Spelling suggestions: "subject:"approximation stochastique"" "subject:"approximation stochastiques""
1 |
Etude d'algorithmes d'estimation adaptiveDelyon, Bernard. January 1996 (has links) (PDF)
Habilitation à diriger des recherches : Informatique : Rennes 1 : 1996. / Bibliogr. p.29-31.
|
2 |
L'identification et la commande adaptive une approche par la theorie de l'information /Iouditski, Anatoli January 1996 (has links) (PDF)
Habilitation à diriger des recherches : Informatique : Rennes 1 : 1996. / Bibliogr. p.15-21.
|
3 |
TONGA : un algorithme de gradient naturel pour les problèmes de grande tailleManzagol, Pierre-Antoine January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
4 |
TONGA : un algorithme de gradient naturel pour les problèmes de grande tailleManzagol, Pierre-Antoine January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
5 |
Étude asymptotique des algorithmes stochastiques et calcul du prix des options parisiennesLelong, Jérôme 14 September 2007 (has links) (PDF)
Cette thèse traite de deux sujets indépendants. La première partie est consacrée à l'étude des algorithmes stochastiques. Dans un premier chapitre introductif, je présente l'algorithme de [55] dans un parallèle avec l'algorithme de Newton pour l'optimisation déterministe. Ces quelques rappels permettent alors d'introduire les algorithmes stochastiques aléatoirement tronqués de [21] qui sont au cœur de cette thèse. La première étude de cet algorithme concerne sa convergence presque sûre qui est parfois établie sous des hypothèses assez changeantes. Ce premier chapitre est l'occasion de clarifier les hypothèses de la convergence presque sûre et d'en présenter une preuve simplifiée. Dans le second chapitre, nous poursuivons l'étude de cet algorithme en nous intéressant cette fois à sa vitesse de convergence. Plus exactement, nous considérons une version moyenne mobile de cet algorithme et démontrons un théorème centrale limite pour cette variante. Le troisième chapitre est consacré à deux applications de ces algorithmes à la finance : le premier exemple présente une méthode de calibration de la corrélation pour les modèles de marchés multidimensionnels alors que le second exemple poursuit les travaux de [7] en améliorant ses résultats. La seconde partie de cette thèse s'intéresse à l'évaluation des options parisiennes en s'appuyant sur les travaux de Chesney, Jeanblanc-Picqué, and Yor [23]. La méthode d'évaluation se base sur l'obtention de formules fermées pour les transformées de Laplace des prix par rapport à la maturité. Nous établissons ces formules pour les options parisiennes simple et double barrières. Nous étudions ensuite une méthode d'inversion numérique de ces transformées. Nous établissons un résultat sur la précision de cette méthode numérique tout à fait performante. A cette occasion, nous démontrons également des résultats liés à la régularité des prix et l'existence d'une densité par rapport à la mesure de Lebesgues pour les temps parisiens.
|
6 |
Etude asymptotique des algorithmes stochastiques et calcul des prix des options ParisiennesLelong, Jérôme 14 September 2007 (has links) (PDF)
La première partie de cette thèse est consacrée à l'étude des algorithmes stochastiques aléatoirement tronqués de Chen et Zhu. La première étude de cet algorithme concerne sa convergence presque sûre. Dans le second chapitre, nous poursuivons l'étude de cet algorithme en nous intéressant à sa vitesse de convergence. Nous considérons également une version moyenne mobile de cet algorithme. Enfin nous terminons par quelques applications à la finance.<br />La seconde partie de cette thèse s'intéresse à l'évaluation des options parisiennes en s'appuyant sur les travaux de Chesney, Jeanblanc et Yor. La méthode d'évaluation se base sur l'obtention de formules fermées pour les transformées de Laplace des prix par rapport à la maturité. Nous établissons ces formules pour les options parisiennes simple et double barrières. Nous étudions ensuite une méthode d'inversion numérique de ces transformées dont nous établissons la précision.
