• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 405
  • 177
  • 31
  • 2
  • 1
  • Tagged with
  • 742
  • 742
  • 526
  • 109
  • 109
  • 94
  • 89
  • 88
  • 76
  • 70
  • 65
  • 64
  • 64
  • 61
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Investigation of CO2 Tracer Gas-Based Calibration of Multi-Zone Airflow Models

January 2011 (has links)
abstract: The modeling and simulation of airflow dynamics in buildings has many applications including indoor air quality and ventilation analysis, contaminant dispersion prediction, and the calculation of personal occupant exposure. Multi-zone airflow model software programs provide such capabilities in a manner that is practical for whole building analysis. This research addresses the need for calibration methodologies to improve the prediction accuracy of multi-zone software programs. Of particular interest is accurate modeling of airflow dynamics in response to extraordinary events, i.e. chemical and biological attacks. This research developed and explored a candidate calibration methodology which utilizes tracer gas (e.g., CO2) data. A key concept behind this research was that calibration of airflow models is a highly over-parameterized problem and that some form of model reduction is imperative. Model reduction was achieved by proposing the concept of macro-zones, i.e. groups of rooms that can be combined into one zone for the purposes of predicting or studying dynamic airflow behavior under different types of stimuli. The proposed calibration methodology consists of five steps: (i) develop a "somewhat" realistic or partially calibrated multi-zone model of a building so that the subsequent steps yield meaningful results, (ii) perform an airflow-based sensitivity analysis to determine influential system drivers, (iii) perform a tracer gas-based sensitivity analysis to identify macro-zones for model reduction, (iv) release CO2 in the building and measure tracer gas concentrations in at least one room within each macro-zone (some replication in other rooms is highly desirable) and use these measurements to further calibrate aggregate flow parameters of macro-zone flow elements so as to improve the model fit, and (v) evaluate model adequacy of the updated model based on some metric. The proposed methodology was first evaluated with a synthetic building and subsequently refined using actual measured airflows and CO2 concentrations for a real building. The airflow dynamics of the buildings analyzed were found to be dominated by the HVAC system. In such buildings, rectifying differences between measured and predicted tracer gas behavior should focus on factors impacting room air change rates first and flow parameter assumptions between zones second. / Dissertation/Thesis / M.S. Built Environment 2011
312

Implementation of Building Information Modeling for Wafer Fab Construction

January 2011 (has links)
abstract: Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use. / Dissertation/Thesis / M.S. Construction 2011
313

The Effect of High SRI Roofing Finishes Across Climate Zones in the U.S.

January 2011 (has links)
abstract: The intent of this research is to determine if cool roofs lead to increased energy use in the U.S. and if so, in what climates. Directed by the LEED environmental building rating system, cool roofs are increasingly specified in an attempt to mitigate urban heat island effect. A typical single story retail building was simulated using eQUEST energy software across seven different climatic zones in the U.S.. Two roof types are varied, one with a low solar reflectance index of 30 (typical bituminous roof), and a roof with SRI of 90 (high performing membrane roof). The model also varied the perimeter / core fraction, internal loads, and schedule of operations. The data suggests a certain point at which a high SRI roofing finish results in energy penalties over the course of the year in climate zones which are heating driven. Climate zones 5 and above appear to be the flipping point, beyond which the application of a high SRI roof creates sufficient heating penalties to outweigh the cooling energy benefits. / Dissertation/Thesis / M.S. Built Environment 2011
314

Comparative Analysis of Benchmarking and Audit Tools

January 2011 (has links)
abstract: Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing U.S. building energy use commercial sector buildings must be improved. Energy benchmarking of buildings gives the facility manager or the building owner a quick evaluation of energy use and the potential for energy savings. It is the process of comparing the energy performance of a building to standards and codes, to a set target performance or to a range of energy performance values of similar buildings in order to help assess opportunities for improvement. Commissioning of buildings is the process of ensuring that systems are designed, installed, functionally tested and capable of being operated and maintained according to the owner's operational needs. It is the first stage in the building upgrade process after it has been assessed using benchmarking tools. The staged approach accounts for the interactions among all the energy flows in a building and produces a systematic method for planning upgrades that increase energy savings. This research compares and analyzes selected benchmarking and retrocommissioning tools to validate their accuracy such that they could be used in the initial audit process of a building. The benchmarking study analyzes the Energy Use Intensities (EUIs) and Ratings assigned by Portfolio Manager and Oak Ridge National Laboratory (ORNL) Spreadsheets. The 90.1 Prototype models and Commercial Reference Building model for Large Office building type were used for this comparative analysis. A case-study building from the DOE - funded Energize Phoenix program was also benchmarked for its EUI and rating. The retrocommissioning study was conducted by modeling these prototype models and the case-study building in the Facility Energy Decision System (FEDS) tool to simulate their energy consumption and analyze the retrofits suggested by the tool. The results of the benchmarking study proved that a benchmarking tool could be used as a first step in the audit process, encouraging the building owner to conduct an energy audit and realize the energy savings potential. The retrocommissioning study established the validity of FEDS as an accurate tool to simulate a building for its energy performance using basic inputs and to accurately predict the energy savings achieved by the retrofits recommended on the basis of maximum LCC savings. / Dissertation/Thesis / M.S. Architecture 2011
315

