Spelling suggestions: "subject:"arabidopsis thaliana"" "subject:"rabidopsis thaliana""
181 |
Aspectos funcionais do gene thi1 em plantas selvagens e mutantes de Arabidopsis thaliana (Brassicaceae) / Functional aspects of thi1 gene in wild-type and mutant plants of Arabidopsis thaliana (Brassicaceae)Momoli, Marisa Moura 08 October 2008 (has links)
O gene thi1 foi isolado a partir de uma biblioteca de cDNA de A. thaliana devido à sua capacidade de complementar mutantes de E. coli para rotas de reparo de DNA. O posterior seqüenciamento desse gene permitiu a identificação de similaridade com genes de fungos ativados em condições de estresse ou ativados na ausência de tiamina (vitamina B1). A síntese de tiamina é de grande importância já que na forma pirofosfatada é coenzima essencial para vários processos vitais das células. No presente estudo, foi realizada a caracterização funcional do gene thi1 utilizando-se, para tanto, linhagens de A. thaliana mutante e/ou com expressão diferencial desse gene. Foram analisados parâmetros biológicos como viabilidade de sementes, antioxidantes, danos no DNA, e atividade transcricional e traducional do gene thi1. Foi iniciado, também, o processo de padronização da quantificação de tiamina em plantas. Foi observado, para a linhagem mutante, menor viabilidade de sementes, maior produção de antioxidantes e maior quantidade de danos no DNA de cloroplastos. Quanto à atividade transcricional e traducional, foi observado que o gene thi1 apresenta um pico de expressão no período da tarde com um ritmo circadiano em potencial. Além disso, o acúmulo da proteína nos tecidos acompanha o perfil de expressão de RNAm thi1, o que sugere que o modo de regulação primária do gene é em nível transcricional. A análise comparativa de proteína por gel bi-dimensional entre as linhagens selvagem e mutante permitiu a identificação de quatro proteínas em maior quantidade na mutante, sendo duas identificadas por seqüenciamento: enolase e fosfoglicerato desidrogenase. Na análise de tiamina foi observado que a linhagem mutante acumula um composto, não identificado, que emite fluorescência no mesmo comprimento de onda que as tiaminas, sendo, provavelmente, um precursor do tiazol. Os resultados obtidos nesse trabalho indicam que THI1 defectivo acarretaria em desbalanço metabólico e, não necessariamente, que o gene thi1 estaria envolvido em dupla função. Em bactérias, entre os precursores de tiazol, estão a cisteína e o gliceraldeído 3-fosfato (G3P). O G3P em excesso seria deslocado para o ciclo de Calvin a fim de regenerar a ribulose 1,5-bisfosfato. Maior quantidade de G3P, maior taxa fotossintética, maior produção de ROS, maior produção de antioxidantes na mutante. A maior disponibilidade de G3P aumentaria o fluxo de glicólise e, consequentemente, de respiração mitocondrial, aumentando a taxa de ROS. A fosfoglicerato desidrogenase, em maior quantidade na mutante, está envolvida na síntese de cisteina que acarreta na produção de glutationa. A glutationa e a cisteína, por sua vez, atuariam induzindo o promotor da SOD, acarretando, então, na produção de mais antioxidantes. Todos esses antioxidantes estariam envolvidos na detoxificação de ROS presente em excesso na linhagem mutante, que levaria à menor viabilidade de sementes e maior quantidade de danos no DNA. Devido à grande quantidade de ROS, haveria superexpressão de enolase, envolvida no bloqueio da proliferação celular e, subsequentemente, em morte celular programada, o que explicaria o retardo no desenvolvimento da linhagem mutante / thi1 gene was previously isolated from A. thaliana cDNA library due to its capacity to complement mutant Escherichia coli defective in DNA repair. The late analyse of this gene showed its similarity with yeast genes activated under stress conditions or activated in the absence of thiamine. It means that THI1 has bifunctional activity, being involved in thiamine biosynthesis and repair/tolerance to DNA damage. The thiamine biosynthesis is important because its phosphorilated form is a coenzyme essential to several vital process at the cell. The repair/tolerance to DNA damage shows its importance because it is necessary to maintenance the genetic stability of the individual. In the present study, we report the functional characterization of thi1 gene using A. thaliana lines with differential expression of this gene. We analyzed the seed viability, the fresh weight of different lines, thi1 mRNA expression, the amount of protein produced and the expression in situ using the thi1-GUS construction in different conditions. Besides that we quantified free radicals in the wild-type (WT) and mutant lines and analysed the response of the mutant line, with defective THI1, to the production of antioxidant enzymes and non-enzimatics antioxidants. We also quantified DNA damage in chloroplast of WT and mutant lines and we did comparative proteomic analysis between and began the standardization of the thiamine quantification in plants. All these results together lead us up to a better understanding about THI1 activity at the cellular metabolism. Previous results suggested that besides thiamine synthesis, THI1 would be involved in repair/tolerance to DNA damage. Results obtained in this study strengthen the hypothesis of this another function of the thi1 gene. Considering that the mutant line does not produce a higher quantity of ROS, as indicated by hydrogen peroxide quantification, but shows more antioxidants and more DNA damage, probably the genetic material of this line is more susceptible to damage, showing that the defective THI1 protein could not protect it efficiently.
