Spelling suggestions: "subject:"bionalytical biochemistry"" "subject:"bianalytical biochemistry""
41 |
DEVELOPMENT OF CHEMICAL PROTEOMIC APPROACHES TO STUDY VIRAL ENDOCYTOSIS AND PHOSPHOPROTEOMICSMayank Srivastava (5930294) 16 August 2019 (has links)
<p>A significant
development in mass spectrometry instrumentation and software in the past
decade has led to its application in solving complex biological problems. One
of the emerging areas is Chemical Proteomics that involves design and use of
chemical reagents to probe protein functions in ‘a live cell’ environment. Another
aspect of Chemical Proteomics is the identification of target proteins of a
drug or small molecule. This is assisted by photoreactive groups, which on exposure
to UV light, covalently link the target proteins that can be purified by
affinity-based enrichment followed by mass-spectrometric identification. This
phenomenon of Photoaffinity labeling (PAL) has been widely used in a broad
range of applications. Herein, we have designed chemical tools to study Zika
endocytosis and phosphoproteomics.</p>
<p>Zika virus
has attracted the interest of researchers globally, following its outbreak in
2016. While a significant development has been made in understanding the structure
and pathogenesis, the actual mechanism of Zika entry into host cells is largely
unknown. We designed a chemical probe to tag the live virus, leading to the
identification of the virus receptors and other host factors involved in viral
entry. We further validated neural cell adhesion molecule (NCAM1) as a host
protein involved in early phase entry of Zika virus into Vero cells.</p>
<p>The second aspect is the development of the DIGE
(Difference Gel Electrophoresis) technology for phosphoproteomics. Phosphoproteins
are known to be involved in various signaling pathways and implicated in
multiple diseased states. We designed chemical reagents composed of titanium
(IV) ion, diazirine and a fluorophore, to covalently label the phosphoproteins.
Cyanine3 and cyanine5 fluorophores were employed to reveal the difference in
phosphorylation between samples for the comparative proteomics. Thus far, we have
successfully demonstrated the labeling of standard phosphoproteins in both simple
and complex protein mixtures, and the future efforts are towards applying the
technology to identify phosphoproteins in a cell lysate.</p>
|
42 |
AMBIENT IONIZATION MASS SPECTROMETRY FOR HIGH THROUGHPUT BIOANALYSISNicolas Mauricio Morato Gutierrez (16635960) 25 July 2023 (has links)
<p>The rapid analysis of complex samples using mass spectrometry (MS) provides valuable information in both point-of-care (e.g. drug testing) and laboratory-based applications, including the generation of spectral libraries for classification of biosamples, the identification of biomarkers through large-scale studies, as well as the synthesis and bioactivity assessments of large compound sets necessary for drug discovery. In all these cases, the inherent speed of MS is attractive, but rarely fully utilized due to the widespread use of sample purification techniques prior to analysis. Ambient ionization methodologies can help circumvent this drawback by facilitating high-throughput qualitative and quantitative analysis directly from the complex samples without any need for work-up. For instance, the use of swabs or paper substrates allows for rapid identification, quantification, and confirmation, of drugs of abuse from biofluids or surfaces of forensic interest in a matter of minutes, as described in the first two chapters of this dissertation. Faster analysis can be achieved using an automated desorption electrospray ionization (DESI) platform which allows for the rapid and direct screening of complex-sample microarrays with throughputs better than 1 sample per second, giving access to rich spectral information from tens of thousands of samples per day. The development of the bioanalytical capabilities of this platform, particularly within the context of drug discovery (e.g. bioactivity assays, biosample analysis), is described across most other chapters of this dissertation. The use of DESI, a contactless ambient ionization method developed in our laboratory and whose 20 years of history are overviewed in the introduction of this document, provides an additional advantage as the secondary microdroplets generated through the DESI process act as reaction vessels that can accelerate organic reactions by up to six orders of magnitude, facilitating on-the-fly synthesis of new compounds from arrays of starting materials. Unique implications of this microdroplet chemistry in the prebiotic synthesis of peptides and spontaneous redox chemistry at air-solution interfaces, together with its practical applications to the synthesis of new drug molecules, are also overviewed. The success obtained with the first automated DESI-MS system, developed within the DARPA Make It program, led to increased interest in a new-generation platform which was designed over the past year, as overviewed in the last section of this dissertation, and which is currently being installed for validation prior to the transfer of the technology to NCATS, where we anticipate it will make a significant impact through the consolidation and acceleration of the early drug discovery workflow.</p>
