• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • Tagged with
  • 17
  • 17
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Relative roles of UBF and RRN3 in the transcription of the ribosomal RNA genes and ribosome biogenesis determined using in vivo mouse models

Herdman, Chelsea 24 April 2018 (has links)
La biogenèse des ribosomes, aussi appelée la synthèse ribosomale, est un processus cellulaire important se déroulant dans le nucléole et implique la transcription par les trois ARN polymérases nucléaires. L’étape initiale et limitante de ce processus est la transcription des ARNs ribosomaux catalytiques, 28S, 18S and 5.8S, sous la forme d’un long précurseur d’ARN ribosomal (pre-ARNr/47S) par l’ARN polymérase I (RPI). RPI possède un ensemble de facteurs de transcription généraux responsables de son activation. Ces facteurs sont la protéine architecturale UBF, le facteur SL1 qui contient TBP, le facteur d’initiation RRN3 et le facteur de terminaison TTF1. La synthèse de l’ARN ribosomale est finement régulée et correspond à 30-50% de l’ensemble de la transcription de la cellule. De plus, ce processus est lié à la croissance cellulaire, la transformation, la prolifération et à l’activité des facteurs suppresseurs de tumeurs et des oncogènes. UBF et RRN3 sont notamment activés par plusieurs voies de signalisation de croissance cellulaire. Dans les cellules de mammifère, il existe ~200 copies d’ADNr par génome haploïde. Les fragments répétés d’ADN ribosomal sont arrangés en répétition en tandem sur les bras courts des chromosomes acrocentriques. De façon intéressante, dans les cellules somatiques, seulement la moitié des copies d’ADNr sont actives, alors que les autres sont maintenues dans une forme inactive par les modifications épigénétiques et la formation d’hétérochromatine. La raison pour laquelle le génome contient autant de copies et la régulation de leur activité ne sont pas bien comprises. Cette thèse présente l’analyse de l’importance in vivo d’UBF et de RRN3 pour la régulation de la transcription de l’ARNr et pour le maintien de la structure chromatinienne de l’ADNr. Nous avons précédemment analysé la perte de fonction de UBF dans les fibroblastes embryonnaires de souris en utilisant le système de perte de fonction conditionnelle dépendante du tamoxifène. Puisque l’un de nos objectifs était de comparer la fonction de RRN3 dans un modèle similaire, nous avons réanalysé la perte de fonction de RRN3 chez la souris et généré des lignées cellulaires comme préalablement réalisées avec la perte de fonction d’UBF. Nous avons déterminé que RRN3 est essentiel à la préimplantation et le développement est arrêté à E3.5, ce qui contredit les résultats obtenus par un autre groupe qui avait obtenu un arrêt du développement beaucoup plus tardif, à E9.5. Une lignée de fibroblastes embryonnaires de souris inductible au tamoxifène a été créée pour RRN3 de façon similaire à ce qui avait été fait pour UBF. La perte de fonction d’UBF ou de RRN3 inhibe la transcription par RPI. Par contre, nous démontrons que UBF est responsable du recrutement à l’ADNr des autres facteurs associés à RPI et du maintient de l’état ouvert de la chromatine. En comparaison, RRN3 est requis simplement pour le recrutement de RPI. Dans cette étude, nous avons également identifié une région frontalière en amont de l’ADNr formée de H2A.Z, TTF1, CTCF et des modifications d’histones activatrices. Nous avons également découvert que la perte d’UBF entraine une mort cellulaire synchronisée par apoptose, indépendamment de p53 et ce spécifiquement dans les lignées cellulaires transformées. Ce résultat suggère qu’il pourrait être possible de cibler UBF dans le traitement contre le cancer puisque la perte de UBF dans les lignées cellulaires primaires cause un arrêt de prolifération sans entrainer l’apoptose. Finalement, nous avons observé que le niveau d’activité de l’ADNr dans les cellules pluripotentes est différent que dans les cellules différenciées. Des lignées de cellules souches embryonnaires (ESCs) ont