|
182 |
Le protéasome et le fer : rôles et/ou régulations dans le nucléole d’Arabidopsis thaliana / Proteasome and iron : roles and/or regulations in Arabidopsis thaliana nucleolusMontacié, Charlotte 26 February 2019 (has links)
Dans cette thèse, j’ai cherché à étudier l’impact du contenu et de la structure du nucléole sur les fonctions nucléolaires chez A. thaliana. Pour cela je me suis appuyée sur deux cas concrets : 1- J’ai réalisé le protéome du nucléole et caractérisé une de ces activités non-ribosomales / 2- J’ai étudié l’impact du fer nucléolaire dans la biogenèse des ribosomes.D’une part, le protéome nucléolaire d’A. thaliana m’a permis d’identifier des protéines nucléolaires dont les fonctions connues sont extra-ribosomales. Ainsi j’ai démontré que l’activité du protéasome 26S peut être régulée par le nucléole. Plus précisément l’activité du protéasome diminue lors d’une déstructuration du nucléole. De plus, j’ai constaté que le protéasome 26S, conjointement avec la protéine Nucléoline, pourrait avoir un rôle dans la transcription et/ou la maturation des ARNr.D’autre part, j’ai démontré que l’absence de fer nucléolaire (chez des plantes mutantes nas1,2,4) provoque une augmentation des structures nucléolaires propices à la transcription (les centres fibrillaires). Cette observation est corrélée à la transcription de l’ADNr du NOR2, normalement réprimé. Et, de manière inattendue, est liée avec l’hyperméthylation des promoteurs des ADNr en contexte CHH. Il se peut alors que le fer régule des facteurs impliqués dans les mécanismes épigénétiques responsables de la répression ou de l’activation des ADNr. / The aim of this thesis work is to highlight the impact of both nucleolus content and structure on nucleolar functions in A. thaliana. For this I followed two approaches: 1- I performed nucleolus proteome and characterized one of its non-ribosomal activity / 2- I studied nucleolar iron impact on ribosomes biogenesis.Firstly, the A. thaliana nucleolar proteome allowed me to identify nucleolar proteins with non-ribosomal functions. Among these, I showed that 26S proteasome activity can be regulated by nucleolus. More precisely, proteasome activity decreases with nucleolus disorganization. Moreover, I also showed that 26S proteasome, together with Nucleolin, might play a role in ribosomal RNA transcription and/or maturation.Secondly, I proved that loss of nucleolar iron (in nas1,2,4 mutant plants) induces an increase of nucleolar transcriptional structures (fibrillar centers). This observation is correlated with the transcription of normally silenced rDNA from NOR2 and, interestingly, with hypermethylation of rDNA promoters in CHH context. And so, iron might regulate factors implicated in epigenetic pathways responsible of either rDNA transcription or repression.