|
43 |
DEVELOPMENTS AND APPLICATIONS IN AMBIENT MASS SPECTROMETRY IMAGING FOR INCREASED SENSITIVITY AND SPECIFICITYDaniela Mesa Sanchez (14216684) 06 December 2022 (has links)
<p> Mass spectrometry imaging (MSI) is an advanced analytical technique that renders spatially defined images of complex label-free samples. Nanospray desorption electrospray ionization (nano-DESI) MSI is an ambient ionization direct liquid extraction technique in which analytes are extracted by means of a continuous liquid flow between two fused-silica capillaries. The droplet generated between the two capillaries is controlled by a delicate balance of solvent flow, solvent aspiration, capillary angles, and distance from the surface. This technique produces reproducible ion images with up to 10 µm resolution and can be used to identify and quantify multiple analytes on a given surface. This thesis discusses some of the applications of this technique to biological systems, as well as the work done to develop methodology to further improve this technique’s specificity and sensitivity. Herein, applications that push the limits of the current capabilities of nano-DESI are presented, such as the high-resolution imaging of lipid species in skeletal muscle at the single-fiber level, and the quantification of low-abundance drug metabolites. The second theme of this thesis, developing new capabilities, introduces ion mobility mass spectrometry imaging. This integrated technique increases the selectivity previously possible with MSI. To support these efforts, the work in this thesis has generated data analysis workflows that not only make these experiments possible but also further endeavor to increase sensitivity and combat instrument limitations on mobility resolution. Finally, this thesis present streamlined workflows for tandem MS experiments and modifications to a recently introduced microfluidic variant of the nano-DESI technique. In all, this thesis showcases the current capabilities of the nano-DESI technique and lays the groundwork for future improvements and capabilities. </p>
|
44 |
<b>ADVANCEMENTS IN AMBIENT MASS SPECTROMETRY IMAGING FOR ENHANCED SENSITIVITY AND SPECIFICITY OF COMPLEX BIOLOGICAL TISSUES</b>Miranda Renee Weigand (19179571) 19 July 2024 (has links)
<p dir="ltr">Mass spectrometry imaging (MSI) is a powerful technique for visualizing the distribution of molecules within biological samples. Advancements in MSI instrumentation and computational tools have enabled the impactful applications of this technique across various fields including clinical research, drug discovery, forensics, microbiology, and natural products. Nanospray desorption electrospray ionization (nano-DESI), an ambient localized liquid extraction ionization technique, has proven valuable to the MSI community. Nano-DESI has been used for imaging of various molecules in biological samples including drugs, metabolites, lipids, N-linked glycans, and proteins.</p><p dir="ltr">My research has been focused on expanding the sensitivity and specificity of nano-DESI for biomolecular imaging. One of the newly developed methods employs ammonium fluoride NH<sub>4</sub>F as a solvent additive to enhance the sensitivity of nano-DESI for the analysis of lipids in negative ionization mode. Secondly, methods were developed for the spatial mapping of isobaric and isomeric species in biological tissues by implementing nano-DESI MSI on a triple quadrupole (QqQ) mass spectrometer. This work used multiple reaction monitoring (MRM) mode of a QqQ with unit mass resolution to separate isobaric lipid species that require high mass resolving power and imaging of isomeric low-abundance species in tissue sections. Next, I demonstrate nano-DESI as a liquid extraction technique for imaging of N-linked glycans within biological tissue sections. Lastly, the spatial distribution of eicosanoids and specialized pro-resolving mediators (SPMs) in a mouse model for acetaminophen-induced liver injury (AILI) provides insights into the inflammation and resolution phases of AILI. Collectively, these developments have advanced the sensitivity, chemical specificity, and molecular coverage of nano-DESI for imaging of different classes of molecules in biological tissues.</p>
|
45 |
DEVELOPMENT OF AMBIENT IONIZATION MASS SPECTROMETRY FOR INTRAOPERATIVE CANCER DIAGNOSTICS AND SURGICAL MARGIN ASSESSMENTClint M Alfaro (6597242) 15 May 2019 (has links)
