• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • Tagged with
  • 415
  • 415
  • 415
  • 403
  • 196
  • 161
  • 158
  • 107
  • 107
  • 107
  • 105
  • 103
  • 103
  • 102
  • 97
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Worming to Complete the Insulin/IGF-1 Signaling Cascade: A Dissertation

Padmanabhan, Srivatsan 17 April 2009 (has links)
The insulin/IGF-1 signaling (IIS) was initially identified in C. elegansto control a developmental phenotype called dauer. Subsequently, it was realized that lifespan was extended by mutations in this pathway and became an intense focus of study. The IIS pathway regulates growth, metabolism and longevity across phylogeny and plays important roles in human disease such as cancer and diabetes. Given the large number of cellular processes that this pathway controls, understanding the regulatory mechanisms that modulate insulin/IGF-1 signaling is of paramount importance. IIS signaling is a very well-studied kinase cascade but few phosphatases in the pathway are known. Identification of these phosphatases, especially those that counteract the activity of the kinases, would provide a better insight into the regulation of this critical pathway. Study of serine/threonine phosphatases is hampered by the lack of appropriate reagents. In Chapter II, we discuss the design and results of an RNAi screen of serine/threonine phosphatases performed in C. elegans using dauer formation as a phenotypic output. We identified several strong regulators of dauer formation and in Chapter III, proceed to characterize one of the top candidates of our screen, pptr-1. We show that pptr-1 regulates the IIS and thereby affects lifespan, development and metabolism in C .elegans. pptr-1gene encodes a protein with high homology to the mammalian B56 family of PP2A regulatory subunits. PP2A is a ubiquitously expressed phosphatase that is involved in multiple cellular processes whose specificity determined by its association with distinct regulatory subunits. Our studies using C. elegans provides mechanistic insight into how the PP2A regulatory subunit PPTR-1 specifically modulates AKT-1 activity by regulating its phosphorylation status in the context of a whole organism. Furthermore, we show that this mechanism of regulation is conserved in mammals.
302

Defining the Role of CtBP2 in p53-Independent Tumor Suppressor Function of ARF: A Dissertation

Kovi, Ramesh C. 11 June 2009 (has links)
ARF, a potent tumor suppressor, positively regulates p53 by antagonizing MDM2, a negative regulator of p53, which in turn, results in either apoptosis or cell cycle arrest. ARF also suppresses the proliferation of cells lacking p53, and loss of ARF in p53-null mice, compared with ARF-null or p53-null mice, results in a broadened tumor spectrum and decreased tumor latency. This evidence suggests that ARF exerts both p53-dependent and p53-independent tumor suppressor activity. However, the molecular pathway and mechanism of ARF’s p53-independent tumor suppressor activity is not understood. The antiapoptotic, metabolically regulated, transcriptional corepressor C-terminal binding protein 2 (CtBP2) has been identified as a specific target of ARF’s p53-independent tumor suppression. CtBPs are phosphoproteins with PLDLS-binding motif and NADH-binding central dehydrogenase domains. ARF interacts with CtBP1 and CtBP2 both in vitro and in vivo, and induces their proteasome-mediated degradation, resulting in p53-independent apoptosis in colon cancer cells. ARF’s ability to target CtBP2 for degradation, and its induction of p53-independent apoptosis requires an intact interaction with CtBP2, and phosphorylation at S428 of CtBP2. As targets for inhibition by ARF, CtBPs are candidate oncogenes, and their expression is elevated in a majority of human colorectal adenocarcinomas specimens in comparison to normal adjacent tissue. Relevant to its targeting by ARF, there is an inverse correlation between ARF and CtBP expression, and CtBP2 is completely absent in a subset of colorectal adenocarcinomas that retains high levels of ARF protein. CtBPs are activated under conditions of metabolic stress, such as hypoxia, and they repress epithelial and proapoptotic genes. BH3-only genes such as Bik, Bim and Bmf have been identified as mediators of ARF-induced, CtBP2-mediated p53-indpendent apoptosis. CtBP2 repressed BH3-only genes in a tissue specific manner through BKLF (Basic kruppel like factor)-binding elements. ARF regulation of BH3-only genes also required intact interaction with CtBP2. ARF antagonism of CtBP repression of Bik and other BH3-only genes may play a critical role in ARF-induced p53-independent apoptosis, and in turn, tumor suppression. To study the physiologic effect of ARF/CtBP2 interaction at the organismal level, the p19ArfL46D knock-in mice, in which the Arf/CtBP2 interaction was abrogated, was generated. Analysis of the primary cells derived from these mice, revealed that the Arf/CtBP2 interaction contributes to regulation of cell growth and cell migration. Overexpression of CtBP in human tumors, and ARF antagonism of CtBP repression of BH3-only gene expression and CtBP-mediated cell migration may therefore play a critical role in the p53-independent tumor suppressor function/s of ARF.
303