|
183 |
Étude du rôle de la neddylation dans la régulation de la recombinaison méiotique / Study of the role of neddylation in the regulation of meiotic recombinationTagliaro Jahns, Marina 14 February 2014 (has links)
La recombinaison homologue est essentielle à la réparation des lésions de l’ADN ainsi qu’à la ségrégation correcte des chromosomes en méiose. Une étape importante de la recombinaison méiotique est la formation des crossovers (CO). Au cours de ma thèse, j’ai mis en évidence un nouveau mécanisme de régulation de la recombinaison méiotique. J'ai montré que les cycles d'activation et de désactivation des cullin-RING ligases (CRL) sont absolument nécessaires à la recombinaison méiotique. Les CRL sont activées par neddylation et désactivées par la deneddylation. De plus, elles peuvent aussi être inhibées par la séquestration via la protéine CAND1. Mon travail a démontré que ces trois niveaux de régulation des CRL jouent des rôles cruciaux dans la recombinaison homologue méiotique chez A. thaliana. J’ai montré qu'AXR1, un composant clé de la machinerie de neddylation, est nécessaire à la localisation correcte des CO méiotiques et à la recombinaison homologue somatique. J’ai aussi prouvé que le processus de deneddylation médié par CSN5A est nécessaire à la formation des CO. J'ai obtenu des données montrant que cette régulation de la localisation des CO agit à travers la régulation d’un complexe CRL4. Enfin, j’ai pu montrer que l'inhibiteur des CRL, CAND1, est requis pour la formation de plus de 90 % des CO. En utilisant des outils génétiques et cytologiques, j'ai montré que CAND1 agit probablement sur la régulation du biais inter-homologue. L’ensemble de ces données, met l’accent sur un nouveau mécanisme de la régulation de la recombinaison homologue, connectant pour la première fois la méiose et l’ubiquitination via les cullin-RING Ligases. / Homologous recombination is essential to all living organisms in order to repair DNA damages. In addition, a large majority of organisms use homologous recombination in meiosis to ensure proper chromosome segregation. A main step of meiotic recombination is crossover (CO) formation. During my PhD, I was able to highlight a new pathway controlling meiotic recombination. I showed that cycles of activation and deactivation of cullin-RING ligases (CRLs) are absolutely required for correct meiosis. CRLs are activated by neddylation, and deactivated by deneddylation. In addition, they can also be inhibited by sequestration by the CAND1 protein. My work demonstrated that these three levels of CRL regulation play crucial roles in meiotic homologous recombination in A. thaliana. First, I showed that AXR1, a key component of the neddylation machinery, is required for the correct localisation of meiotic COs and for somatic homologous recombination. Second, I showed that the deneddylation process mediated by CSN5A is also necessary for normal CO formation. I obtained evidence that this regulation of CO position is likely to be mediated by a CRL4 complex. Last, I could show that the CRL inhibitor, CAND1, is required for the formation of up to 90% of the COs. Using genetic and cytological tools, I showed that CAND1 probably acts on the regulation of the inter-homolog bias. Considering all these data, my work draws the attention to a new mechanism regulating meiotic homologous recombination, connecting for the first time meiosis to CRL-mediated ubiquitylation.
|
184 |
Characterization of the mitochondrial translation apparatus of Arabidopsis thaliana / Caractérisation de la machinerie de traduction mitochondriale chez Arabidopsis thalianaWaltz, Florent 06 December 2018 (has links)
Dans les cellules eucaryotes, différents types de ribosomes coexistent. Les ribosomes mitochondriaux synthétisent les quelques protéines codées par l’ADN mitochondrial, qui sont essentielles au fonctionnement de l’organisme. Ces ribosomes sont particulièrement divergents des ribosomes procaryotes, mais sont également très différents entre les eucaryotes. Mon travail de thèse s'est concentré sur la caractérisation de la structure et de la composition en protéines du ribosome mitochondrial de la plante modèle Arabidopsis thaliana. Des approches biochimiques complémentaires ont permis d’identifier 19 protéines uniquement trouvées dans le mitoribosome de plante, parmi lesquelles 10 sont des protéines PPR, des protéines particulièrement abondantes chez les plantes. Les mutations des gènes codant pour ces PPR ribosomales (rPPR) mènent à l’apparition de phénotypes macroscopiques distincts, notamment une létalité ou des retards de croissance importants. L'analyse moléculaire du mutant rppr1 par profilage des ribosomes, ainsi que l'analyse du taux de protéines mitochondriales, révèlent que la protéine rPPR1 est un facteur de traduction générique, ce qui constitue une nouvelle fonction des protéines PPR. De plus, la cryo-électron microscopie a été utilisée pour déterminer l’architecture tridimensionnelle de ce mitoribosome. Cette approche a révélé la structure unique du mitoribosome de plante, caractérisée par une très grande petite sous-unité ribosomale ayant un domaine additionnel jamais décrit jusqu’à présent. Globalement, mes résultats ont montré que le mitoribosome d’Arabidopsis est complètement différent des ribosomes bactériens et des autres mitoribosomes eucaryotes, à la fois en terme de structure mais aussi de composition, permettant ainsi de mieux comprendre l’évolution de ce composant central de l’expression génétique. / Ribosomes are the molecular machines translating the genetic information carried by mRNA into protein. Different translation machineries co-exist in eukaryote cells. While cytosolic translation is comparatively well characterized, it remains the most elusive step of gene expression in mitochondria. In plants, while numerous pentatricopeptide repeat (PPR) proteins are involved in all steps of gene expression, their function in translation remains unclear. My work focused on the biochemical characterisation of Arabidopsis mitochondrial ribosomes and the identification of its protein composition. Complementary biochemical approaches identified 19 plant specific mitoribosome proteins, among which 10 are PPR proteins. The knock out mutations of ribosomal PPR (rPPR) genes result in distinct macroscopic phenotypes including lethality or severe growth delays. The molecular analysis of rPPR1 mutants, using ribosome profiling, as well as the analysis of mitochondrial protein levels, revealed that rPPR1 is a generic translation factor, which is a novel function for PPR proteins. Finally, single particle cryo-electron microscopy was used and revealed the unique structural architecture of Arabidopsis mitoribosomes, characterised by a very large small ribosomal subunit, larger than the large subunit, with a novel head domain. Overall, my results showed that Arabidopsis mitoribosomes are completely distinct from bacterial and other eukaryote mitoribosomes, both in terms of structure and of protein content.