|
7 |
Approximation particulaire et méthode de Laplace pour le filtrage bayésienBui Quang, Paul 01 July 2013 (has links) (PDF)
La thèse porte sur l'apport de la méthode de Laplace pour l'approximation du filtre bayésien dans des modèles de Markov cachés généraux, c'est-à-dire dans un cadre séquentiel, avec comme domaine d'application privilégié la poursuite de cibles mobiles. A la base, la méthode de Laplace est une méthode asymptotique pour le calcul d'intégrales, c'est-à-dire dans un cadre statique, valide en théorie dès que la fonction à intégrer présente un maximum de plus en plus significatif, lequel apporte la contribution essentielle au résultat. En pratique, cette méthode donne des résultats souvent très précis même en dehors de ce cadre de validité théorique. Les deux contributions principales de la thèse sont les suivantes. Premièrement, nous avons utilisé la méthode de Laplace en complément du filtrage particulaire : on sait en effet que les méthodes de Monte Carlo séquentielles basées sur l'échantillonnage pondéré sont mises en difficulté quand la fonction de pondération (ici la fonction de vraisemblance) est trop localisée, par exemple quand la variance du bruit d'observation est trop faible, or c'est précisément là le domaine où la méthode de Laplace est efficace et justifiée théoriquement, d'où l'idée naturelle de combiner les deux points de vue. Nous proposons ainsi un algorithme associant la méthode de Laplace et le filtrage particulaire, appelé le Laplace particle filter. Deuxièmement, nous avons analysé l'approximation du filtre bayésien grâce à la méthode de Laplace seulement (c'est-à-dire sans génération d'échantillons aléatoires) : il s'agit ici de contrôler la propagation de l'erreur d'approximation d'un pas de temps au pas de temps suivant, dans un cadre asymptotique approprié, par exemple quand le bruit d'observation tend vers zéro, ou quand le bruit d'état et le bruit d'observation tendent conjointement (et à la même vitesse) vers zéro, ou plus généralement quand l'information contenue dans le système tend vers l'infini, avec une interprétation en terme d'identifiabilité.
|
8 |
Dynamique de carnets d'ordres boursiers : modèles stochastiques et théorèmes limitesDe Larrard, Adrien 02 October 2012 (has links) (PDF)
Cette thèse propose un cadre mathématique pour la modélisation de la dynamique du prix et du flux d'ordres dans un marché électronique ou' les participants achètent et vendent un produit financier en soumettant des ordres limites et des ordres de marche à haute fréquence à un carnet d'ordres centralisé. Nous proposons un modèle stochastique de carnet d'ordres en tant que système de files d'attente représentant la totalité des ordres d'achat et de vente au meilleur niveau de prix (bid/ask) et nous montrons que les principales caractéristiques de la dynamique du prix dans un tel marche peuvent être comprises dans ce cadre. Nous étudions en détail la relation entre les principales propriétés du prix et la dynamique du processus ponctuel décrivant l'arrivée et l'exécution des ordres, d'abord dans un cadre Markovien (Chapitre 2) puis, en utilisant des méthodes asymptotiques, dans le cadre plus général d'un processus ponctuel stationnaire dans sa limite heavy traffic, pour lequel les ordres arrivent fréquemment, comme c'est le cas pour la plupart des marches liquides (Chapitres 3 et 4). Le Chapitre 2 étudie un modèle Markovien de dynamique de carnet d'ordres, dans lequel l'arrivée d'ordres de marche, d'ordres limites et d'annulations est d'écrite à l'aide d'un processus de Poisson ponctuel. L'état du carnet d'ordres est d'écrit par une marche aléatoire changée de temps dans le quadrant positif et régénérée à chaque fois qu'elle atteint le bord. Ce modèle permet d'obtenir des expressions analytiques pour la distribution des durées entre changements de prix, la distribution et les autocorrelations des changements de prix, ainsi que la probabilité que le prix augmente, conditionnellement à l'état du carnet d'ordres. Nous étudions la limite de diffusion du prix et exprimons la volatilité des changements de prix à l'aide de paramètres décrivant l'intensité des ordres d'achat, de vente et d'annulations. Ces résultats analytiques permettent de mieux comprendre le lien entre volatilité du prix et flux d'ordres. Le Chapitre 3 étudie un modèle plus général de carnet d'ordres pour lequel les arrivées d'ordres et les tailles d'ordres proviennent d'un processus ponctuel stationnaire très général. Nous obtenons un théorème central limite fonctionnel pour la dynamique jointe des