A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a Dissertation

Schroeder, Frederick Albert 28 December 2007 (has links)
Depression and stimulant drug addiction each result in massive losses of health, productivity and human lives every year. Despite decades of research, current treatment regimes for depression are ineffective in approximately half of all patients. Therapy available to stimulant drug addicts is largely ineffective and moreover, dedicated treatments for drug dependence (including abuse of cocaine) are non-existent. Thus, there is a pressing need to further understanding of the molecular mechanisms underlying these disorders in order to develop novel, targeted therapeutic strategies. Chromatin remodeling, including changes in histone acetylation, has been proposed to play a role in both the etiology and treatment of depression and stimulant abuse. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate numerous cellular processes, including transcription, cell cycle progression and differentiation. Moreover, histone acetylation has been shown to regulate hippocampal neurogenesis, a cellular response associated with the pathogenesis and treatment of depression and stimulant abuse (Hsieh et al., 2004, Yamaguchi et al., 2004, Fischer et al., 2007). Ultimately, such basic cellular processes impact higher order function, namely cognition and emotion. Indeed, recent studies suggest that HDAC activity in selected forebrain regions, including ventral striatum and hippocampus, modulate stimulant- and antidepressantinduced behavior (Kumar et al., 2005, Tsankova et al., 2006a, Fischer et al., 2007). These reports highlight an association between chromatin remodeling and diverse behavioral changes, including changes induced by the pleiotropic HDAC inhibitor, sodium butyrate (SB), (Kumar et al., 2005, Tsankova et al., 2006a, Fischer et al., 2007). However, behavioral, brain-metabolic and molecular effects of SB treatment in the context of rodent models of depression, dopaminergic sensitization and repeated cocaine administration remained unclear. The work described in this thesis illustrates the potential for chromatin modifying drugs in mechanisms underlying the experimental pharmacology of depression and stimulant addiction. Specifically, the data presented here support the view that treatment with the short chain fatty acid, sodium butyrate enhances: (1) antidepressant-like behavioral effects of the selective serotonin reuptake inhibitor (SSRI), fluoxetine (2) locomotor sensitization induced by repeated administration of the dopamine D1/D5 receptor agonist SKF82958; and(3) brain metabolic activation upon repeated cocaine administration as evidenced by fMRI in awake rats. Furthermore, this report provides evidence that these treatment paradigms will result in chromatin modification changes associated with active transcription, in addition to increased mRNA levels of plasticity-associated genes, including brain-derived neurotrophic factor (BDNF) at key brain regions implicated in the pathogenesis of depression and stimulant addiction. To date, little is known regarding the underlying mechanisms of action mediating the enhancing effects of sodium butyrate on the various antidepressant- and stimulantrelated paradigms. Our findings underscore the potential of chromatin-modifying drugs to profoundly affect the behavioral response of an animal to antidepressant and stimulant drugs and warrants consideration in the context of developing novel therapeutic strategies.
304

The Role of TEC Family Kinases in Innate T Cell Development and Function: a Dissertation

Felices, Martin 16 June 2008 (has links)
The Tec family kinases Itk and Rlk have been previously shown to have an important role in signaling downstream of the T cell receptor [TCR]. Almost all of the work done in the past on these two kinases looked at their role in conventional αβ T cells, specifically CD4+ T cells. These studies demonstrated functions for Itk [primarily] and Rlk in T cell development, activation, and differentiation. However, despite the wealth of knowledge on conventional CD4+ T cells, prior to the work presented here little to no studies addressed the role of Tec family kinases on CD8+ or innate T cell development. My studies show a clear role for Itk [and in some cases Rlk] in innate T cell development; whether it be deprecating, in the case of innate CD8+ T cells or some subsets of γδ T cells, or beneficial, in the case of NKT cells. I show that Itk has a crucial role in conventional CD8+ T cell development, as absence of Itk [or Itk and Rlk] causes strongly reduced numbers of conventional CD8+ T cells and a vigorous enhancement of an innate-like CD8+ T cell population. In NKT cells, my work demonstrates that Itk [and to a lesser extent Rlk] is required for terminal maturation, survival, and cytokine secretion. Finally, on γδ T cells Itk is important in maintaining the Th1 cytokine secretion profile usually associated with these cells, and regulating the development of CD4+ or NK1.1+ γδ T cells. Taken together, this work clearly illustrates an important role for Tec family kinases in innate T cell development and function.
305