|
185 |
Genetic regulation of vascular and floral patterning in Arabidopsis thalianaDeyholos, Michael K. January 2000 (has links)
No description available.
|
186 |
Early-flowering mutants of a late-flowering ecotype of Arabidopsis thalianaWilson, Dale, 1972- January 2001 (has links)
Abstract not available
|
187 |
Analysis of transcription factors under sulphur deficiency stressBielecka, Monika January 2007 (has links)
Sulphur, a macronutrient essential for plant growth, is among the most versatile elements in living organisms. Unfortunately, little is known about regulation of sulphate uptake and assimilation by plants. Identification of sulphate signalling processes will allow to control sulphate acquisition and assimilation and may prove useful in the future to improve sulphur-use efficiency in agriculture.
Many of genes involved in sulphate metabolism are regulated on transcriptional level by products of other genes called transcription factors (TF). Several published experiments revealed TF genes that respond to sulphate deprivation, but none of these have been so far been characterized functionally. Thus, we aimed at identifying and characterising transcription factors that control sulphate metabolism in the model plant Arabidopsis thaliana. To achieve that goal we postulated that factors regulating Arabidopsis responses to inorganic sulphate deficiency change their transcriptional levels under sulphur-limited conditions. By comparing TF transcript profiles from plants grown on different sulphate regimes, we identified TF genes that may specifically induce or repress changes in expression of genes that allow plants to adapt to changes in sulphate availability.
Candidate genes obtained from this screening were tested by reverse genetics approaches. Transgenic plants constitutively overproducing selected TF genes and mutant plants, lacking functional selected TF genes (knock out), were used. By comparing metabolite and transcript profiles from transgenic and wild type plants we aimed at confirming the role of selected AP2 TF candidate genes in plant adaptation to sulphur unavailability. After preliminary characterisation of WRKY24 and MYB93 TF genes, we postulate that these factors are involved in a complex multifactorial regulatory network, in which WRKY24 and MYB93 would act as superior factors regulating other transcription factors directly involved in the regulation of S-metabolism genes. Results obtained for plants overproducing TOE1 and TOE2 TF genes suggests that these factors may be involved in a mechanism, which is promoting synthesis of an essential amino acid, methionine, over synthesis of another amino acid, cysteine. Thus, TOE1 and TOE2 genes might be a part of transcriptional regulation of methionine synthesis.
Approaches creating genetically manipulated plants may produce plant phenotypes of immediate biotechnological interest, such as plants with increased sulphate or sulphate-containing amino acid content, or better adapted to the sulphate unavailability. / Der fuer das Pflanzenwachstum essentielle Makro-Naehrstoff Schwefel gehoert zu den vielseitigsten Elementen in lebenden Organismen. Ungluecklicherweise ist nur wenig ueber die Regulation der Schwefel Aufnahme und Assimilation von Pflanzen bekannt. Die Identifizierung von Schwefel Signalweiterleitungsprozessen wird es erlauben, die Aufnahme und Assimilation von Schwefel zu kontrollieren und koennte sich in der Zukunft als nuetzlich erweisen, die Effizienz der Schwefel Nutzung in der Landwirtschaft zu verbessern.
Viele Gene, die am Schwefel Metabolismus beteiligt sind, werden auf Transkriptionsebene durch die Produkte anderer Gene, sogenannter Transkriptionsfaktoren (TF), reguliert. Mehrere veroeffentlichte Versuche beschreiben TF Gene, die auf Schwefel Mangel reagieren, es wurde jedoch bisher keines dieser Gene funktionell charakterisiert. Daher war es unser Ziel die TF, die den Schwefel Metabolismus in der Modellpflanze Arabidopsis thaliana kontrollieren, zu identifizieren und charakterisieren. Um dies zu erreichen postulierten wir, dass die Faktoren, die die Reaktion von Arabidopsis auf den Mangel an anorganischem Schwefel regulieren, das Mass ihrer Transkription unter Schwefelmangel aendern. Durch den Vergleich von TF Transkriptionsprofilen von Pflanzen, die unter verschiedenen Schwefelbedingungen aufgezogen wurden, identifizierten wir TF Gene, die moeglicherweise spezifisch Aenderungen in der Expression von Genen, die den Pflanzen erlauben sich an Aenderungen der Schwefel Verfuegbarkeit anzupassen, induzieren oder reprimieren.