Short-Term Reduction of Peak Loads in Commercial Buildings in a Hot and Dry Climate

January 2012 (has links)
abstract: A major problem faced by electric utilities is the need to meet electric loads during certain times of peak demand. One of the widely adopted and promising programs is demand response (DR) where building owners are encouraged, by way of financial incentives, to reduce their electric loads during a few hours of the day when the electric utility is likely to encounter peak loads. In this thesis, we investigate the effect of various DR measures and their resulting indoor occupant comfort implications, on two prototype commercial buildings in the hot and dry climate of Phoenix, AZ. The focus of this study is commercial buildings during peak hours and peak days. Two types of office buildings are modeled using a detailed building energy simulation program (EnergyPlus V6.0.0): medium size office building (53,600 sq. ft.) and large size office building (498,600 sq. ft.). The two prototype buildings selected are those advocated by the Department of Energy and adopted by ASHRAE in the framework of ongoing work on ASHRAE standard 90.1 which reflect 80% of the commercial buildings in the US. After due diligence, the peak time window is selected to be 12:00-18:00 PM (6 hour window). The days when utility companies require demand reduction mostly fall during hot summer days. Therefore, two days, the summer high-peak (15th July) and the mid-peak (29th June) days are selected to perform our investigations. The impact of building thermal mass as well as several other measures such as reducing lighting levels, increasing thermostat set points, adjusting supply air temperature, resetting chilled water temperature are studied using the EnergyPlus building energy simulation program. Subsequently the simulation results are summarized in tabular form so as to provide practical guidance and recommendations of which DR measures are appropriate for different levels of DR reductions and the associated percentage values of people dissatisfied (PPD). This type of tabular recommendations is of direct usefulness to the building owners and operators contemplating DR response. The methodology can be extended to other building types and climates as needed. / Dissertation/Thesis / M.S. Architecture 2012
316

Analysis of Life Cycle Costs and Energy Savings of Electrochromic Glazing for an Office Building

January 2012 (has links)
abstract: Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize the energy use, by tradeoff between optical and thermal properties. The part of the research looks at the different control triggers and its range that governs the use of electrochromic glass to regulate the energy usage in building. All different control trigger that can be possibly used for regulating the clear and tint state of glass were analyzed with most appropriate range. Its range was triggered such that 80% time of the glass is trigger between the ranges. The other building parameters like window wall ratio and orientations were also investigated. The other half of the research study looks into the feasibility of using the Electrochromic windows, as it is ought to be the main factor governing the market usage of Electrochromic windows and to investigate the possible ways to make it feasible. Different LCC parameters were studied to make it market feasible product. This study shows that installing this technology with most appropriate trigger range can reduce annual building energy consumption from 6-8% but still cost of the technology is 3 times the ASHRAE glass, which results in 70-90 years of payback. This study concludes that south orientation saves up to 3-5% of energy and 4-6% of cooling tons while north orientation gives negligible saving using EC glass. LCC parameters show that there is relative change in increasing the net saving for different parameters but none except 50% of the present glass cost is the possible option where significant change is observed. / Dissertation/Thesis / M.S.D. Architecture 2012
317

A Design Approach to Achieving the Passive House Standard in a Home Energy Retrofit

Hogan, Matthew Bryan, 1982- 06 1900 (has links)
xiv, 92 p. : ill. (some col.) / Passive House is a voluntary, performance-based energy standard for buildings. Passive Houses use on average 90% less energy for space conditioning than code-designed houses; Passive House therefore offers an ambitious performance target for home energy retrofits. Retrofits built to the Passive House standard in Europe have demonstrated a high level of energy performance. In the U.S., few Passive House retrofits exist to date; for this reason, design and cost information for such retrofits is lacking. This study establishes an exemplar through designing the Passive House retrofit of an older home in Eugene, Oregon. The retrofit's cost-effectiveness was examined by comparing projected "business as usual" (BAU) life cycle costs to those associated with retrofit. While the BAU scenario resulted in the lowest cost over a 30-year life cycle, the difference is relatively small; minor adjustments to key variables make the retrofit financially viable. / Committee in charge: Dr. Alison G. Kwok, Chairperson; Peter Keyes, Member; Jan Fillinger, Member
318