été générées à partir des souris conditionnelles pour UBF et RRN3 et nos résultats préliminaires suggèrent que la totalité des gènes de l’ADNr est active dans les cellules pluripotentes. Ce modèle est idéal pour étudier la régulation de l’ADNr ainsi que le rôle de UBF et RRN3 dans cette régulation après l’induction de la différentiation. En résumé, ces résultats permettront de clarifier le rôle in vivo de UBF et RRN3 dans la transcription de l’ARN ribosomal et dans le maintien de l’intégrité de l’ADNr. / Ribosome biogenesis, or the synthesis of ribosomes, is an important cell process occurring in the nucleolus that utilizes transcription by all three nuclear RNA polymerases. The initial and rate-limiting step is the transcription of the catalytic ribosomal RNAs 28S, 18S and 5.8S in the form of a precursor ribosomal RNA (pre-rRNA/47S) by RNA polymerase I (RPI, also known as Pol1 and POLR1). RPI has a dedicated set of basal factors responsible for its activation. These are the architectural factor UBF, the TBP containing factor SL1, the initiation factor RRN3, and the termination factor TTF1. Ribosomal RNA synthesis is tightly regulated and accounts for 30-50% of total gene transcription. As such, this process is linked to cell growth, transformation, proliferation and the actions of tumour suppressors and oncogenes. Notably, UBF and RRN3 are activated by many of the same growth signaling pathways. The human and mouse haploid genome contain ~200 copies of the ribosomal RNA genes, the ribosomal DNA (rDNA). These ribosomal DNA copies are arranged in tandem repeats on the short arms of acrocentric chromosomes. Interestingly, only a fraction of the rDNA copies are active, and a significant number are epigenetically silenced and heterochromatic. The reason for having so many copies and their regulation in vivo by silencing is not yet understood, though it has been connected with genome stability. This thesis presents the analysis of the in vivo requirements for UBF and RRN3 in rRNA transcription and rDNA chromatin structure. We had previously analyzed the loss of UBF in mouse embryonic fibroblasts using tamoxifen-dependent conditional knockout. As we wanted to compare the loss of RRN3 in a similar model, we re-analyzed the RRN3 knockout mice and created cell lines as was performed for the UBF knockout. Importantly, we find that RRN3 is essential for preimplantation and its loss arrests development at E3.5, contrary to previous work that showed a late E9.5 developmental arrest. Using mouse embryonic fibroblast (MEF) cell lines conditional for UBF or RRN3, we found that the loss of either factor prevented RPI transcription. However, we found that UBF was essential for the recruitment of the other RPI transcription factors and the formation of the preinitiation complex, as well as to maintain an open rDNA chromatin structure, while RRN3 was required only for RPI recruitment. These studies allowed us to identify an upstream boundary element on the rDNA formed of H2A.Z, TTF1, CTCF and activating histone marks, which is independent of RPI activity. We also found that UBF loss, but not RRN3 loss, led to a synchronous and massive p53-independent apoptosis, specifically in oncogenically transformed cells. This strongly suggests that drug targeting UBF could be a viable cancer treatment. Finally, we have observed that the rDNA activity status in pluripotent cells differs from that of differentiated cells. Embryonic stem cells (ESCs) were also generated from the mice conditional for UBF and RRN3. Preliminary results indicate that, unlike somatic cells, all the rRNA genes in these and other pluripotent cell lines are potentially active. This makes ESCs and their differentiation an ideal model in which to study the establishment of rDNA silencing and the role of UBF and/or RRN3 in this process. Together these data define the in vivo roles of UBF and RRN3 in ribosomal RNA transcription and suggest mechanisms by which they maintain rDNA integrity and may drive cell differentiation.
12

