Spelling suggestions: "subject:"3analyse factories."" "subject:"analanalyse factories.""
41 |
Évaluation de la validité prédictive de la Statique-99R et de ses dimensionsBrouillette-Alarie, Sébastien 12 1900 (has links)
Les objectifs du présent mémoire étaient d’identifier les dimensions présentes dans la Statique-99R, l’échelle actuarielle de prédiction de la récidive sexuelle la plus utilisée, et de tester leur validité prédictive. Une analyse factorielle exploratoire des items de l’instrument en a extrait trois dimensions : la déviance sexuelle, l’orientation antisociale et le détachement émotionnel. Des analyses de régressions de Cox ont révélé que ces facteurs affichaient une validité prédictive différentielle; la déviance sexuelle ne prédisait que la récidive sexuelle, alors que l’orientation antisociale ne prédisait que la récidive violente non sexuelle et la récidive générale. Le détachement émotionnel affichait une validité prédictive incohérente. Des analyses de courbes ROC ont indiqué que la dernière révision de la Statique-99, la Statique-99R, surpassait pratiquement en tout point son prédécesseur. Ces mêmes analyses indiquaient que la validité prédictive de l’échelle était similaire pour les agresseurs sexuels de femmes et d’enfants. / The aims of the current paper were to identify dimensions of the Static-99R, the most commonly used sex-offender actuarial scale, and to test their predictive validity. Exploratory factor analysis extracted three dimensions from the scale: sexual deviance, antisocial orientation and detachment. Cox regression analyses revealed that different actuarial factors predicted different recidivism outcomes: sexual deviance only predicted sexual recidivism, while antisocial orientation only predicted non sexual violent recidivism and general recidivism. Detachment had an inconsistent predictive validity. ROC curve analyses indicated that the latest Static-99 revision, the Static-99R, outperformed its predecessor in virtually every way. These same analyses revealed that the scale was as effective with rapists as with child molesters.
|
42 |
Regional Variations in Political Ideology in CanadaHéroux-Legault, Maxime 04 1900 (has links)
Il est reconnu que les résultats électoraux au Canada varient grandement selon la région. Afin de
trouver des explications à ce phénomène, il convient d’étudier comment les grandes régions du
Canada se distinguent les unes des autres sur le plan politique. La présente recherche amorce
cette étude sous l’angle de l’idéologie. Elle tente de déterminer en quoi l’idéologie politique
diffère d’une région à l’autre du pays.
Elle s’appuie sur les données des études électorales canadiennes de 2008. On a recours à des
questions évaluant les préférences des répondants par rapport à plusieurs enjeux politiques
pour répondre à la question de recherche. On conduit en premier lieu une analyse factorielle,
qui identifie six facteurs qui ont structuré l’opinion publique lors de l’élection de 2008. Ensuite,
des tests T sont conduits pour vérifier si les moyennes de ces facteurs idéologiques sont
statistiquement différentes d’une région à l’autre.
Les résultats montrent que les différences régionales sont souvent significatives et suivent les
hypothèses. Toutefois, les résultats touchant à la privatisation de la santé ainsi qu’au Manitoba
et à la Saskatchewan vont à l’encontre des attentes. / It is widely known that electoral results in Canada vary greatly from one region to the next. To
explain this phenomenon, it is only appropriate to study how Canadian regions differ from each
other politically. The current research is especially interested in regional variations in political
ideology.
The research relies on data from the 2008 Canadian Electoral Studies. It uses opinion statements
to assess respondents’ political preferences to answer the research question. A factor analysis is
conducted from these variables to highlight six ideological dimensions. Furthermore, t-tests are
used to verify if regional differences on these ideological dimensions are statistically significant.
Results show that differences across regions are very often significant and follow hypotheses.