Functional Analysis of Ing1 and Ing4 in Cell Growth and Tumorigenesis: a Dissertation

Coles, Andrew H. 02 May 2008 (has links)
The five member Inhibitor of Growth (ING) gene family has been proposed to participate in the regulation of cell growth, DNA repair, inflammation, chromatin remodeling, and tumor suppression. All ING proteins contain a PHD motif implicated in binding to methylated histones and are components of large chromatin remodeling complexes containing histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, suggesting a role for ING proteins in regulating gene transcription. Additionally, forced overexpression studies performed in vitro have indicated that several ING proteins can interact with the p53 tumor suppressor protein and/or the NF-кB protein complex. Since these two proteins play well-established roles in numerous biological processes, several models have been proposed in the literature that ING proteins act as key regulators of cell growth and tumor suppression not only through their ability to modify gene transcription but also through their ability to alter p53 and NF-кB activity. However, these models have yet to be substantiated by in vivo experimentation. Research described in this dissertation utilizes a genetic approach to analyze the functional role of two ING proteins, Ing1b and Ing4, in regulating cell growth, inflammation, and tumorigenesis. Loss of p37Ing1b increased proliferation and DNA damage-induced apoptosis irrespective of p53 status in primary cells and mice. However, all other p53 responses were unperturbed. Additionally, p37Ing1b suppressed the formation of spontaneous follicular B-cell lymphomas in mice. Analysis of B-cells from these mice indicates that p37Ing1b inhibits the proliferation of B cells regardless of p53 status, and loss of p53 greatly accelerates the rate of B-cell lymphomagenesis in p37Ing1b-null mice, with double null mice presenting with aggressive diffuse large B-cell lymphomas (DLBL). Marker gene analysis in p37Ing1b/p53 null tumors indicates that these mice develop both non-germinal center and germinal center B cell-like DLBL, and also documents upregulation of NF-кB activity in both B-cells and tumors. Similarly, Ing4 -/- mice did not have altered p53 growth arrest or apoptosis, and did not develop spontaneous tumors. However, Ing4 -/- cells displayed reduced proliferation, and Ing4 -/- mice and macrophages were hypersensitive to treatment with LPS and exhibited decreased IкB gene expression and increased NF-кB activity. These studies demonstrate that Ing proteins can function to suppress spontaneous tumorigenesis and/or inflammatory responses without altering p53 activity, and identifies NF-кB as a biologically-relevant in vivo target of Ing1 and Ing4 signaling.
306

Analysis of Polarity Signaling in Both Early Embryogenesis and Germline Development in C. Elegans: A Dissertation

Bei, Yanxia 18 January 2005 (has links)
In a 4-cell C. elegans embryo the ventral blastomere EMS requires polarity signaling from its posterior sister cell, P2. This signaling event enables EMS to orient its division spindle along the anterior-posterior (A/P) axis and to specify the endoderm fate of its posterior daughter cell, E. Wnt pathway components have been implicated in mediating P2/EMS signaling. However, no single mutants or various mutant combinations of the Wnt pathway components disrupt EMS polarity completely. Here we describe the identification of a pathway that is defined by two tyrosine kinase related proteins, SRC-1 and MES-1, which function in parallel with Wnt signaling to specify endoderm and to orient the division axis of EMS. We show that SRC-1, a C. elegans homolog of c-Src, functions downstream of MES-1 to specifically enhance phosphotyrosine accumulation at the P2/EMS junction in order to control cell fate and mitotic spindle orientation in both the P2 and EMS cells. In the canonical Wnt pathway, GSK-3 is conserved across species and acts as a negative regulator. However, in C. elegans we find that GSK-3 functions in a positive manner and in parallel with other components in the Wnt pathway to specify endoderm during embryogenesis. In addition, we also show that GSK-3 regulates C. elegans germline development, a function of GSK-3 that is not associated with Wnt signaling. It is required for the differentiation of somatic gonadal cells as well as the regulation of meiotic cell cycle in germ cells. Our results indicate that GSK-3 modulates multiple signaling pathways to regulate both embryogenesis and germline development in C. elegans.
307