Transcription et "silencing" des gènes ribosomiques : étude du mode de transcription et de la régulation épigénétique des gènes codant les ARN ribosomiques

Langlois-Charette, Frédéric 18 April 2018 (has links)
La transcription des gènes de l'ARN ribosomique (ARNr) est essentielle à la synthèse des ribosomes qui sont eux-mêmes requis pour la production des protéines et donc de l'ensemble des fonctions cellulaires. Malgré ce rôle fondamental, les mécanismes de la synthèse des ARN ribosomiques sont peu élucidés. Mes travaux ont d'abord porté sur la caractérisation du facteur de liaison en amont UBF (Upstream Binding Factor) dans la régulation de l'activité de l'ARN polymerase I (RPI). UBF lie l'ADN des gènes ribosomiques (ADNr) et forme une structure appelée l'Enhancesome. La phosphorylation par ERK des boîtes HMG1 d'UBF provoque un changement de conformation de l'Enhancesome. La signalisation ERK augmente rapidement la transcription ribosomique, mais ne change pas le nombre de polymerases engagées sur les gènes. La phosphorylation d'UBF par ERK le rend plus permissif au passage de RPI, ce qui en fait un modulateur de l'élongation transcriptionnel dépendant de la signalisation par des facteurs de la croissance. Dans un autre ordre d'idées, la méthylation de l'ADN est associée au silencing épigénétique. Nous avons montré que la perte totale de méthylation CpG suscite une réactivation partielle des gènes ribosomiques silencieux et provoque des défauts prononcés de transcription et de maturation des ARNr. J'ai ensuite démontré que la chromatine est plus accessible qu'à la normale, ce qui permet à l'ARN polymerase II (RPIJ) de se lier et transcrire de façon aberrante sur le locus ribosomique. Je me suis de plus intéressé à TTF-I (Transcription Termination Factor-I), un facteur de transcription régulé par le suppresseur de tumeur ARF et que nous avons observé faire la navette entre le noyau et les gènes ribosomiques. En plus de son interaction avec les gènes ribosomiques, TTF-I est retrouvé aux promoteurs de gènes codants des protéines, bien que sa fonction sur ces gènes reste à déterminer. En outre, j'ai développé un essai d'immunoprecipitation séquentielle de la chromatine des gènes ribosomique afin de disposer d'un outil puissant pour comprendre les différences qui distinguent les gènes actifs et inactifs. Les résultats préliminaires indiquent une absence d'histone et une association d'UBF marquée sur les régions activement transcrites de l'ADNr.
13

La diversité des communautés microbiennes eucaryotes actives dans les océans canadiens : analyses moléculaires de la diversité du gène d'ARNr 18S et de la nitrate réductase assimilatrice

Scarcella, Karen 16 April 2018 (has links)
Dans les océans, les microbes sont à la base de la chaîne alimentaire et sont essentiels aux cycles biogéochimiques marins. Le domaine de l'écologie marine moléculaire a révélé que les microbes eucaryotes présentent une grande diversité à tous les rangs taxonomiques. Des recherches étudiant le gène ARNr 18S à partir de l'ADN ont fourni des informations phylogénétiques sur les communautés microbiennes eucaryotes dans l'océan Arctique. Ce projet constitue la première étude portant sur la diversité de ces communautés à partir des transcrits d'ARNr. Ces transcrits ont révélé l'identité taxonomique des communautés microbiennes eucaryotes actives dans cette région sensible aux changements climatiques. En plus, ceci est la première étude, en haute mer, de la nitrate réductase assimilatrice (NR), un gène eucaryote fonctionnel clé. La comparaison entre l'ADN et l' ARN fourni de l'information sur l'histoire des masses d'eau et permet de lier la taxonomie et l'activité dans un environnement naturel.
14

Le motif d’empaquetage le long du sillon: une nouvelle entité structurale récurrente dans les ARN ribosomiques