However, results regarding the privatization of healthcare and the Midwest run counter to
expectations.
|
43 |
Description et prédiction à partir de données structurées en plusieurs tableaux : Application en épidémiologie animale.Bougeard, Stéphanie 11 December 2007 (has links) (PDF)
Ce travail de recherche s'inscrit dans le cadre des méthodes factorielles qui permettent de décrire et prédire des données structurées en plusieurs tableaux. Les objectifs et la nature des données d'épidémiologie analytique dans le domaine vétérinaire ont amené à centrer le travail sur les méthodes de régression multibloc, qui orientent la description de plusieurs tableaux de variables vers l'explication d'un autre tableau. Un des principaux objectifs est de contribuer à la réflexion sur la sensibilité de ces méthodes à la multicolinéarité. Des méthodes statistiques existantes sont présentées et reliées dans un cadre unifié, relevant soit de critères à maximiser comparables, soit d'un continuum général les reliant. De nouvelles méthodes peu vulnérables à l'égard de la multicolinéarité, et s'appliquant au cas de données structurées en deux puis en (K+1) tableaux, sont proposées. L'intérêt de ces méthodes, ainsi que des continuums qui leur sont associés, est illustré sur la base d'études de cas réels en épidémiologie. Ce travail de recherche a permis d'appliquer les méthodes multiblocs au domaine de l'épidémiologie animale, dans lequel elles n'avaient pas encore été utilisées.
|
44 |
Etude comportementale des mesures d'intérêt d'extraction de connaissancesGrissa, Dhouha 02 December 2013 (has links) (PDF)
La recherche de règles d'association intéressantes est un domaine important et actif en fouille de données. Puisque les algorithmes utilisés en extraction de connaissances à partir de données (ECD), ont tendance à générer un nombre important de règles, il est difficile à l'utilisateur de sélectionner par lui même les connaissances réellement intéressantes. Pour répondre à ce problème, un post-filtrage automatique des règles s'avère essentiel pour réduire fortement leur nombre. D'où la proposition de nombreuses mesures d'intérêt dans la littérature, parmi lesquelles l'utilisateur est supposé choisir celle qui est la plus appropriée à ses objectifs. Comme l'intérêt dépend à la fois des préférences de l'utilisateur et des données, les mesures ont été répertoriées en deux catégories : les mesures subjectives (orientées utilisateur ) et les mesures objectives (orientées données). Nous nous focalisons sur l'étude des mesures objectives. Néanmoins, il existe une pléthore de mesures objectives dans la littérature, ce qui ne facilite pas le ou les choix de l'utilisateur. Ainsi, notre objectif est d'aider l'utilisateur, dans sa problématique de sélection de mesures objectives, par une approche par catégorisation. La thèse développe deux approches pour assister l'utilisateur dans sa problématique de choix de mesures objectives : (1) étude formelle suite à la définition d'un ensemble de propriétés de mesures qui conduisent à une bonne évaluation de celles-ci ; (2) étude expérimentale du comportement des différentes mesures d'intérêt à partir du point de vue d'analyse de données. Pour ce qui concerne la première approche, nous réalisons une étude théorique approfondie d'un grand nombre de mesures selon plusieurs propriétés formelles. Pour ce faire, nous proposons tout d'abord une formalisation de ces propriétés afin de lever toute ambiguïté sur celles-ci. Ensuite, nous étudions, pour différentes mesures d'intérêt objectives, la présence ou l'absence de propriétés caractéristiques appropriées. L'évaluation des mesures est alors un point de départ pour une catégorisation de celle-ci. Différentes méthodes de classification ont été appliquées : (i) méthodes sans recouvrement (CAH et k-moyennes) qui permettent l'obtention de groupes de mesures disjoints, (ii) méthode avec recouvrement (analyse factorielle booléenne) qui permet d'obtenir des groupes de mesures qui se chevauchent. Pour ce qui concerne la seconde approche, nous proposons une étude empirique du comportement d'une soixantaine de mesures sur des jeux de données de nature différente. Ainsi, nous proposons une méthodologie expérimentale, où nous cherchons à identifier les groupes de mesures qui possèdent, empiriquement, un comportement semblable. Nous effectuons par la suite une confrontation avec les deux résultats de classification, formel et empirique dans le but de valider et mettre en valeur notre première approche. Les deux approches sont complémentaires, dans l'optique d'aider l'utilisateur à effectuer le bon choix de la mesure d'intérêt adaptée à son application.
