic-Fracture-Mechanics (EPFM/J-integral) approach. Residual stress-microstructure interactions, commonly overlooked by researches in the field, were also comprehensively defined and accounted for both experimentally and mathematically, and future revisions of ASTM E647 are expected.
568

Interfacial Electrochemistry of Cu/Al Alloys for IC Packaging and Chemical Bonding Characterization of Boron Doped Hydrogenated Amorphous Silicon Films for Infrared Cameras

Ross, Nick 05 1900 (has links)
We focused on a non-cooling room temperature microbolometer infrared imaging array device which includes a sensing layer of p-type a-Si:H component layers doped with boron. Boron incorporation and bonding configuration were investigated for a-Si:H films grown by plasma enhanced chemical deposition (PECVD) at varying substrate temperatures, hydrogen dilution of the silane precursor, and dopant to silane ratio using multiple internal reflection infrared spectroscopy (MIR-IR). This study was then confirmed from collaborators via Raman spectroscopy. MIR-IR analyses reveal an interesting counter-balance relationship between boron-doping and hydrogen-dilution growth parameters in PECVD-grown a-Si:H. Specifically, an increase in the hydrogen dilution ratio (H2/SiH4) or substrate temperature was found to increase organization of the silicon lattice in the amorphous films. It resulted in the decrease of the most stable SiH bonding configuration and thus decrease the organization of the film. The new chemical bonding information of a-Si:H thin film was correlated with the various boron doping mechanisms proposed by theoretical calculations. The study revealed the corrosion morphology progression on aluminum alloy (Al, 0.5% Cu) under acidic chloride solution. This is due to defects and a higher copper content at the grain boundary. Direct galvanic current measurement, linear sweep voltammetry (LSV), and Tafel plots are used to measure corrosion current and potential. Hydrogen gas evolution was also observed (for the first time) in Cu/Al bimetallic interface in areas of active corrosion. Mechanistic insight that leads to effective prevention of aluminum bond pad corrosion is explored and discussed. (Chapter 4) Aluminum bond pad corrosion activity and mechanistic insight at a Cu/Al bimetallic interface typically used in microelectronic packages for automotive applications were investigated by means of optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electrochemistry. Screening of corrosion variables (temperature, moisture, chloride ion concentration, pH) have been investigated to find their effect on corrosion rate and to better understand the Al/Cu bimetallic corrosion mechanism. The study revealed the corrosion morphology progression on aluminum alloy (Al, 0.5% Cu) under acidic chloride solution. The corrosion starts as surface roughening which evolves into a dendrite structure and later continues to grow into a mud-crack type corrosion. SEM showed the early stage of corrosion with dendritic formation usually occurs at the grain boundary. This is due to defects and a higher copper content at the grain boundary. The impact of copper bimetallic contact on aluminum corrosion was explored by sputtering copper microdots on aluminum substrate. Copper micropattern screening revealed that the corrosion is activated on the Al/Cu interface area and driven by the large potential difference; it was also seen to proceed at much higher rates than those observed with bare aluminum. Direct galvanic current measurement, linear sweep voltammetry (LSV), and Tafel plots are used to measure corrosion current and potential. Hydrogen gas evolution was also observed (for the first time) in Cu/Al bimetallic interface in areas of active corrosion. Mechanistic insight that leads to effective prevention of aluminum bond pad corrosion is explored and discussed. Micropattern corrosion screening identified hydrogen evolution and bimetallic interface as the root cause of Al pad corrosion that leads to Cu ball lift-off, a fatal defect, in Cu wire bonded device. Complete corrosion inhibition can be achieved by strategically disabling the mutually coupled cathodic and anodic reaction cycles.
569

Approximate icosahedral symmetry of α-Al(Fe,Mn,Cr)Si in electron backscatter diffraction analysis of a secondary Al-Si casting alloy

Becker, Hanka, Leineweber, Andreas 07 August 2023 (has links)
Frequent systematic misindexing of electron backscatter diffraction patterns with five differently oriented pseudosymmetric solutions was observed for the cubic α-Al(Fe,M)Si phase with M = Mn, Cr encountered in secondary Al-Si casting alloy. That misindexing can be ascribed to the close structural relationship of the cubic crystal structure of α-Al(Fe,M)Si to that of the corresponding icosahedral quasicrystal. Robust identification of the correct among the five nearby solutions during automatic indexing can be achieved, which sensitively depends on the accuracy of Kikuchi-band detection applying Hough-space related indexing methods. Based on the correct crystallographic orientation solution, facets of the particles with bulk polyhedral and Chinese script morphology were determined to be {110} planes. Likewise, the habit planes of the α-Al(Fe,M)Si phase particles located at the naturally occurring oxide film are {110} planes.

Page generated in 0.0504 seconds