Gagnon, Matthieu 12 1900 (has links)
La plupart des molécules d’ARN doivent se replier en structure tertiaire complexe afin d’accomplir leurs fonctions biologiques. Cependant, les déterminants d’une chaîne de polynucléotides qui sont nécessaires à son repliement et à ses interactions avec d’autres éléments sont essentiellement inconnus. L’établissement des relations structure-fonction dans les grandes molécules d’ARN passe inévitablement par l’analyse de chaque élément de leur structure de façon individuelle et en contexte avec d’autres éléments. À l’image d’une construction d’immeuble, une structure d’ARN est composée d’unités répétitives assemblées de façon spécifique. Les motifs récurrents d’ARN sont des arrangements de nucléotides retrouvés à différents endroits d’une structure tertiaire et possèdent des conformations identiques ou très similaires. Ainsi, une des étapes nécessaires à la compréhension de la structure et de la fonction des molécules d’ARN consiste à identifier de façon systématique les motifs récurrents et d’en effectuer une analyse comparative afin d’établir la séquence consensus. L’analyse de tous les cas d’empaquetage de doubles hélices dans la structure du ribosome a permis l’identification d’un nouvel arrangement nommé motif d’empaquetage le long du sillon (AGPM) (along-groove packing motif). Ce motif est retrouvé à 14 endroits dans la structure du ribosome de même qu’entre l’ARN ribosomique 23S et les molécules d’ARN de transfert liées aux sites ribosomaux P et E. Le motif se forme par l’empaquetage de deux doubles hélices via leur sillon mineur. Le squelette sucre-phosphate d’une hélice voyage le long du sillon mineur de l’autre hélice et vice versa. Dans chacune des hélices, la région de contact comprend quatre paires de bases. L’empaquetage le plus serré est retrouvé au centre de l’arrangement où l’on retrouve souvent une paire de bases GU dans une hélice interagissant avec une paire de bases Watson-Crick (WC) dans l’autre hélice. Même si la présence des paires de bases centrales GU versus WC au centre du motif augmente sa stabilité, d’autres alternatives existent pour différents représentants du motif. L’analyse comparative de trois librairies combinatoires de gènes d’AGPM, où les paires de bases centrales ont été variées de manière complètement aléatoire, a montré que le contexte structural influence l’étendue de la variabilité des séquences de nucléotides formant les paires de bases centrales. Le fait que l’identité des paires de bases centrales puisse varier suggérait la présence d’autres déterminants responsables au maintien de l’intégrité du motif. L’analyse de tous les contacts entre les hélices a révélé qu’en dehors du centre du motif, les interactions entre les squelettes sucre-phosphate s’effectuent via trois contacts ribose-ribose. Pour chacun de ces contacts, les riboses des nucléotides qui interagissent ensemble doivent adopter des positions particulières afin d’éviter qu’ils entrent en collision. Nous montrons que la position de ces riboses est modulée par des conformations spécifiques des paires de bases auxquelles ils appartiennent. Finalement, un autre motif récurrent identifié à l’intérieur même de la structure de trois cas d’AGPM a été nommé « adenosine-wedge ». Son analyse a révélé que ce dernier est lui-même composé d’un autre arrangement, nommé motif triangle-NAG (NAG-triangle). Nous montrons que le motif « adenosine-wedge » représente un arrangement complexe d’ARN composé de quatre éléments répétitifs, c’est-à-dire des motifs AGPM, « hook-turn », « A-minor » et triangle-NAG. Ceci illustre clairement l’arrangement hiérarchique des structures d’ARN qui peut aussi être observé pour d’autres motifs d’ARN. D’un point de vue plus global, mes résultats enrichissent notre compréhension générale du rôle des différents types d’interactions tertiaires dans la formation des molécules d’ARN complexes. / Most RNA molecules have to adopt a complex tertiary structure to accomplish their biological functions. However, the important determinants of a polynucleotide chain that are required for its proper folding and its interactions with other elements are essentially unknown. The establishment of structure-function relationships in large RNA molecules goes inevitably through the analysis of each element of their structure separately and in context with other elements. Like a building, an RNA structure is built of repetitive pieces that are glued together in a specific way. These repetitive elements, instead of being bricks, are recurrent motifs. Recurrent RNA motifs are arrangements of nucleotides found in different parts of a tertiary structure and have identical or very similar conformations. Thus, a necessary step toward the understanding of RNA structure and function consists in the systematic identification of recurrent motifs, followed by their comparative analysis and establishment of their sequence consensus. The analysis of all instances of helical packing within the ribosome structure led to the identification of a new structural arrangement, named the along-groove packing motif (AGPM), which is found in 14 places of the ribosome structure as well as between the 23S ribosomal RNA and the transfer RNA molecules bound to the P and E sites. The motif is formed by the packing of two double helices via their minor grooves. The sugar-phosphate backbone of one helix goes along the minor groove of the other helix and vice versa. In each helix, the contact region includes four base pairs. The closest packing occurs in the center where one can often see a GU base pair packed against a WC base pair. While the presence of the central base pairs GU versus WC in the core of the motif enhances its stability, other alternatives are also present among available structures of the motif. A comparative analysis of three different combinatorial gene libraries of AGPM, in which the central base pairs were fully randomized, shows that the structural context influences the scope of nucleotide sequence variability of the central base pairs. The fact that the identity of the central base pairs can vary suggested that there are other determinants responsible of the motif’s integrity. Analysis of all other inter-helix contacts has shown that outside the center of the motif the interactions between backbones are made via three ribose-ribose contacts. Within each of these contacts, the riboses of the nucleotides that are in touch adopt particular positions in order to provide for collision-free interactions between them. We show that the position of these riboses is modulated by the specific base pair conformation in which it belongs. Finally, another recurrent arrangement that occurs within the structure of three cases of AGPM was identified and called the adenosine-wedge. Analysis has shown that the latter motif is itself composed of a smaller arrangement, called the NAG-triangle motif. We show that the adenosine-wedge motif represents a complex RNA arrangement composed of four repetitive elements, AGPM, the hook-turn, the A-minor and the NAG-triangle, which clearly illustrates the hierarchical organisation of the structure that could also occur in other RNA motifs as well. Altogether, my results enrich our general understanding of the role of different types of tertiary interactions in the formation of large RNA molecules.
15

