• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Three essays on consumption and food waste

Dmytro Serebrennikov (6858434) 15 August 2019 (has links)
<p>Population growth and increasing life standards contributed to a high demand for food worldwide. Simultaneously, there is growing evidence that more food is being lost or wasted through the different stages of the supply chain. In the developed world, including the United States, consumer waste often constitutes more than 60% of all food losses. </p> This dissertation explores the problem of consumer waste from three different perspectives. In the first essay, a game-theoretic model of a direct interaction between consumers and a retailer with monopoly power is developed to capture the effects of dynamic pricing on the transfer of perishable inventory to consumers. The retailer chooses its optimal price taking into account both retailer and consumer preservation. As long as the retailer’s inventory is well preserved, its price will be low inducing consumers to stockpile and waste more food. Consumers may also waste more if their own preservation level is relatively high. The second essay focuses on governmental policies aimed at reducing consumer waste, such as a tax and a subsidy. Using microeconomic analysis, closed-form solutions for a social-optimal food waste tax and subsidy are derived. The government may impose this tax to increase the cost of waste disposal for households while using tax revenue to sponsor food preservation efforts. It is shown that the tax might not be an effective instrument if the responsiveness of food waste to this tax is low. Finally, the third essay investigates the impact of a nutrition education program on school-cafeteria waste. This program was implemented to promote the health benefits of consuming fruits and vegetables among elementary school children. Comparing food waste data in the treatment and control groups, we found no statistically significant evidence of either increased selection or consumption of fruits and vegetables in the treatment group.
2

Essays in empirical industrial economics

Zulehner, Christine 28 November 2001 (has links)
Diese Dissertation besteht aus zwei Teilen, die durch eine Einleitung zu Auktions- und Oligopolmärkten und durch eine kurze Diskussion über die erzielten Resultate am Ende der Arbeit miteinander verbunden sind. Der erste Teil diskutiert die Literatur zu Auktionen und analysiert das Verhalten von Bietern in Österreichischen Rinderauktionen. Das Ziel der Untersuchung ist es zu bestimmen, ob es Unterschiede im Verhalten der Bieter gibt und ob diese die Möglichkeit eines späteren Kaufes in Betracht ziehen. Der zweite Teil beschäftigt sich mit den Strategien von Firmen in der Halbleiterindustrie. Im besonderen werden die strategischen Effekte von "learning-by-doing" und "spillovers" betrachtet. Des weiteren werden die Konsequenzen der Aggregation von firmenspezifischen Preisverhalten zu einer industriespezifischen Presigleichung empirisch untersucht. In beiden Teilen wird schwerpunktmäßig auf der Frage eingegangen, ob das Vernachlässigen von Asymmetrien unter den Marktteilnehmern und/oder das Vernachlässigen dynamischer Effekte die geschätzen Parameter beeinflußt. / This thesis consists of two parts, which are connected by an introduction on auction and oligopoly markets and a short discussion about the obtained results at the end. The first part provides a literature review on auctions and analyzes bidders' behavior in Austrian cattle auctions. The aim is to investigate whether there are differences among bidders and whether bidders take the possibility of buying later into account when bidding for objects. The second part analyzes firms' strategies in the semiconductor industry. In particular, the strategic effects of learning-by-doing and spillovers are considered. Further, the consequences of aggregating firms' pricing behavior to an industry level pricing equation are empirically investigated. In both parts emphasis is put on the question, whether neglecting asymmetries across market participants and/or neglecting dynamic effects influences the estimated parameters.
3