<div> Advancements in cancer treatments have increased rapidly in recent years, but cures remain elusive. Surgical tumor resection is a central treatment for many solid malignancies. Residual tumor at surgical margins leads to tumor recurrence. Novel tools for assessing residual tumor at surgical margins could improve surgical outcomes by helping to maximize the extent of resection. Ambient ionization-mass spectrometry (MS) methods generate and analyze ions from minimally prepared samples in near-real-time (e.g. seconds to minutes). These methods leverage the high sensitivity and specificity of mass spectrometry for analyzing gas phase ions and generating those ions quickly and with minimal sample preparation. Recent work has shown that differential profiles of ions, corresponding to phospholipids and small metabolites, are detected from cancerous and their respective normal tissue with ambient ionization-MS methods. When properly implemented, ambient ionization-MS could be used to assess for tumor at surgical margins and provide a molecular diagnosis during surgery. </div><div><br></div><div>The research herein reports efforts in developing rapid intraoperative ambient ionization-MS methods for the molecular assessment of cancerous tissues. Touch spray (TS) ionization and desorption electrospray ionization (DESI) were utilized to analyze kidney cancer and brain cancer.</div><div><br></div><div> As a demonstration of the applicability of TS-MS to provide diagnostic information from fresh surgical tissues, TS-MS was used to rapidly analyze renal cell carcinoma and healthy renal tissue biopsies obtained from human subjects undergoing nephrectomy surgery. Differential phospholipid profiles were identified using principal component analysis (PCA), and the significant ions were characterized using multiple stages of mass spectrometry and high resolution/exact mass MS. The same TS-MS analyzed renal tissues were subsequently analyzed with DESI-MS imaging to corroborate the TS-MS results, and the significant DESI-MS ions were also characterized with MS.</div><div><br></div><div>Significant efforts were made in developing and evaluating a standalone intraoperative DESI-MS system for analyzing brain tissue biopsies during brain tumor surgery. The intraoperative DESI-MS system consists of a linear trap quadrupole mass spectrometer placed on a custom-machined cart that contains all hardware for operating the mass spectrometer. This instrument was operated in the neurosurgical suites at Indiana University School of Medicine to rapidly analyze brain tissue biopsies obtained from glioma resection surgeries. A DESI-MS library of normal brain tissue and glioma was used to statistically classify the brain tissue biopsies collected in the operating room. Multivariate statistical methodologies were employed to predict the disease state and tumor cell percentage of the samples. A DESI-MS assay for detecting 2-hydroxyglutarate (2HG), the oncometabolic product of the isocitrate dehydrogenase (IDH) mutation (a key glioma prognostic marker), was developed and applied to determine the IDH mutation status during the surgical resection. The strengths, weaknesses, and areas of future work in this field are discussed. </div><div><br></div>
|
46 |
Characterizing Microglial Response to Amyloid: From New Tools to New MoleculesPriya Prakash (10725291) 29 April 2021 (has links)
<p>Microglia are a population of specialized,
tissue-resident immune cells that make up around 10% of total cells in our
brain. They actively prune neuronal synapses, engulf cellular debris, and
misfolded protein aggregates such as the Alzheimer’s Disease (AD)-associated amyloid-beta
(Aβ) by the process of phagocytosis. During AD, microglia are unable to
phagocytose Aβ, perhaps due to the several disease-associated changes affecting
their normal function. Functional molecules such as lipids and metabolites also
influence microglial behavior but have primarily remained uncharacterized to
date. The overarching question of this work is, <i>How do microglia become
dysfunctional in chronic inflammation</i>? To this end, we developed new
chemical tools to better understand and investigate the microglial response to
Aβ <i>in vitro</i> and <i>in vivo</i>. Specifically, we introduce three new
tools. (1) Recombinant human Aβ was developed via a rapid, refined, and robust
method for expressing, purifying, and characterizing the protein. (2) A
pH-sensitive fluorophore conjugate of Aβ (called Aβ<sup>pH</sup>) was developed
to identify and separate Aβ-specific phagocytic and non-phagocytic glial cells <i>ex
vivo</i> and <i>in vivo</i>. (3) New lysosomal, mitochondrial, and nuclei-targeting
pH-activable fluorescent probes (called LysoShine, MitoShine, and NucShine,
respectively) to visualize subcellular organelles in live microglia. Next, we asked,
<i>What changes occur to the global lipid and metabolite profiles of microglia in
the presence of Aβ in vitro and in vivo</i>? We screened 1500 lipids comprising
10 lipid classes and 700 metabolites in microglia exposed to Aβ. We found significant
changes in specific lipid classes with acute and prolonged Aβ exposure. We also
identified a lipid-related protein that was differentially regulated due to Aβ <i>in
vivo</i>. This new lipid reprogramming mechanism “turned on” in the presence of
cellular stress was also present in microglia in the brains of the 5xFAD mouse
model, suggesting a generic response to inflammation and toxicity. It is well
known that activated microglia induce reactive astrocytes during inflammation. Therefore,
we asked, <i>What changes in proteins, lipids, and metabolites occur in astrocytes
due to their reactive state? </i>We provide a comprehensive characterization of
reactive astrocytes comprising 3660 proteins, 1500 lipids, and 700 metabolites.