|
45 |
Séparation de sources en imagerie nucléaire / Source separation in nuclear imagingFilippi, Marc 05 April 2018 (has links)
En imagerie nucléaire (scintigraphie, TEMP, TEP), les diagnostics sont fréquemment faits à l'aide des courbes d'activité temporelles des différents organes et tissus étudiés. Ces courbes représentent l'évolution de la distribution d'un traceur radioactif injecté dans le patient. Leur obtention est compliquée par la superposition des organes et des tissus dans les séquences d'images 2D, et il convient donc de séparer les différentes contributions présentes dans les pixels. Le problème de séparation de sources sous-jacent étant sous-déterminé, nous proposons d'y faire face dans cette thèse en exploitant différentes connaissances a priori d'ordre spatial et temporel sur les sources. Les principales connaissances intégrées ici sont les régions d'intérêt (ROI) des sources qui apportent des informations spatiales riches. Contrairement aux travaux antérieurs qui ont une approche binaire, nous intégrons cette connaissance de manière robuste à la méthode de séparation, afin que cette dernière ne soit pas sensible aux variations inter et intra-utilisateurs dans la sélection des ROI. La méthode de séparation générique proposée prend la forme d'une fonctionnelle à minimiser, constituée d'un terme d'attache aux données ainsi que de pénalisations et de relâchements de contraintes exprimant les connaissances a priori. L'étude sur des images de synthèse montrent les bons résultats de notre approche par rapport à l'état de l'art. Deux applications, l'une sur les reins, l'autre sur le cœur illustrent les résultats sur des données cliniques réelles. / In nuclear imaging (scintigraphy, SPECT, PET), diagnostics are often made with time activity curves (TAC) of organs and tissues. These TACs represent the dynamic evolution of tracer distribution inside patient's body. Extraction of TACs can be complicated by overlapping in the 2D image sequences, hence source separation methods must be used in order to extract TAC properly. However, the underlying separation problem is underdetermined. We propose to overcome this difficulty by adding some spatial and temporal prior knowledge about sources on the separation process. The main knowledge used in this work is region of interest (ROI) of organs and tissues. Unlike state of the art methods, ROI are integrated in a robust way in our method, in order to face user-dependancy in their selection. The proposed method is generic and minimize an objective function composed with a data fidelity criterion, penalizations and relaxations expressing prior knowledge. Results on synthetic datasets show the efficiency of the proposed method compare to state of the art methods. Two clinical applications on the kidney and on the heart are also adressed.
|
46 |
Three essays on spectral analysis and dynamic factorsLiska, Roman 10 September 2008 (has links)
The main objective of this work is to propose new procedures for the general dynamic factor analysis<p>introduced by Forni et al. (2000). First, we develop an identification method for determining the number of common shocks in the general dynamic factor model. Sufficient conditions for consistency of the criterion are provided for large n (number of series) and T (the series length). We believe that our procedure can shed<p>light on the ongoing debate on the number of factors driving the US or Eurozone economy. Second, we show how the dynamic factor analysis method proposed in Forni et al. (2000), combined with our identification method, allows for identifying and estimating joint and block-specific common factors. This leads to a more<p>sophisticated analysis of the structures of dynamic interrelations within and between the blocks in suchdatasets.<p>Besides the framework of the general dynamic factor model we also propose a consistent lag window spectral density estimator based on multivariate M-estimators by Maronna (1976) when the underlying data are coming from the alpha mixing stationary Gaussian process. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
47 |
L’analyse factorielle pour la modélisation acoustique des systèmes de reconnaissance de la parole / Factor analysis for acoustic modeling of speech recognition systemsBouallegue, Mohamed 16 December 2013 (has links)
Dans cette thèse, nous proposons d’utiliser des techniques fondées sur l’analyse factorielle pour la modélisation acoustique pour le traitement automatique de la parole, notamment pour la Reconnaissance Automatique de la parole. Nous nous sommes, dans un premier temps, intéressés à la réduction de l’empreinte mémoire des modèles acoustiques. Notre méthode à base d’analyse factorielle a démontré une capacité de mutualisation des paramètres des modèles acoustiques, tout en maintenant des performances similaires à celles des modèles de base. La modélisation proposée nous conduit à décomposer l’ensemble des paramètres des modèles acoustiques en sous-ensembles de paramètres indépendants, ce qui permet une grande flexibilité pour d’éventuelles adaptations (locuteurs, genre, nouvelles tâches).Dans les modélisations actuelles, un état d’un Modèle de Markov Caché (MMC) est représenté par un mélange de Gaussiennes (GMM : Gaussian Mixture Model). Nous proposons, comme alternative, une représentation vectorielle des états : les fac- teur d’états. Ces facteur d’états nous permettent