Le motif d’empaquetage le long du sillon: une nouvelle entité structurale récurrente dans les ARN ribosomiques

Gagnon, Matthieu 12 1900 (has links)
La plupart des molécules d’ARN doivent se replier en structure tertiaire complexe afin d’accomplir leurs fonctions biologiques. Cependant, les déterminants d’une chaîne de polynucléotides qui sont nécessaires à son repliement et à ses interactions avec d’autres éléments sont essentiellement inconnus. L’établissement des relations structure-fonction dans les grandes molécules d’ARN passe inévitablement par l’analyse de chaque élément de leur structure de façon individuelle et en contexte avec d’autres éléments. À l’image d’une construction d’immeuble, une structure d’ARN est composée d’unités répétitives assemblées de façon spécifique. Les motifs récurrents d’ARN sont des arrangements de nucléotides retrouvés à différents endroits d’une structure tertiaire et possèdent des conformations identiques ou très similaires. Ainsi, une des étapes nécessaires à la compréhension de la structure et de la fonction des molécules d’ARN consiste à identifier de façon systématique les motifs récurrents et d’en effectuer une analyse comparative afin d’établir la séquence consensus. L’analyse de tous les cas d’empaquetage de doubles hélices dans la structure du ribosome a permis l’identification d’un nouvel arrangement nommé motif d’empaquetage le long du sillon (AGPM) (along-groove packing motif). Ce motif est retrouvé à 14 endroits dans la structure du ribosome de même qu’entre l’ARN ribosomique 23S et les molécules d’ARN de transfert liées aux sites ribosomaux P et E. Le motif se forme par l’empaquetage de deux doubles hélices via leur sillon mineur. Le squelette sucre-phosphate d’une hélice voyage le long du sillon mineur de l’autre hélice et vice versa. Dans chacune des hélices, la région de contact comprend quatre paires de bases. L’empaquetage le plus serré est retrouvé au centre de l’arrangement où l’on retrouve souvent une paire de bases GU dans une hélice interagissant avec une paire de bases Watson-Crick (WC) dans l’autre hélice. Même si la présence des paires de bases centrales GU versus WC au centre du motif augmente sa stabilité, d’autres alternatives existent pour différents représentants du motif. L’analyse comparative de trois librairies combinatoires de gènes d’AGPM, où les paires de bases centrales ont été variées de manière complètement aléatoire, a montré que le contexte structural influence l’étendue de la variabilité des séquences de nucléotides formant les paires de bases centrales. Le fait que l’identité des paires de bases centrales puisse varier suggérait la présence d’autres déterminants responsables au maintien de l’intégrité du motif. L’analyse de tous les contacts entre les hélices a révélé qu’en dehors du centre du motif, les interactions entre les squelettes sucre-phosphate s’effectuent via trois contacts ribose-ribose. Pour chacun de ces contacts, les riboses des nucléotides qui interagissent ensemble doivent adopter des positions particulières afin d’éviter qu’ils entrent en collision. Nous montrons que la position de ces riboses est modulée par des conformations spécifiques des paires de bases auxquelles ils appartiennent. Finalement, un autre motif récurrent identifié à l’intérieur même de la structure de trois cas d’AGPM a été nommé « adenosine-wedge ». Son analyse a révélé que ce dernier est lui-même composé d’un autre arrangement, nommé motif triangle-NAG (NAG-triangle). Nous montrons que le motif « adenosine-wedge » représente un arrangement complexe d’ARN composé de quatre éléments répétitifs, c’est-à-dire des motifs AGPM, « hook-turn », « A-minor » et triangle-NAG. Ceci illustre clairement l’arrangement hiérarchique des structures d’ARN qui peut aussi être observé