Statistical and Graphical Methods to Determine Importance and Interaction of Building Design Parameters to Inform and Support Design Decisions

January 2015 (has links)
abstract: This research is aimed at studying the impact of building design parameters in terms of their importance and mutual interaction, and how these aspects vary across climates and HVAC system types. A methodology is proposed for such a study, by examining the feasibility and use of two different statistical methods to derive all realistic ‘near-optimum’ solutions which might be lost using a simple optimization technique. DOE prototype medium office building compliant with ASHRAE 90.1-2010 was selected for the analysis and four different HVAC systems in three US climates were simulated. The interaction between building design parameters related to envelope characteristics and geometry (total of seven variables) has been studied using two different statistical methods, namely the ‘Morris method’ and ‘Predictive Learning via Rule Ensembles’. Subsequently, a simple graphical tool based on sensitivity analysis has been developed and demonstrated to present the results from parametric simulations. This tool would be useful to better inform design decisions since it allows imposition of constraints on various parameters and visualize their interaction with other parameters. It was observed that the Radiant system performed best in all three climates, followed by displacement ventilation system. However, it should be noted that this study did not deal with performance optimization of HVAC systems while there have been several studies which concluded that a VAV system with better controls can perform better than some of the newer HVAC technologies. In terms of building design parameters, it was observed that ‘Ceiling Height’, ‘Window-Wall Ratio’ and ‘Window Properties’ showed highest importance as well as interaction as compared to other parameters considered in this study, for all HVAC systems and climates. Based on the results of this study, it is suggested to extend such analysis using statistical methods such as the ‘Morris method’, which require much fewer simulations to categorize parameters based on their importance and interaction strength. Usage of statistical methods like ‘Rule Ensembles’ or other simple visual tools to analyze simulation results for all combinations of parameters that show interaction would allow designers to make informed and superior design decisions while benefiting from large reduction in computational time. / Dissertation/Thesis / Masters Thesis Built Environment 2015
319

Restaurangbyggnad i Eskilstuna stadspark : Förslag på placering och utformning

Andersson, Jonna, Jarl, Rebecka January 2018 (has links)
The city park of Eskilstuna is under development. In 2013 the municipal of Eskilstuna kept a dialog with its citizens about the city park. They were given the opportunity to leave wishes and proposals about the development of the park and the larger part of the proposals recieved were wishes of a serving building. The question was where to place it and what the configuration of this building is going to look like? The purpose of this undertaking is to work out a place of gathering with high comfort and service for the park visitors along with making it fit for the parks character. The natural light and beautiful views are to take into consideration and usage when designing a building. Large glass sections facing open views are growing more common. When choosing the type of glass to be used for this one should take into consideration the noise of surrounding traffic. The question here is what type of glass to use specifically for the serving building in Eskilstuna city park, based on the technical aspects of sound and light? When searching the Swedish literature for scientific papers on architecture considering the designing of a restaurant building, we discovered an existing gap. This paper only covers the requirements on noise, material, fire and availability, function and the placement of the building, together with the architechtural properties. In this paper three areas regarding placement taken from the city parks developmental plan have been audited. The aspects audited is the choice for placement of light, surrounding vegetation, view, quarter, noise, traffic, availability and the logistics regarding pedestrians and vehicles. Areas are named A, B and C. Area C was chosen as the most suitable as the traffic surrounding is most distant there. Area C also possesses a beautiful view, it’s located at the centre of the park and surrounding vegetation provides a light shade. The configuration of the building is made with support from Swedish literature regarding the architechtural aspects of alignment, movement, envelopment, light and areal organization. This is presented in the form of drawings and explanations. The glass chosen for the restaurant building is based on a comparison of several audited types of glass. The chosen glass, named Modell 1, have good and suiting properties regarding noise reduction, transmission, reflection and U-value and is therefore considered to hold a higher performance in comparison to the other types of audited glass.
320

Visionen om Köpenhamn som koldioxidneutral : En diskursanalys av den hållbara stadsvisionen

Predoianu, Denisse January 2018 (has links)
No description available.

Page generated in 0.1187 seconds