Prediction games : machine learning in the presence of an adversary

Brückner, Michael January 2012 (has links)
In many applications one is faced with the problem of inferring some functional relation between input and output variables from given data. Consider, for instance, the task of email spam filtering where one seeks to find a model which automatically assigns new, previously unseen emails to class spam or non-spam. Building such a predictive model based on observed training inputs (e.g., emails) with corresponding outputs (e.g., spam labels) is a major goal of machine learning. Many learning methods assume that these training data are governed by the same distribution as the test data which the predictive model will be exposed to at application time. That assumption is violated when the test data are generated in response to the presence of a predictive model. This becomes apparent, for instance, in the above example of email spam filtering. Here, email service providers employ spam filters and spam senders engineer campaign templates such as to achieve a high rate of successful deliveries despite any filters. Most of the existing work casts such situations as learning robust models which are unsusceptible against small changes of the data generation process. The models are constructed under the worst-case assumption that these changes are performed such to produce the highest possible adverse effect on the performance of the predictive model. However, this approach is not capable to realistically model the true dependency between the model-building process and the process of generating future data. We therefore establish the concept of prediction games: We model the interaction between a learner, who builds the predictive model, and a data generator, who controls the process of data generation, as an one-shot game. The game-theoretic framework enables us to explicitly model the players' interests, their possible actions, their level of knowledge about each other, and the order at which they decide for an action. We model the players' interests as minimizing their own cost function which both depend on both players' actions. The learner's action is to choose the model parameters and the data generator's action is to perturbate the training data which reflects the modification of the data generation process with respect to the past data. We extensively study three instances of prediction games which differ regarding the order in which the players decide for their action. We first assume that both player choose their actions simultaneously, that is, without the knowledge of their opponent's decision. We identify conditions under which this Nash prediction game has a meaningful solution, that is, a unique Nash equilibrium, and derive algorithms that find the equilibrial prediction model. As a second case, we consider a data generator who is potentially fully informed about the move of the learner. This setting establishes a Stackelberg competition. We derive a relaxed optimization criterion to determine the solution of this game and show that this Stackelberg prediction game generalizes existing prediction models. Finally, we study the setting where the learner observes the data generator's action, that is, the (unlabeled) test data, before building the predictive model. As the test data and the training data may be governed by differing probability distributions, this scenario reduces to learning under covariate shift. We derive a new integrated as well as a two-stage method to account for this data set shift. In case studies on email spam filtering we empirically explore properties of all derived models as well as several existing baseline methods. We show that spam filters resulting from the Nash prediction game as well as the Stackelberg prediction game in the majority of cases outperform other existing baseline methods. / Eine der Aufgabenstellungen des Maschinellen Lernens ist die Konstruktion von Vorhersagemodellen basierend auf gegebenen Trainingsdaten. Ein solches Modell beschreibt den Zusammenhang zwischen einem Eingabedatum, wie beispielsweise einer E-Mail, und einer Zielgröße; zum Beispiel, ob die E-Mail durch den Empfänger als erwünscht oder unerwünscht empfunden wird. Dabei ist entscheidend, dass ein gelerntes Vorhersagemodell auch die Zielgrößen zuvor unbeobachteter Testdaten korrekt vorhersagt. Die Mehrzahl existierender Lernverfahren wurde unter der Annahme entwickelt, dass Trainings- und Testdaten derselben Wahrscheinlichkeitsverteilung