de mesurer efficacement la similarité entre les états des MMC au moyen d’une distance euclidienne, par exemple. Grâce à cette représenation vectorielle, nous proposons une méthode simple et efficace pour la construction de modèles acoustiques avec des états partagés. Cette procédure s’avère encore plus efficace dans le cas de langues peu ou très peu dotées en ressouces et enconnaissances linguistiques. Enfin, nos efforts se sont portés sur la robustesse des systèmes de reconnaissance de la parole face aux variabilités acoustiques, et plus particulièrement celles générées par l’environnement. Nous nous sommes intéressés, dans nos différentes expérimentations, à la variabilité locuteur, à la variabilité canal et au bruit additif. Grâce à notre approche s’appuyant sur l’analyse factorielle, nous avons démontré la possibilité de modéliser ces différents types de variabilité acoustique nuisible comme une composante additive dans le domaine cepstral. Nous soustrayons cette composante des vecteurs cepstraux pour annuler son effet pénalisant pour la reconnaissance de la parole / In this thesis, we propose to use techniques based on factor analysis to build acoustic models for automatic speech processing, especially Automatic Speech Recognition (ASR). Frstly, we were interested in reducing the footprint memory of acoustic models. Our factor analysis-based method demonstrated that it is possible to pool the parameters of acoustic models and still maintain performance similar to the one obtained with the baseline models. The proposed modeling leads us to deconstruct the ensemble of the acoustic model parameters into independent parameter sub-sets, which allow a great flexibility for particular adaptations (speakers, genre, new tasks etc.). With current modeling techniques, the state of a Hidden Markov Model (HMM) is represented by a combination of Gaussians (GMM : Gaussian Mixture Model). We propose as an alternative a vector representation of states : the factors of states. These factors of states enable us to accurately measure the similarity between the states of the HMM by means of an euclidean distance for example. Using this vector represen- tation, we propose a simple and effective method for building acoustic models with shared states. This procedure is even more effective when applied to under-resourced languages. Finally, we concentrated our efforts on the robustness of the speech recognition sys- tems to acoustic variabilities, particularly those generated by the environment. In our various experiments, we examined speaker variability, channel variability and additive noise. Through our factor analysis-based approach, we demonstrated the possibility of modeling these different types of acoustic variability as an additive component in the cepstral domain. By compensation of this component from the cepstral vectors, we are able to cancel out the harmful effect it has on speech recognition
|
48 |
Représentations robustes de documents bruités dans des espaces homogènes / Robust representation of noisy documents in homogeneous spacesMorchid, Mohamed 25 November 2014 (has links)
En recherche d’information, les documents sont le plus souvent considérés comme des "sacs-de-mots". Ce modèle ne tient pas compte de la structure temporelle du document et est sensible aux bruits qui peuvent altérer la forme lexicale. Ces bruits peuvent être produits par différentes sources : forme peu contrôlée des messages des sites de micro-blogging, messages vocaux dont la transcription automatique contient des erreurs, variabilités lexicales et grammaticales dans les forums du Web. . . Le travail présenté dans cette thèse s’intéresse au problème de la représentation de documents issus de sources bruitées.La thèse comporte trois parties dans lesquelles différentes représentations des contenus sont proposées. La première partie compare une représentation classique utilisant la fréquence des mots à une représentation de haut-niveau s’appuyant sur un espace de thèmes. Cette abstraction du contenu permet de limiter l’altération de la forme de surface du document bruité en le représentant par un ensemble de caractéristiques de haut-niveau. Nos expériences confirment que cette projection dans un espace de thèmes permet d’améliorer les résultats obtenus sur diverses tâches de recherche d’information en comparaison d’une représentation plus classique utilisant la fréquence des mots.Le problème majeur d’une telle représentation est qu’elle est fondée sur un espace de thèmes dont les paramètres sont choisis empiriquement.La deuxième partie décrit une nouvelle représentation s’appuyant sur des espaces multiples et permettant de résoudre trois problèmes majeurs : la proximité des sujets traités dans le document, le choix difficile des paramètres du modèle de thèmes ainsi que la robustesse de la représentation. Partant de l’idée qu’une seule représentation des contenus ne peut pas capturer l’ensemble des informations utiles, nous proposons d’augmenter le nombre de vues sur un même document. Cette multiplication des vues permet de générer des observations "artificielles" qui contiennent des fragments de l’information utile. Une première expérience a validé cette approche multi-vues de la représentation de textes bruités. Elle a cependant l’inconvénient d’être très volumineuse,redondante, et de contenir une variabilité additionnelle liée à la diversité des vues. Dans un