Die bei dieser Untersuchung erhaltenen Kandidaten Gene wurden in einen „reverse genetics“ Ansatz getestet. Es wurden transgene Pflanzen, die ausgewaehlte TF Gene konstitutiv ueberproduzieren, und Mutanten, denen ausgewaehlte funktionierende TF Gene fehlen („knock out“), benutzt. Durch den Vergleich von Metabolisten und Transkript Profilen transgener und wildtyp Pflanzen zielten wir auf die Bestaetigung der Rolle ausgewaehlter AP2 TF Kandidaten Gene bei der Anpassung an Schwefel Unverfuegbarkeit ab. Nach vorlaeufiger Charakterisierung von WRKY24 und MYB93 TF Genen postulieren wir, dass diese Faktoren an einem komplexen multifaktoriellen Regulationsnetzwerk beteiligt sind, in dem WRKY24 und MYB93 als uebergeordnete Faktoren agieren und andere TF regulieren, die direkt an der Regulation von Schwefel Metabolismus Genen beteiligt sind. Ergebnisse von Untersuchungen an Pflanzen, die TOE1 und TOE2 TF Gene ueberproduzieren deuten darauf hin, dass diese Faktoren an einem Mechanismus beteiligt sein koennten, der die Synthese einer essentiellen Aminosaeure, Methionin, zu Ungunsten der Synthese einer anderen Aminosaeure, Cystein, foerdert. Daher koennten TOE1 und TOE2 Gene Teil der transkriptionellen Regulation der Methionin Synthese sein.
Die Herstellung genetisch manipulierter Pflanzen koennte Pflanzenphaenotypen erzeugen, die von sofortigem biotechnologischen Interesse sind, beispielsweise Pflanzen mit erhoehtem Gehalt an Schwefel oder schwefelhaltigen Aminosaeuren, oder Pflanzen, die besser an Schwefel Unverfuegbarkeit angepasst sind.
|
188 |
Functional analysis of selected DOF transcription factors in the model plant Arabidopsis thalianaSkirycz, Aleksandra January 2007 (has links)
Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression.
To identify biological processes regulated by OBP1, OBP2 and AtDOF4;2 in detail molecular and physiological characterization of transgenic plants with modified levels of OBP1, OBP2 and AtDOF4;2 expression (constitutive and inducible over-expression, RNAi) was performed using both targeted and profiling technologies. Additionally expression patterns of studied TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally selected target genes were confirmed by chromatin immuno-precipitation and electrophoretic-mobility shift assays. This combinatorial approach revealed distinct biological functions of OBP1, OBP2 and AtDOF4;2.
Specifically OBP2 controls indole glucosinolate / auxin homeostasis by directly regulating the enzyme at the branch of these pathways; CYP83B1 (Skirycz et al., 2006). Glucosinolates are secondary compounds important for defence against herbivores and pathogens in the plants order Caparales (e.g. Arabidopsis, canola and broccoli) whilst auxin is an essential plant hormone. Hence OBP2 is important for both response to biotic stress and plant growth.
Similarly to OBP2 also AtDOF4;2 is involved in the regulation of plant secondary metabolism and affects production of various phenylpropanoid compounds in a tissue and environmental specific manner. It was found that under certain stress conditions AtDOF4;2 negatively regulates flavonoid biosynthetic genes whilst in certain tissues it activates hydroxycinnamic acid production. It was hypothesized that this dual function is most likely related to specific interactions with other proteins; perhaps other TFs (Skirycz et al., 2007).
Finally OBP1 regulates both cell proliferation and cell expansion. It was shown that OBP1 controls cell cycle activity by directly targeting the expression of core cell cycle genes (CYCD3;3 and KRP7), other TFs and components of the replication machinery. Evidence for OBP1 mediated activation of cell cycle during embryogenesis and germination will be presented. Additionally and independently on its effects on cell proliferation OBP1 negatively affects cell expansion via reduced expression of cell wall loosening enzymes.
Summing up this work provides an important input into our knowledge on DOF TFs function. Future work will concentrate on establishing exact regulatory networks of OBP1, OBP2 and AtDOF4;2 and their possible biotechnological applications. / Biologische Prozesse, wie beispielsweise das Wachstum von Organen und ganzen Organismen oder die Reaktion von Lebewesen auf ungünstige Umweltbedingungen, unterliegen zahlreichen Regulationsmechanismen. Besonders wichtige Regulatoren sind die sogenannten Transkriptionsfaktoren. Dabei handelt es sich um Proteine, die die Aktivität von Erbeinheiten, den Genen, beeinflussen. In Pflanzen gibt es etwa 2000 solcher Regulatoren. Da sie wichtige Kontrollelemente darstellen, sind sie von großem wissenschaftlichen und biotechnologischen Interesse.