Gene Expression and Profiling of Human Islet Cell Subtypes: A Master’s Thesis

Blodgett, David M. 25 July 2012 (has links)
Background: The endocrine pancreas contains multiple cell types co-localized into clusters called the Islets of Langerhans. The predominant cell types include alpha and beta cells, which produce glucagon and insulin, respectively. The regulated release of these hormones maintains whole body glucose homeostasis, essential for normal metabolism and to prevent diabetes and complications from the disease. Given the heterogeneous nature of islet composition and absence of unique surface markers, many previous studies have focused on the whole islet. Sorting islet cells by intracellular hormone expression overcomes this limitation and provides pure populations of individual islet cell subsets, specifically alpha and beta cells. This technique provides the framework for characterizing human islet composition and will work towards identifying the genetic changes alpha and beta cells undergo during development, growth, and proliferation. Methods: Human islets obtained from cadaveric donors are dissociated into a single cell suspension, fixed, permeabilized, and labeled with antibodies specific to glucagon, insulin, and somatostatin. Individual alpha, beta, and delta cell populations are simultaneously isolated using fluorescence activated cell sorting. Candidate gene expression and microRNA profiles have been obtained for alpha and beta cell populations using a quantitative nuclease protection assay. Thus far, RNA has been extracted from whole islets and beta cells and subjected to next generation sequencing analysis. Results: The ratio of beta to alpha cells significantly increases with donor age and trends higher in female donors; BMI does not appear to significantly alter the ratio. Further, we have begun to investigate the unique gene expression profiles of alpha and beta cells versus whole islets, and have characterized the microRNA profiles of the two cell subsets. Conclusions: By establishing methods to profile multiple characteristics of alpha and beta cells, we hope to determine how gene, miRNA, and protein expression patterns change under environmental conditions that lead to beta cell failure or promote beta cell development, growth, and proliferation.
308

Regulation and Function of Stress-Activated Protein Kinase Signal Transduction Pathways: A Dissertation

Brancho, Deborah Marie 14 January 2005 (has links)
The c-Jun NH2-terminal kinase (JNK) group and the p38 group of mitogen-activated protein kinases (MAPK) are stress-activated protein kinases that regulate cell proliferation, differentiation, development, and apoptosis. These protein kinases are involved in a signal transduction cascade that includes a MAP kinase (MAPK), a MAP kinase kinase (MAP2K), and a MAP kinase kinase kinase (MAP3K). MAPK are phosphorylated and activated by the MAP2K, which are phosphorylated and activated by various MAP3K. The work presented in this dissertation focuses on understanding the regulation and function of the JNK and p38 MAPK pathways. Two different strategies were utilized. First, I used molecular and biochemical techniques to examine how MAP2K and MAP3K mediate signaling specificity and to define their role in the MAPK pathway. Second, I used gene targeted disruption studies to determine the in vivo role ofMAP2K and MAP3K in MAPK activation. I specifically used these approaches to examine: (1) docking interactions between p38 MAPK and MAP2K [MKK3 and MKK6 (Chapter II)]; (2) the differential activation of p38 MAPK by MAP2K [MKK3, MKK4, and MKK6 (Chapter III)]; and (3) the selective involvement of the mixed lineage kinase (MLK) group of MAP3K in JNK and p38 MAPK activation (Chapter IV and Appendix). In addition, I analyzed the role of the MKK3 and MKK6 MAP2K in cell proliferation and the role of the MLK MAP3K in adipocyte differentiation (Chapter III and Chapter IV). Together, these data provide insight into the regulation and function of the stress-activated MAPK signal transduction pathways.
309

Mechanisms of TAL1 Induced Leukemia in Mice: A Dissertation

O'Neil, Jennifer Elinor 22 January 2004 (has links)
Activation of the basic helix-loop-helix (bHLH) gene TAL1 is the most common genetic event seen in both childhood and adult T cell acute lymphoblastic leukemia (T-ALL). Despite recent success in treating T-ALL patients, TAL1 patients do not respond well to current therapies. In hopes of leading the way to better therapies for these patients, we have sought to determine the mechanism(s) of Tal1 induced leukemia in mice. By generating a DNA-binding mutant Tal1 transgenic mouse we have determined that the DNA binding activity of Tal1 is not required to induce leukemia. We have also shown that Tal1 expression in the thymus affects thymocyte development and survival. We demonstrate that Tal1 heterodimerizes with the class I bHLH proteins E47 and HEB in our mouse models of TAL1 induced leukemia. Severe thymocyte differentiation arrest and disease acceleration in Tal1/E2A+/- and Tal1/HEB+/- mice provides genetic evidence that Tal1 causes leukemia by inhibiting the function of the transcriptional activators E47 and HEB which have been previously shown to be important in T cell development. In pre-leukemic Tal1 thymocytes, we find the co-repressor mSin3A/HDAC1 bound to the CD4 enhancer, whereas an E47/HEB/p300 complex is detected in wild type thymocytes. Furthermore, mouse Tal1 tumors are sensitive to pharmacologic inhibition of HDAC and undergo apoptosis. These data demonstrate that Tal1 induces T cell leukemia by repressing the transcriptional activity of E47/HEB and suggests that HDAC inhibitors may prove efficacious in T-ALL patients that express TAL1.
310