deuxième temps, nous proposons une méthode s’appuyant sur l’analyse factorielle pour fusionner les vues multiples et obtenir une nouvelle représentation robuste,de dimension réduite, ne contenant que la partie "utile" du document tout en réduisant les variabilités "parasites". Lors d’une tâche de catégorisation de conversations,ce processus de compression a confirmé qu’il permettait d’augmenter la robustesse de la représentation du document bruité.Cependant, lors de l’élaboration des espaces de thèmes, le document reste considéré comme un "sac-de-mots" alors que plusieurs études montrent que la position d’un terme au sein du document est importante. Une représentation tenant compte de cette structure temporelle du document est proposée dans la troisième partie. Cette représentation s’appuie sur les nombres hyper-complexes de dimension appelés quaternions. Nos expériences menées sur une tâche de catégorisation ont montré l’efficacité de cette méthode comparativement aux représentations classiques en "sacs-de-mots". / In the Information Retrieval field, documents are usually considered as a "bagof-words". This model does not take into account the temporal structure of thedocument and is sensitive to noises which can alter its lexical form. These noisescan be produced by different sources : uncontrolled form of documents in microbloggingplatforms, automatic transcription of speech documents which are errorprone,lexical and grammatical variabilities in Web forums. . . The work presented inthis thesis addresses issues related to document representations from noisy sources.The thesis consists of three parts in which different representations of content areavailable. The first one compares a classical representation based on a term-frequencyrepresentation to a higher level representation based on a topic space. The abstractionof the document content allows us to limit the alteration of the noisy document byrepresenting its content with a set of high-level features. Our experiments confirm thatmapping a noisy document into a topic space allows us to improve the results obtainedduring different information retrieval tasks compared to a classical approach based onterm frequency. The major problem with such a high-level representation is that it isbased on a space theme whose parameters are chosen empirically.The second part presents a novel representation based on multiple topic spaces thatallow us to solve three main problems : the closeness of the subjects discussed in thedocument, the tricky choice of the "right" values of the topic space parameters and therobustness of the topic-based representation. Based on the idea that a single representationof the contents cannot capture all the relevant information, we propose to increasethe number of views on a single document. This multiplication of views generates "artificial"observations that contain fragments of useful information. The first experimentvalidated the multi-view approach to represent noisy texts. However, it has the disadvantageof being very large and redundant and of containing additional variability associatedwith the diversity of views. In the second step, we propose a method based onfactor analysis to compact the different views and to obtain a new robust representationof low dimension which contains only the informative part of the document whilethe noisy variabilities are compensated. During a dialogue classification task, the compressionprocess confirmed that this compact representation allows us to improve therobustness of noisy document representation.Nonetheless, during the learning process of topic spaces, the document is consideredas a "bag-of-words" while many studies have showed that the word position in a7document is useful. A representation which takes into account the temporal structureof the document based on hyper-complex numbers is proposed in the third part. Thisrepresentation is based on the hyper-complex numbers of dimension four named quaternions.Our experiments on a classification task have showed the effectiveness of theproposed approach compared to a conventional "bag-of-words" representation.
|
49 |
Factor models, VARMA processes and parameter instability with applications in macroeconomicsStevanovic, Dalibor 05 1900 (has links)
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90.
Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques?
Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité.
Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada.
Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci.
Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs.
L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement.
Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients. / As information technology improves, the availability of economic and finance time series grows in terms of both time and cross-section sizes. However, a large amount of information can lead to the curse of dimensionality problem when standard time series tools are used. Since most of these series are highly correlated, at least within some categories, their co-variability pattern and informational content can be approximated by a smaller number of (constructed) variables. A popular way to address this issue is the factor analysis. This framework has received a lot of attention since late 90's and is known today as the large dimensional approximate factor analysis.