Im Rahmen der Doktorarbeit sollte die Funktion von drei Transkriptionsfaktoren, genannt OBP1, OBP2 und AtDOF4;2, untersucht werden. Sie wurden bei der Suche nach neuen Wachstumsregulatoren identifiziert. Als Untersuchungsobjekt diente die in der Öffentlichkeit kaum bekannte Pflanze Ackerschmalwand, lateinisch als Arabidopsis thaliana bezeichnet.
Um die Funktion der Regulatoren zu entschlüsseln, wurden an der Modellpflanze genetische Veränderungen durchgeführt und die Pflanzen dann mit molekularbiologischen und physiologischen Methoden analysiert. Es zeigte sich, dass OBP1 an der Regulation der Zellteilung beteiligt ist. Alle Lebewesen sind aus Zellen aufgebaut. Gelingt es, die Zellteilung gezielt zu steuern, kann damit beispielsweise die Produktion von pflanzlicher Biomasse verbessert werden. Das OBP1-Protein übt auch einen Einfluss auf die Zellstreckung aus und beeinflusst auch auf diesem Wege das pflanzliche Wachstum.
Die beiden anderen Proteine steuern Prozesse, die im Zusammenhang mit der Bildung von Pflanzeninhaltsstoffen stehen. OBP2 ist Teil eines zellulären Netzwerkes, dass die Synthese von sogenannten Glucosinolaten steuert. Glucosinolate kommen unter anderem in Broccoli und Kohl vor. Sie fungieren als Abwehrstoffe gegen Fraßinsekten. Einigen Glucosinolaten wird auch gesundheitsfördernde Wirkung zugesprochen. Das Protein AtDOF4;2 ist Komponente eines anderen Netzwerkes, dass die Bildung von Phenylpropanoiden steuert. Diese Substanzen haben strukturelle Funktion und spielen darüber hinaus eine Rolle bei der pflanzlichen Toleranz gegenüber tiefen Temperaturen.
Mit der Doktorarbeit konnte das Wissen über die Transkriptionsfaktoren erheblich erweitert und die Grundlage für interessante zukünftige Arbeiten gelegt werden. Von großer Bedeutung wird es dabei sein, die Netzwerke, in die die Transkriptionsfaktoren eingebunden sind, noch besser zu verstehen. Dann wird es möglich sein, auch Teilnetzwerke gezielt zu beeinflussen, was für biotechnologische Anwendungen, beispielsweise bei der Präzisionszüchtung von nachwachsenden Rohstoffen, von zentraler Bedeutung ist.
|
189 |
Nitrate: metabolism and development : characterization of the glutamate dehydrogenase (GDH) family, an enzyme at the cross-roads of carbon-nitrogen interaction metabolites and study of the regulation of flowering by nitrogenCastro Marin, Inmaculada January 2007 (has links)
The major aim of this thesis was to study the effect of nitrate on primary metabolism and in development of the model plant Arabidopsis thaliana.
The present work has two separate topics. First, to investigate the GDH family, a small gene family at the interface between nitrogen and carbon metabolisms. Second, to investigate the mechanisms whereby nitrogen is regulating the transition to flowering time in Arabidopsis thaliana.
To gain more insights into the regulation of primary metabolism by the functional characterization of the glutamate dehydrogenase (GDH) family, an enzyme putatively involved in the metabolism of amino acids and thus suggested to play different and essential roles in carbon and nitrogen metabolism in plants, knock out mutants and transgenic plants carrying RNA interference construct were generated and characterized. The effect of silencing GDH on carbon and nitrogen metabolisms was investigated, especially the level of carbohydrates and the amino acid pool were further analysed. It has been shown that GDH expression is regulated by light and/or sugar status therefore, phenotypic and metabolic analysis were developed in plants grown at different points of the diurnal rhythm and in response to an extended night period.
In addition, we are interested in the effect of nutrient availability in the transition from vegetative growth to flowering and especially in nitrate as a metabolite that triggers widespread and coordinated changes in metabolism and development. Nutrient availability has a dramatic effect on flowering time, with a marked delay of flowering when nitrate is supplied (Stitt, 1999).
The use of different mutants and transgenic plants impaired in flowering signalling pathways was crucial to evaluate the impact of different nitrate concentrations on flowering time and to better understand the interaction of nitrate-dependent signals with other main flowering signalling pathways. Plants were grown on glutamine as a constitutive source of nitrogen, and the nitrate supply varied. Low nitrate led to earlier flowering. The response to nitrate is accentuated in short days and in the CONSTANS deficient co2 mutant, whereas long days or overexpression of CONSTANS overrides the nitrate response. These results indicate that nitrates acts downstream of the known flowering signalling pathways for photoperiod, autonomy, vernalization and gibberellic acid.