These microglia and astrocytes datasets will be available to the scientific community
as a web application. We propose a final model wherein the molecules secreted
by reactive astrocytes may also induce lipid-related changes to the microglial
cell state in inflammation. In conclusion, this thesis highlights chemical
neuroimmunology as the new frontier of neuroscience propelled by the
development of new chemical tools and techniques to characterize glial cell
states and function in neurodegeneration.</p>
|
47 |
Ambient Ionization Mass Spectrometry for Intraoperative and High-Throughput Brain Cancer DiagnosticsHannah Marie Brown (12476919) 29 April 2022 (has links)
<p>My research has focused on the development and translation of ambient ionization mass spectrometry (MS)-based platforms in clinical and surgical settings, specifically in the area of brain cancer diagnostics and surgical decision making. Ambient ionization MS methods, such as those described herein, generate and analyze gas phase ions with high sensitivity and specificity from minimally prepared samples in near-real-time, on the order of seconds to minutes, rendering them well suited to point-of-care applications. We used ambient ionization MS methods, specifically desorption electrospray ionization mass spectrometry (DESI-MS) and extraction nanoelectrospray ionization mass spectrometry (nESI-MS) to molecularly characterize brain cancer biopsies. The characterization was made using diagnostic compounds identified as markers of disease state, tissue composition, tumor type, and genotype in human brain tissue. Methods were developed and validated offline in the laboratory and translated to clinical and surgical settings, thereby generating chemical information on prognostic features intraoperatively and providing valuable information that would be otherwise unavailable. We believe that, with approval, the methodologies described can assist physicians and improve patient outcomes by providing analytical tools and molecular information that can inform surgical decision making and adjuvant treatment strategies, complementing and not interfering with standard of care protocols.</p>
<p><br></p>
<p>We have successfully demonstrated the use of desorption electrospray ionization mass spectrometry (DESI-MS) for the expedient molecular assessment of human glioma tissue biopsies based on lipid profiles and prognostic metabolites, both at the tumor core and near surgical margins, in two small-scale, clinical studies. Maximal surgical resection of gliomas that avoids non-infiltrated tissue is associated with survival benefit in patients with glioma. The infiltrative nature of gliomas, as well as their morphological and genetic diversity, renders treatment difficult and demands an integrated imaging and diagnostic approach during surgery to guide clinicians in achieving maximal tumor resection. Further, the estimation of tumor cell percentage (TCP), a measure of tumor infiltration at surgical margins, is not routinely assessed intraoperatively. </p>
<p>We have previously shown that rapid, offline molecular assessment of tumor infiltration in tissue biopsies is possible and believe that the same assessment performed intraoperatively in biopsied tissue near surgical margins could improve resection and better inform patient management strategies, including postoperative radiotherapy. Using a DESI-MS spectral library of normal brain tissue and glioma biopsies to generate a statistical model to classify brain tissue biopsies intraoperatively, multivariate statistical approaches were used to predict the disease state and tumor cell percentage (TCP) of each biopsy, thereby providing an measure of tumor infiltration at surgical margins via molecular indicators. In addition to assessment of tumor infiltration, we have developed DESI-MS assays for detecting the oncometabolite 2-Hydroxyglutarate (2HG) to detect isocitrate dehydrogenase (IDH) mutations in gliomas intraoperatively. Knowledge of IDH genotypes at the time of surgical resection could improve patient outcomes, as more aggressive tumor resection of IDH-mutated gliomas is associated with increased survival. While assessments of IDH genotype are typically not available until days after surgery, we have demonstrated the ability to provide this information is less than five minutes. An intraoperative DESI-MS system has successfully been used in a proof-of-concept clinical study and intraoperative performance validation of this platform is ongoing. The findings of these two studies as well as strengths, weaknesses, and areas of improvement for upcoming future iterations of the research are discussed.</p>