Given the availability of data and computational improvements, a number of empirical and theoretical questions arises. What are the effects and transmission of structural shocks in a data-rich environment? Does the information from a large number of economic indicators help in properly identifying the monetary policy shocks with respect to a number of empirical puzzles found using traditional small-scale models? Motivated by the recent financial turmoil, can we identify the financial market shocks and measure their effect on real economy? Can we improve the existing method and incorporate another reduction dimension approach such as the VARMA modeling? Does it help in forecasting macroeconomic aggregates and impulse response analysis? Finally, can we apply the same factor analysis reasoning to the time varying parameters? Is there only a small number of common sources of time instability in the coefficients of empirical macroeconomic models?
This thesis concentrates on the structural factor analysis and VARMA modeling and answers these questions through five articles. The first two articles study the effects of monetary policy and credit shocks in a data-rich environment. The third article proposes a new framework that combines the factor analysis and VARMA modeling, while the fourth article applies this method to measure the effects of credit shocks in Canada. The contribution of the final chapter is to impose the factor structure on the time varying parameters in popular macroeconomic models, and show that there are few sources of this time instability.
The first article analyzes the monetary transmission mechanism in Canada using a
factor-augmented vector autoregression (FAVAR) model. For small open economies
like Canada, uncovering the transmission mechanism of monetary policy using VARs
has proven to be an especially challenging task. Such studies on Canadian data have
often documented the presence of anomalies such as a price, exchange rate, delayed overshooting and uncovered interest rate parity puzzles. We estimate a FAVAR model using large sets of monthly and quarterly macroeconomic time series. We find that the information summarized by the factors is important to properly identify the monetary transmission mechanism and contributes to mitigate the puzzles mentioned above, suggesting that more information does help. Finally, the FAVAR framework allows us to check impulse responses for all series in the informational data set, and thus provides the most comprehensive picture to date of the effect of Canadian monetary policy.
As the recent financial crisis and the ensuing global economic have illustrated, the financial sector plays an important role in generating and propagating shocks to the real economy. Financial variables thus contain information that can predict future economic conditions. In this paper we examine the dynamic effects and the propagation of credit shocks using a large data set of U.S. economic and financial indicators in a structural factor model. Identified credit shocks, interpreted as unexpected deteriorations of the credit market conditions, immediately increase credit spreads, decrease rates on Treasury securities and cause large and persistent downturns in the activity of many economic sectors. Such shocks are found to have important effects on real activity measures, aggregate prices, leading indicators and credit spreads. In contrast to other recent papers, our structural shock identification procedure does not require any timing restrictions between the financial and macroeconomic factors, and yields an interpretation of the estimated factors without relying on a constructed measure of credit market conditions from a large set of individual bond prices and financial series.
In third article, we study the relationship between VARMA and factor representations of a vector stochastic process, and propose a new class of factor-augmented VARMA (FAVARMA) models. We start by observing that in general multivariate series and associated factors do not both follow a finite order VAR process. Indeed, we show that when the factors are obtained as linear combinations of observable series, their dynamic process is generally a VARMA and not a finite-order VAR as usually assumed in the literature. Second, we show that even if the factors follow a finite-order VAR process, this implies a VARMA representation for the observable series. As result, we propose the FAVARMA framework that combines two parsimonious methods to represent the dynamic interactions between a large number of time series: factor analysis and VARMA modeling. We apply our approach in two pseudo-out-of-sample forecasting exercises using large U.S. and Canadian monthly panels taken from Boivin, Giannoni and Stevanovic (2010, 2009) respectively. The results show that VARMA factors help in predicting several key macroeconomic aggregates relative to standard factor forecasting models. Finally, we estimate the effect of monetary policy using the data and the identification scheme as in Bernanke, Boivin and Eliasz (2005). We find that impulse responses from a parsimonious 6-factor FAVARMA(2,1) model give an accurate and comprehensive picture of the effect and the transmission of monetary policy in U.S.. To get similar responses from a standard FAVAR model, Akaike information criterion estimates the lag order of 14. Hence, only 84 coefficients governing the factors dynamics need to be estimated in the FAVARMA framework, compared to FAVAR model with 510 VAR parameters.