Global analyses of gene expression of two independent flowering systems, a light impaired mutant (co2tt4) and a constitutive over-expresser of the potent repressor of flowering (35S::FLC), were to be investigated under two different concentrations of nitrate in order to identify candidate genes that may be involved in the regulation of flowering time by nitrate. / Das Hauptziel dieser Doktorarbeit war die Untersuchung des Effekts von Stickstoff auf den Primärmetabolisms und auf die Entwicklung der Modellpflanze Arabidopsis thaliana.
Die vorliegende Arbeit hat zwei Unterthemen:
Auf der einen Seite wurde die GDH Familie untersucht, eine kleine Genfamilie an der Schnittstelle zwischen Stick –und Kohlenstoffmetabolismus. Auf der anderen Seite wurde der Mechanismus, bei dem Stickstoff die Blütezeit in Arabidopsis thaliana kontrolliert, untersucht.
Um einen tieferen Einblick in die Regulierung des Primärmetabolismus zu erhalten, wurde eine funktionelle Charakterisierung der Glutamatdehydrogenase-Familie (GDH) mit Hilfe von knock-out Mutanten und transgenen Pflanzen, die ein RNA Interferenzkonstrukt tragen, durchgeführt. GDH ist höchstwahrscheinlich am Aminosäuremetabolismus beteiligt, wobei vermutet wird, dass es verschiedene wichtige Aufgaben im Pflanzenkohlen –und stickstoffmetabolismus übernimmt. Dabei wurde der Effekt des GDH Silencing auf den Kohlen- sowie Stickstoffmetabolismus untersucht und insbesondere die Anteile von Kohlenhydraten und Aminosäuren eingehend analysiert. In vorhergehenden Studien zeigte sich, dass die GDH-Expression durch Licht und/oder die Zuckerverfügbarkeit reguliert wird. Deshalb wurden phenotypische und metabolische Analysen an Pflanzen entwickelt, die zu verschiedenen Zeitpunkten des diurnalen Rhythmus und nach einer längeren Nachtperiode gezüchtet wurden.
Ausserdem interesssiert uns der Effekt der Nährstoffverfügbarkeit im Übergang vom vegetativen Wachstum zur Blüte, und vor allen Dingen Nitrat als Metabolit, welches weitreichende und koordinierte Veränderungen im Metabolismus und in der Entwicklung hervorruft. Die Nährstoffverfügbarkeit hat einen dramatischen Effekt auf die Blütezeit, insbesondere führt eine Nitratzugabe zu einer deutlichen Verzögerung der Blüte (Stitt, 1999).
Der Einsatz von verschiedenen Mutanten und transgenen Pflanzen, die eine Blockade im Blüte-Signalweg aufwiesen, war ausschlaggebend, um den Einfluss von unterschiedlichen Nitratkonzentrationen auf die Blütezeit zu beurteilen, und um zu einem besserem Verständnis des Zusammenspiels von nitratabhängigen Signalen und anderen Blüte-Signalwegen zu gelangen. Die Pflanzen wuchsen auf Glutamin, das als konstitutive Stickstoffquelle diente, wobei die Nitratversorgung variierte. Niedriger Nitratanteil führte zu einer früheren Blüte. Bei kurzer Tageslänge und bei CONSTANS defizienten Mutanten (co2) ist die Reaktion auf Nitratzugabe erhöht, wohingegen bei fortgeschrittener Tageslänge oder bei Überexpression von CONSTANS die Reaktion auf Nitrat unterbleibt. Diese Ergebnisse verdeutlichen, dass Nitrat unterhalb der bekannten Blüte-Signalwege für Photoperiode, Autonomie, Vernalisierung und Gibberelinsäure fungiert.
Globale Expressionsanalysen von zwei unterschiedlichen Blütensystemen, eine licht-unempfindliche Mutante (co2tt4) und eine Mutante mit konstitutiver Expression eines potentiellen Blüte-Repressors (35S::FLC), wurden bei zwei verschiedenen Nitratkonzentrationen durchgeführt, um Kandidatengene zu identifizieren, die eine wichtige Rolle in der Regulation der Blütezeit durch Nitrat spielen könnten.
|
190 |
Identification and characterization of metabolic Quantitative Trait Loci (QTL) in Arabidopsis thalianaLisec, Jan January 2008 (has links)
Plants are the primary producers of biomass and thereby the basis of all life. Many varieties are cultivated, mainly to produce food, but to an increasing amount as a source of renewable energy. Because of the limited acreage available, further improvements of cultivated species both with respect to yield and composition are inevitable. One approach to further progress in developing improved plant cultivars is a systems biology oriented approach.