unterliegen. Insbesondere in Fällen in welchen zukünftige Daten von der Wahl des Vorhersagemodells abhängen, ist diese Annahme jedoch verletzt. Ein Beispiel hierfür ist das automatische Filtern von Spam-E-Mails durch E-Mail-Anbieter. Diese konstruieren Spam-Filter basierend auf zuvor empfangenen E-Mails. Die Spam-Sender verändern daraufhin den Inhalt und die Gestaltung der zukünftigen Spam-E-Mails mit dem Ziel, dass diese durch die Filter möglichst nicht erkannt werden. Bisherige Arbeiten zu diesem Thema beschränken sich auf das Lernen robuster Vorhersagemodelle welche unempfindlich gegenüber geringen Veränderungen des datengenerierenden Prozesses sind. Die Modelle werden dabei unter der Worst-Case-Annahme konstruiert, dass diese Veränderungen einen maximal negativen Effekt auf die Vorhersagequalität des Modells haben. Diese Modellierung beschreibt die tatsächliche Wechselwirkung zwischen der Modellbildung und der Generierung zukünftiger Daten nur ungenügend. Aus diesem Grund führen wir in dieser Arbeit das Konzept der Prädiktionsspiele ein. Die Modellbildung wird dabei als mathematisches Spiel zwischen einer lernenden und einer datengenerierenden Instanz beschrieben. Die spieltheoretische Modellierung ermöglicht es uns, die Interaktion der beiden Parteien exakt zu beschreiben. Dies umfasst die jeweils verfolgten Ziele, ihre Handlungsmöglichkeiten, ihr Wissen übereinander und die zeitliche Reihenfolge, in der sie agieren. Insbesondere die Reihenfolge der Spielzüge hat einen entscheidenden Einfluss auf die spieltheoretisch optimale Lösung. Wir betrachten zunächst den Fall gleichzeitig agierender Spieler, in welchem sowohl der Lerner als auch der Datengenerierer keine Kenntnis über die Aktion des jeweils anderen Spielers haben. Wir leiten hinreichende Bedingungen her, unter welchen dieses Spiel eine Lösung in Form eines eindeutigen Nash-Gleichgewichts besitzt. Im Anschluss diskutieren wir zwei verschiedene Verfahren zur effizienten Berechnung dieses Gleichgewichts. Als zweites betrachten wir den Fall eines Stackelberg-Duopols. In diesem Prädiktionsspiel wählt der Lerner zunächst das Vorhersagemodell, woraufhin der Datengenerierer in voller Kenntnis des Modells reagiert. Wir leiten ein relaxiertes Optimierungsproblem zur Bestimmung des Stackelberg-Gleichgewichts her und stellen ein mögliches Lösungsverfahren vor. Darüber hinaus diskutieren wir, inwieweit das Stackelberg-Modell bestehende robuste Lernverfahren verallgemeinert. Abschließend untersuchen wir einen Lerner, der auf die Aktion des Datengenerierers, d.h. der Wahl der Testdaten, reagiert. In diesem Fall sind die Testdaten dem Lerner zum Zeitpunkt der Modellbildung bekannt und können in den Lernprozess einfließen. Allerdings unterliegen die Trainings- und Testdaten nicht notwendigerweise der gleichen Verteilung. Wir leiten daher ein neues integriertes sowie ein zweistufiges Lernverfahren her, welche diese Verteilungsverschiebung bei der Modellbildung berücksichtigen. In mehreren Fallstudien zur Klassifikation von Spam-E-Mails untersuchen wir alle hergeleiteten, sowie existierende Verfahren empirisch. Wir zeigen, dass die hergeleiteten spieltheoretisch-motivierten Lernverfahren in Summe signifikant bessere Spam-Filter erzeugen als alle betrachteten Referenzverfahren.
4

An Agent-Based Model of Institutional Life-Cycles

Wäckerle, Manuel, Rengs, Bernhard, Radax, Wolfgang January 2014 (has links) (PDF)
We use an agent-based model to investigate the interdependent dynamics between individual agency and emergent socioeconomic structure, leading to institutional change in a generic way. Our model simulates the emergence and exit of institutional units, understood as generic governed social structures. We show how endogenized trust and exogenously given leader authority influences institutional change, i.e., diversity in institutional life-cycles. It turns out that these governed institutions (de)structure in cyclical patterns dependent on the overall evolution of trust in the artificial society, while at the same time, influencing this evolution by supporting social learning. Simulation results indicate three scenarios of institutional life-cycles. Institutions may, (1) build up very fast and freeze the artificial society in a stable but fearful pattern (ordered system); (2) exist only for a short time, leading to a very trusty society (highly fluctuating system); and (3) structure in cyclical patterns over time and support social learning due to cumulative causation of societal trust (complex system).

Page generated in 0.05 seconds