pour d’autres motifs d’ARN. D’un point de vue plus global, mes résultats enrichissent notre compréhension générale du rôle des différents types d’interactions tertiaires dans la formation des molécules d’ARN complexes. / Most RNA molecules have to adopt a complex tertiary structure to accomplish their biological functions. However, the important determinants of a polynucleotide chain that are required for its proper folding and its interactions with other elements are essentially unknown. The establishment of structure-function relationships in large RNA molecules goes inevitably through the analysis of each element of their structure separately and in context with other elements. Like a building, an RNA structure is built of repetitive pieces that are glued together in a specific way. These repetitive elements, instead of being bricks, are recurrent motifs. Recurrent RNA motifs are arrangements of nucleotides found in different parts of a tertiary structure and have identical or very similar conformations. Thus, a necessary step toward the understanding of RNA structure and function consists in the systematic identification of recurrent motifs, followed by their comparative analysis and establishment of their sequence consensus. The analysis of all instances of helical packing within the ribosome structure led to the identification of a new structural arrangement, named the along-groove packing motif (AGPM), which is found in 14 places of the ribosome structure as well as between the 23S ribosomal RNA and the transfer RNA molecules bound to the P and E sites. The motif is formed by the packing of two double helices via their minor grooves. The sugar-phosphate backbone of one helix goes along the minor groove of the other helix and vice versa. In each helix, the contact region includes four base pairs. The closest packing occurs in the center where one can often see a GU base pair packed against a WC base pair. While the presence of the central base pairs GU versus WC in the core of the motif enhances its stability, other alternatives are also present among available structures of the motif. A comparative analysis of three different combinatorial gene libraries of AGPM, in which the central base pairs were fully randomized, shows that the structural context influences the scope of nucleotide sequence variability of the central base pairs. The fact that the identity of the central base pairs can vary suggested that there are other determinants responsible of the motif’s integrity. Analysis of all other inter-helix contacts has shown that outside the center of the motif the interactions between backbones are made via three ribose-ribose contacts. Within each of these contacts, the riboses of the nucleotides that are in touch adopt particular positions in order to provide for collision-free interactions between them. We show that the position of these riboses is modulated by the specific base pair conformation in which it belongs. Finally, another recurrent arrangement that occurs within the structure of three cases of AGPM was identified and called the adenosine-wedge. Analysis has shown that the latter motif is itself composed of a smaller arrangement, called the NAG-triangle motif. We show that the adenosine-wedge motif represents a complex RNA arrangement composed of four repetitive elements, AGPM, the hook-turn, the A-minor and the NAG-triangle, which clearly illustrates the hierarchical organisation of the structure that could also occur in other RNA motifs as well. Altogether, my results enrich our general understanding of the role of different types of tertiary interactions in the formation of large RNA molecules.
16

Structural rules for the formation of backbone-backbone interactions between closely packed RNA double helices