This work aimed to investigate the primary metabolism of the model plant A.thaliana and its relation to plant growth using quantitative genetics methods. A special focus was set on the characterization of heterosis, the deviation of hybrids from their parental means for certain traits, on a metabolic level. More than 2000 samples of recombinant inbred lines (RILs) and introgression lines (ILs) developed from the two accessions Col-0 and C24 were analyzed for 181 metabolic traces using gas-chromatography/ mass-spectrometry (GC-MS). The observed variance allowed the detection of 157 metabolic quantitative trait loci (mQTL), genetic regions carrying genes, which are relevant for metabolite abundance. By analyzing several hundred test crosses of RILs and ILs it was further possible to identify 385 heterotic metabolic QTL (hmQTL).
Within the scope of this work a robust method for large scale GC-MS analyses was developed. A highly significant canonical correlation between biomass and metabolic profiles (r = 0.73) was found. A comparable analysis of the results of the two independent experiments using RILs and ILs showed a large agreement. The confirmation rate for RIL QTL in ILs was 56 % and 23 % for mQTL and hmQTL respectively. Candidate genes from available databases could be identified for 67 % of the mQTL. To validate some of these candidates, eight genes were re-sequenced and in total 23 polymorphisms could be found. In the hybrids, heterosis is small for most metabolites (< 20%). Heterotic QTL gave rise to less candidate genes and a lower overlap between both populations than was determined for mQTL. This hints that regulatory loci and epistatic effects contribute to metabolite heterosis.
The data described in this thesis present a rich source for further investigation and annotation of relevant genes and may pave the way towards a better understanding of plant biology on a system level. / Pflanzen sind die Primärproduzenten von Biomasse und damit Grundlage allen Lebens. Sie werden nicht nur zur Gewinnung von Nahrungsmitteln, sondern zunehmend auch als Quelle erneuerbarer Energien kultiviert. Aufgrund der Begrenztheit der weltweit zu Verfügung stehenden Anbaufläche ist eine zielgerichtete Selektion und Verbesserung der verwendeten Sorten unabdingbar. Um solch eine kontinuierliche Verbesserung zu gewährleisten, ist ein grundlegendes Verständnis des biologischen Systems Pflanze nötig.
Diese Arbeit hatte zum Ziel, den Primärmetabolismus der Modellpflanze A. thaliana mit Methoden der quantitativen Genetik zu untersuchen und in Beziehung zu Wachstum und Biomasse zu stellen. Insbesondere sollte Heterosis, die Abweichung von Hybriden in ihren Merkmalen vom Mittelwert der Eltern, auf Stoffwechselebene charakterisiert werden. Mit Hilfe der Gas Chromatographie/ Massen Spektrometrie (GC-MS) wurden über 2000 Proben von rekombinanten Inzucht Linien (RIL) und Introgressions Linien (IL) der Akzessionen Col 0 und C24 bezüglich des Vorkommens von 181 Metaboliten untersucht. Die beobachtete Varianz erlaubte die Bestimmung von 157 metabolischen QTL (mQTL), genetischen Regionen, die für die Metabolitkonzentrationen relevante Gene enthalten. Durch die Untersuchung von Testkreuzungen der RILs und ILs konnten weiterhin 385 heterotische metabolische QTL (hmQTL) identifiziert werden.
Im Rahmen dieser Arbeit wurde eine robuste Methode zur Auswertung von GC-MS Analysen entwickelt. Es wurde eine hoch signifikante kanonische Korrelation (r=0.73) zwischen Biomasse und Metabolitprofilen gefunden. Die unterschiedlichen Ansätze zur QTL Analyse, RILs und ILs, wurden verglichen. Dabei konnte gezeigt werden, daß die Methoden komplementär sind, da mit RILs gefundene mQTL zu 56% und hmQTL zu 23% in ILs bestätigt wurden. Durch den Vergleich mit Datenbanken wurden für 67% der mQTL Kandidatengene identifiziert. Um diese zu überprüfen wurden acht dieser Gene resequenziert und insgesamt 23 Polymorphismen darin bestimmt. Die Heterosis in den Hybriden ist für die meisten Metabolite gering (<20%). Für hmQTL konnten weniger Kandidatengene als für mQTL bestimmt werden und sie zeigten eine geringere Übereinstimmung in den beiden Populationen. Dies deutet darauf hin, daß regulatorische Loci und epistatische Effekte einen wichtigen Beitrag zur Heterosis besteuern.
Die gewonnenen Daten stellen eine reiche Quelle für die weitergehende Untersuchung und Annotation relevanter Gene dar und ebnen den Weg für ein besseres Verständnis des Systems Pflanze.
|
Page generated in 0.1054 seconds