The Role of Endoplasmic Reticulum Stress Signaling in Pancreatic Beta Cells: a Dissertation

Lipson, Kathryn L. 07 May 2008 (has links)
Protein folding in the endoplasmic reticulum (ER) is essential for proper cellular function. However, the sensitive environment in the ER can be perturbed by both pathological processes as well as by physiological processes such as a large biosynthetic load placed on the ER. ER stress is a specific type of intracellular stress caused by the accumulation of immature or abnormal misfolded or unfolded proteins in the ER. Simply defined, ER stress is a disequilibrium between ER load and folding capacity. Cells have an adaptive response that counteracts ER stress called the "Unfolded Protein Response” (UPR). The ability to adapt to physiological levels of ER stress is especially important for maintaining ER homeostasis in secretory cells. This also holds true for pancreatic β-cells, which must fold and process large amounts of the hormone insulin. Pancreatic β-cells minimize abnormal levels of glycemia through adaptive changes in the production and regulated secretion of insulin. This process is highly sensitive, so that small degrees of hypo- or hyperglycemia result in altered insulin release. The frequent fluctuation of blood glucose levels in humans requires that β-cells control proinsulin folding in the ER with exquisite sensitivity. Any imbalance between the load of insulin translation into the ER and the actual capacity of the ER to properly fold and process the insulin negatively affects the homeostasis of β-cells and causes ER stress. In this dissertation, we show that Inositol Requiring 1 (IRE1), an ER-resident kinase/endoribonuclease and a central regulator of ER stress signaling, is essential for maintaining ER homeostasis in pancreatic β-cells. Importantly, IRE1 has a crucial function in the body’s normal production of insulin in response to high glucose. Phosphorylation and subsequent activation of IRE1 by transient exposure to high glucose is coupled to insulin biosynthesis, while inactivation of IRE1 by siRNA or inhibition of IRE1 phosphorylation abolishes insulin biosynthesis. IRE1 signaling under these physiological ER stress conditions utilizes a unique subset of downstream components of IRE1 and has a beneficial effect on pancreatic β-cell homeostasis. In contrast, we show that chronic exposure of β-cells to high glucose causes pathological levels of ER stress and hyperactivation of IRE1, leading to the degradation of insulin mRNA. The term “glucose toxicity” refers to impaired insulin secretion by β-cells in response to chronic stimulation by glucose and is characterized by a sharp decline in insulin gene expression. However, the molecular mechanisms of glucose toxicity are not well understood. We show that hyperactivation of IRE1 caused by chronic high glucose treatment or IRE1 overexpression leads to insulin mRNA degradation in pancreatic β-cells. Inhibition of IRE1 signaling using a dominant negative form of the protein prevents insulin mRNA degradation in β-cells. Additionally, islets from mice heterozygous for IRE1 retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates. This work suggests that the rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism may represent an essential element in the adaptation of β-cells to chronic hyperglycemia. This adaptation is crucial for the maintenance of β-cell homeostasis and may explain in part why the β-cells of diabetic patients with chronic hyperglycemia stop producing insulin without simply undergoing apoptosis. This work implies that prolonged activation of IRE1 signaling is involved in the molecular mechanisms underlying glucose toxicity. This work therefore reveals two distinct activities elicited by IRE1 in pancreatic β-cells. IRE1 signaling activated by transient exposure to high glucose enhances proinsulin biosynthesis, while chronic exposure of β-cells to high glucose causes hyperactivation of IRE1, leading to the degradation of insulin mRNA. Physiological IRE1 activation by transient high glucose levels in pancreatic β cells has a beneficial effect on insulin biosynthesis. However, pathological IRE1 activation by chronic high glucose or experimental drugs negatively affects insulin gene expression. In the future, a system to induce a physiological level of IRE1 activation, and/or reduce the pathological level of IRE1 activation could be used to enhance insulin biosynthesis and secretion in people with diabetes, and may lead to the development of new and more effective clinical approaches to the treatment of this disorder.

Page generated in 0.0762 seconds