files d'attente des ordres de vente et d'achat, et prouvons que, pour un marche liquide, dans lequel les ordres d'achat et de vente arrivent à haute fréquence, la dynamique du carnet d'ordres peut être approximée par un processus à sauts Markovien diffusant dans l'orthant et dont les caractéristiques peuvent être exprimées à l'aide de propriétés statistiques du flux d'ordres sous-jacent. Ce résultat permet d'obtenir des approximations analytiques pour plusieurs quantities d'intérêt telles que la probabilité que le prix augmente ou la distribution de la durée avant le prochain changement de prix, conditionnellement à l'état du carnet d'ordres. Ces quantités sont exprimées en tant que solutions d'équations elliptiques, pour lesquelles nous donnons des solutions explicites dans certains cas importants. Ces résultats s'appliquent à une classe importante de modèles stochastiques, incluant les mod'eles bas'es sur les processus de Poisson, les processus auto-excitants ou la famille de processus ACD-GARCH. Le Chapitre 4 est une étude plus détaillée de la dynamique du prix dans un marche où les ordres de marche, les ordres limites et les annulations arrivent à haute fréquence. Nous étudions d'abord la dynamique discrète du prix à l'échelle de la seconde et nous obtenons des relations analytiques entre les propriétés statistiques des changements de prix dans une journée -distribution des incréments du prix, retour à la moyenne et autocorrelations- et des propriétés du processus décrivant le flux d'ordres et la profondeur du carnet d'ordres. Ensuite nous étudions le comportement du prix à des fréquences vi CONTENTS vii plus faibles pour plusieurs régimes asymptotiques -limites fluides et diffusives- et nous obtenons pour chaque cas la tendance du prix et sa volatilité en fonction des intensités d'arrivées d'ordres d'achat, de vente et d'annulations ainsi que la variance des tailles d'ordres. Ces formules permettent de mieux comprendre le lien entre volatilité du prix d'un côté et le flux d'ordres, décrivant la liquidité, d'un autre cote. Nous montrons que ces résultats sont en accord avec la réalité des marches liquides.
|
9 |
Prédiction de la structure de contrôle de bactéries par optimisation sous incertitudeAit El Faqir, Marouane 22 November 2016 (has links)
L'approche de la biologie des systèmes vise à intégrer les méthodologies appliquées dans la conception et l'analyse des systèmes technologiques complexes, au sein de la biologie afin de comprendre les principes de fonctionnement globaux des systèmes biologiques. La thèse s'inscrit dans le cadre de la biologie des systèmes et en particulier dans la prolongation d'une méthode issue de ce cadre : la méthode Resource Blance Analysis (RBA). Nous visons dans cette thèse à augmenter le pouvoir prédictif de la méthode via un travail de modélisation tout en gardant un bon compromis entre représentativité des modèles issus de ce cadre et leur résolution numérique efficace. La thèse se décompose en deux grandes parties : la première vise à intégrer les aspects thermodynamiques et cinétiques inhérents aux réseaux métaboliques. La deuxième vise à comprendre l'impact de l'aspect stochastique de la production des enzymes sur le croissance de la bactérie. Des méthodes numériques ont été élaborées pour la résolution des modèles ainsi établis dans les deux cas déterministe et stochastique. / In order to understand the global functioning principals of biological systems, system bio- logy approach aims to integrate the methodologies used in the conception and the analysis of complex technological systems, within the biology. This PhD thesis fits into the system biology framework and in particular the extension of the already existing method Resource Balance Analysis (RBA). We aim in this PhD thesis to improve the predictive power of this method by introducing more complex model. However, this new model should respect a good trade-off between the representativity of the model and its efficient numerical computation. This PhD thesis is decomposed into two major parts. The first part aims the integration of the metabolic network inherent thermodynamical and kinetic aspects. The second part aims the comprehension of the impact of enzyme production stochastic aspect on the bacteria growth. Numerical methods are elaborated to solve the obtained models in both deterministic and stochastic cases.
|
10 |
Contrôle adaptatif et autoréglage : applications de l'approximation stochastiqueBaltcheva, Irina January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.0991 seconds