In fourth article we are interested in identifying and measuring the effects of credit shocks in Canada in a data-rich environment. In order to incorporate information from a large number of economic and financial indicators, we use the structural factor-augmented VARMA model. In the theoretical framework of the financial accelerator, we approximate the external finance premium by credit spreads. On one hand, we find that an unanticipated increase in US external finance premium generates a significant and persistent economic slowdown in Canada; the Canadian external finance premium rises immediately while interest rates and credit measures decline. From the variance decomposition analysis, we observe that the credit shock has an important effect on several real activity measures, price indicators, leading indicators, and credit spreads. On the other hand, an unexpected increase in Canadian external finance premium shows no significant effect in Canada. Indeed, our results suggest that the effects of credit shocks in Canada are essentially caused by the unexpected changes in foreign credit market conditions. Finally, given the identification procedure, we find that our structural factors do have an economic interpretation.
The behavior of economic agents and environment may vary over time (monetary policy strategy shifts, stochastic volatility) implying parameters' instability in reduced-form models. Standard time varying parameter (TVP) models usually assume independent stochastic processes for all TVPs. In the final article, I show that the number of underlying sources of parameters' time variation is likely to be small, and provide empirical evidence on factor structure among TVPs of popular macroeconomic models. To test for the presence of, and estimate low dimension sources of time variation in parameters, I apply the factor time varying parameter (Factor-TVP) model, proposed by Stevanovic (2010), to a standard monetary TVP-VAR model. I find that one factor explains most of the variability in VAR coefficients, while the stochastic volatility parameters vary in the idiosyncratic way. The common factor is highly and positively correlated to the unemployment rate. To incorporate the recent financial crisis, the same exercise is conducted with data updated to 2010Q3. The VAR parameters present an important change after 2007, and the procedure suggests two factors. When applied to a large-dimensional structural factor model, I find that four dynamic factors govern the time instability in almost 700 coefficients.
|
50 |
La relation entre le climat scolaire, le contexte scolaire et l'adoption des différents rôles lors d’une situation de violence scolairePena Ibarra, Luis Patricio 04 1900 (has links)
Le sujet de la présente étude est la violence scolaire, phénomène complexe et polysémique qui préoccupe légitimement le monde de l’éducation depuis plus de trente ans. À partir des analyses factorielles exploratoires, analyses de variance factorielle et finalement analyses multivariées de covariance, cette recherche vise plus précisément à dégager la relation entre le climat scolaire, le contexte scolaire et les différents rôles adoptés par les élèves du niveau secondaire lors d’une situation de violence scolaire.
Les données de la présente étude ont été collectées par Michel Janosz et son équipe pendant l’année 2010, dans quatre établissements éducatifs provenant d’une commission scolaire de la grande région de Montréal. L’échantillon de départ est composé de 1750 élèves qui fréquentent des classes ordinaires et spéciales du premier et deuxième cycle du secondaire âgés entre 10 et 18 ans. Pour fins d’analyse, deux petites écoles ainsi que les classes spéciales ont été retirées. Il demeure donc 1551 élèves dans l’échantillon initial analysé.
Les résultats des analyses permettent de constater d’une part, la relation significative existante entre les dimensions du climat scolaire et l’adoption des différents rôles lors d’une situation de violence scolaire, les climats d’appartenance et de sécurité étant les plus importants, et d’autre part d’observer des différences dans les perceptions que les élèves ont de la violence scolaire selon le niveau et selon l’école. / The present study pertains to a complex and polysemic phenomenon that has preoccupied people working in the field of education since at least thirty years, that is, school violence. Using factor analysis, analysis of variance and multivariate analysis of covariance, this research aims at exploring specifically the relationship between school climate, school context and the various roles adopted by students at the high school level when they face a situation in which school violence in present.
Data for this study were collected by Michel Janosz and his team in 2010, within four schools, all in the same school board of the Montreal region. The original sample comprises 1750 students who attend both standard special classes, between 10 and 18 years of age. The analyses presented are based on a reduced sample where the special classes and the two small schools have been withdrawn. Therefore, the answers from 1551 student s are used.
The results show that first, there is a significant relationship between the various dimensions of school climate and the different roles adopted by students facing a situation in which violence is present, perceptions of belonging and of security being the most important. Second, all things being equal, there are significant difference between schools, and school levels.
|
Page generated in 0.0847 seconds