Tao, Fatou 04 1900 (has links)
Les interactions entre les squelettes sucre-phosphate de nucléotides jouent un rôle important dans la stabilisation des structures tertiaires de larges molécules d’ARN. Elles sont régies par des règles particulières qui gouverne leur formation mais qui jusque là demeure quasiment inconnues. Un élément structural d’ARN pour lequel les interactions sucre-phosphate sont importantes est le motif d’empaquetage de deux doubles hélices d’ARN le long du sillon mineur. Ce motif se trouve à divers endroits dans la structure du ribosome. Il consiste en deux doubles hélices interagissant de manière à ce que le squelette sucre-phosphate de l’une se niche dans le sillon mineur de l’autre et vice versa. La surface de contact entre les deux hélices est majoritairement formée par les riboses et implique au total douze nucléotides. La présente thèse a pour but d’analyser la structure interne de ce motif et sa dépendance de stabilité résultant de l’association optimale ou non des hélices, selon leurs séquences nucléotidiques. Il est démontré dans cette thèse qu’un positionnement approprié des riboses leur permet de former des contacts inter-hélices, par l’entremise d’un choix particulier de l’identité des pairs de bases impliquées. Pour différentes pairs de bases participant à ce contact inter-hélices, l’identité optimale peut être du type Watson-Crick, GC/CG, or certaines pairs de bases non Watson-Crick. Le choix adéquat de paires de bases fournit une interaction inter-hélice stable. Dans quelques cas du motif, l’identité de certaines paires de bases ne correspond pas à la structure la plus stable, ce qui pourrait refléter le fait que ces motifs devraient avoir une liberté de formation et de déformation lors du fonctionnement du ribosome. / Although backbone-backbone interactions play an important role in stabilization of the tertiary structure of large RNA molecules, the particular rules that govern the formation of these interactions remain basically unknown. One RNA structural element for which the backbone-backbone interactions are essential is the along-groove packing motif. This motif is found in numerous locations in the ribosome structure; it consists of two double helices arranged such that the backbone of one helix is packed in the minor groove of the other helix and vice versa. The contact area between the two helices is mostly formed by riboses and totally involves twelve nucleotides. Here we analyze the internal structure of the along-groove packing motif and the dependence of stability of the association of the helices on their nucleotide sequences. We show that the proper positioning of the riboses that allows them to form inter-helix contacts is achieved through the particular choice of the identities of the base pairs involved. For different base pairs participating in the inter-helix contacts the optimal identities can be Watson-Crick, GC/CG, or certain non-Watson-Crick base pairs. The proper choice of the base pairs provides for the stable inter-helix interaction. In some cases of the motif, the identities of certain base pairs do not correspond to the most stable structure, which may reflect the fact that these motifs should break and form during the ribosome function.
17

Dynamique des facteurs pré-ribosomiques au cours de la biogenèse de la grande sous-unité ribosomique chez S. cerevisiae

Lebreton, Alice 29 May 2006 (has links) (PDF)
Les travaux de ce mémoire portent sur la dynamique d'assemblage, de dissociation et de recyclage des protéines impliquées dans la biogenèse de la grande sous-unité ribosomique chez la levure Saccharomyces cerevisiae. Ils permettent une meilleure compréhension de deux points de contrôle de cette voie métabolique, l'un dans le noyau, l'autre dans le cytoplasme. <br />Nous avons montré que la protéine nucléaire Nsa2, extrêmement conservée chez les Eucaryotes, est requise pour la maturation correcte de l'intermédiaire d'ARN ribosomique 27SB. Nsa2 est un facteur instable et régulé en fonction de l'activité de la biogenèse des ribosomes ; à ce titre, il pourrait centraliser différents signaux de contrôle de la voie métabolique. Par ailleurs, la technique de SILAC nous a permis de définir des groupes de facteurs pré-ribosomiques précoces ou tardifs par rapport au point d'action de Nsa2.<br />Dans le cytoplasme, nous avons mis en évidence un réseau de protéines marquant la transition entre la fin de la biogenèse de la grande sous-unité et l'initiation de la traduction. La protéine cytoplasmique Rei1 et la karyophérine Kap121 sont requises pour le recyclage du dimère de facteurs navettes Arx1-Alb1, du cytoplasme vers le noyau. Ce recyclage conditionne la dissociation entre le facteur d'anti-association Tif6 et la grande sous-unité ribosomique, qui peut dès lors se lier à la petite sous-unité ribosomique et participer à la traduction.

Page generated in 0.0775 seconds