<p><br></p>
<p>Point-of-care applications necessitate the adaptation of MS methodologies to smaller devices. Miniature mass spectrometers (Mini MS) boast small footprints, simple operation, and low power consumption, noise levels, and cost, making them attractive candidates for point-of-care use. In a small-scale clinical study, we demonstrated the first application of a Mini MS for determination of IDH mutation status in gliomas intraoperatively. This study paves a path forward for the application of Mini MS in the OR. With its small footprint and low power consumption and noise level, this application of miniature mass spectrometers represents a simple and cost-effective platform for an important intraoperative measurement. </p>
<p><br></p>
<p>While MS-based methods of tissue analysis can detect molecular features of interest and rapidly produce large quantities of data, their inherent speed is rarely utilized because they are traditionally coupled with time-consuming separation techniques (e.g., chromatography). Ambient ionization MS, specifically DESI-MS, is well suited for high-throughput applications due to its lack of sample preparation and purification techniques. In an attempt to rapidly characterize microarrays of tissue biopsies, we developed a high-throughput DESI-MS (HT-DESI-MS) method for the rapid characterization of disease state, human brain tumor type, glioma classification, and detection of IDH mutations in tissue microarrays (TMA) of banked and fresh human brain tissue biopsies. We anticipate that HT-DESI-MS analysis of TMAs could become a standard tool for the generation of spectral libraries for sample classification, the identification of biomarkers through large-scale studies, the correlation of molecular features with anatomical features when coupled to digital pathology, and the assessment of drug efficacy. </p>
|
48 |
CHARACTERIZATION OF DIAGNOSTIC BIOSIGNATURES FOR PARKINSON’S DISEASE AND RENAL CELL CARCINOMA THROUGH QUANTITATIVE PROTEOMICS AND PHOSPHOPROTEOMICS ANALYSES OF URINARY EXTRACELLULAR VESICLESMarco Hadisurya (16548114) 26 July 2023 (has links)
<p>Urine-based biomarkers offer numerous advantages for clinical analysis, including non-invasive collection, a suitable sample source for longitudinal disease monitoring, a better screenshot of disease heterogeneity, higher sample volumes, faster processing times, and lower rejection rates and costs. They will be extremely useful in a clinical trial context, which can be applied alone or in combination with other methods as long as they demonstrate clear reproducibility across cohorts. While biofluids such as urine present enormous challenges with a wide dynamic range and extreme complex typically dominated by a few highly abundant proteins, we have demonstrated that the analytical issue can be efficiently addressed by focusing on extracellular vesicles (EVs), tiny packages released by all kinds of cells. These tiny packages contain different kinds of molecules from inside the cells. Here, we established a robust EV isolation and characterization platform to screen and validate Parkinson’s Disease (PD) and Renal Cell Carcinoma (RCC) biomarkers from urine. PD is a progressive neurological disorder affecting body movement because some brain cells stop producing dopamine. PD is often not diagnosed until it has advanced, making early detection crucial. We investigated urinary EVs from 138 individuals to enable early detection and found several proteins involved in PD development that could be biological indicators for early disease detection. Several biochemical techniques were applied to verify our findings. In the second project, we attempted to develop a novel diagnostic technique for early intervention of RCC. Here, we made our efforts to develop a quantitative method based on data-independent acquisition (DIA) mass spectrometry to analyze urinary EV phosphoproteomics for non-invasive RCC biomarker screening. Combined with our in-house EVtrap method for EV isolation and PolyMAC enrichment of phosphopeptides, we quantified 2,584 unique phosphosites. We observed unique upregulated phosphosites and pathways differentiating healthy control (HC), chronic kidney disease (CKD), low-grade, and high-grade clear cell RCC. These applications have a significant promise for early PD and RCC diagnosis and monitoring based on actual functional proteins with urine as the source. These studies might provide a viable path to developing urinary EV-based disease diagnosis.</p>
|
Page generated in 0.083 seconds