• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 41
  • 15
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 343
  • 308
  • 172
  • 67
  • 55
  • 52
  • 35
  • 30
  • 30
  • 29
  • 25
  • 24
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Device characterization and analog circuit design for heterojunction FETs

Wang, Binan 19 July 1993 (has links)
Present day data processing technology requires very high speed signal processing and data conversion rates. Traditionally, these circuits have been implemented in silicon MOS technology, whose high speed performance is limited, due to inherent material properties. Though relatively immature compared to silicon technology, GaAs integrated circuit technology appears to be a potential vehicle for realizing high-speed circuits because of its high electron mobility and low parasitic capacitance. One major drawback of GaAs technology has been the lack of complementary technology in contrast to silicon where CMOS technology has greatly facilitated the development of analog ICs. This thesis investigates the suitability of complementary GaAs Heterojunction FET integrated circuit technology for the realization of high sample-rate switched-capacitor circuits. In order to yield an accurate device model for the design work, model parameters of both n and p GaAs Heterojunction FET devices are extracted from measurement results. Based on the extraction results, a set of analog building blocks are presented. These circuits include a high bandwidth operational amplifier and a fast settling switch which are essential for high sample-rate circuits. A second order switched-capacitor low pass filter sampling at a clock rate of 100MHz is designed using the above building blocks. The designs studied predict better high frequency performance for C-HFETs compared to Si CMOS technology. / Graduation date: 1994
212

A study of deep levels of AlGaAs/GaAs heterojunction bipolar transistors

Huang, Chun-ta 10 July 1992 (has links)
A study of deep levels of the emitter region of a heterojunction bipolar transistor is investigated using deep level transient spectroscopy (DLTS), deep level admittance spectroscopy (DLAS), thermally stimulated capacitance (TSCAP), and capacitance-voltage (C-V) profiling. The DX center, with an activation energy of 0.45 eV, is the only deep level detected. By varying the DLTS rate window and filling pulse widths, DX is found to be comprise of two closely spaced DX centers, denoted DX1 and DX2. A positive peak observed in the DLTS spectra is attributed to electron capture, not minority carrier emission, and, thus, is an experimental artifact. Finally, the reduction of current gain (β) at low collector current and the effect of the DX center on the switching characteristics of HBTs are briefly discussed. / Graduation date: 1993
213

Wide bandwidth GaAs MESFET amplifier

Yan, Kai-tuan Kelvin 29 April 1992 (has links)
Graduation date: 1992
214

Modeling and testing of semi-insulating gallium arsenide interdigitated photodetectors

Kollipara, Ravindranath Tagore 12 April 1991 (has links)
High speed photodetectors are a necessary element in broad band digital and analog optical communication systems. In this thesis easily integrable planar high speed photodetectors made on undoped semi-insulating (SI) GaAs substrates are modeled and tested. The fabrication process of the detectors is fully compatible with GaAs metal-semiconductor field effect transistor (MESFET) processing technology. Interdigitated fingers are used as the contacts to achieve both high sensitivity and large bandwidth. Detectors made with both ohmic and Schottky contacts are fabricated and tested. The equivalent circuit elements of the interdigitated structure are modeled using accurate lumped element circuit models associated with the various discontinuities of the structure. The results of the model agree well with the experimental results as well as with other published results. Numerical simulation of the SI-GaAs metal-semiconductor- metal (MSM) photodetector is performed. The carriers are tracked after an ideal optical pulse is applied and the intrinsic current as a function of time is computed. Then the influence of all the external circuit elements is included and the output current across the load resistor is computed. The simulated response is compared with other published models. The electrical and optical characteristics of the detectors are measured. For ohmic contact detectors, the dark current increases linearly with bias until some critical field is reached beyond which the dark current increases nonlinearly with bias. The time response of the detectors is measured with a 10 ps pulsed laser operating at - 600 nm and also with a pulsed GaAs /AlGaAs semiconductor laser operating at 850 nm. The ohmic and Schottky contact detectors have approximately the same rise time. The fall time of the Schottky contact detector is much smaller than the fall time of ohmic contact detector. The long fall time of the ohmic detector does not depend on the spacing between contacts. This long fall time is due to the large barrier that exists near the ohmic metal/SI-GaAs cathode contact. No such barrier exists for SI-GaAs MSM photodetector. The simulated impulse response of the SI-GaAs MSM photodetector is compared with the measured impulse response. / Graduation date: 1991
215

Reduction of phonon resonant terahertz wave absorption in photoconductive switches using epitaxial layer transfer

Kasai, S, Katagiri, T, Takayanagi, J, Kawase, K, Ouchi, T 18 March 2009 (has links)
No description available.
216

Spin Polarization and Conductance in Quantum Wires under External Bias Potentials

Lind, Hans January 2010 (has links)
We study the spin polarization and conductance in infinitely long quasi one-dimensionalquantum wires under various conditions in an attempt to reproduce and to explain some of theanomalous conductance features as seen in various experiments. In order to accomplish thistask we create an idealized model of a quantum wire in a split-gate semiconductorheterostructure and we perform self-consistent Hartree-Fock calculations to determine theelectron occupation and spin polarization. Based on those results we calculate the currentthrough the wire as well as the direct and differential conductances. In the frame of theproposed model the results show a high degree of similarity to some of the experimentallyobserved conductance features, particularly the 0.25- and 0.85-plateaus. These results lead usto the conclusion that those conductance anomalies are in fact caused by the electronsspontaneously polarizing due to electron-electron interactions when an applied potentialdrives a current through the wire.
217

Analysis of Zincblende-Phase GaN, Cubic-Phase SiC, and GaAs MESFETs Including a Full-Band Monte Carlo Simulator

Weber, Michael Thomas 06 October 2005 (has links)
The objective of this research has been the study of device properties for emerging wide-bandgap cubic-phase semiconductors. Though the wide-bandgap semiconductors have great potential as high-power microwave devices, many gaps remain in the knowledge about their properties. The simulations in this work are designed to give insight into the performance of microwave high-power devices constructed from the materials in question. The simulation are performed using a Monte Carlo simulator which was designed from the ground up to include accurate, numerical band structures derived from an empirical pseudo-potential model. Improvements that have been made to the simulator include the generalized device structure simulation, the fully numerical final state selector, and the inclusion of the overlap integrals in the final-state selection. The first comparison that is made among the materials is direct-current breakdown. The DC voltage at which breakdown occurs is a good indication of how much power a transistor can provide. It is found that GaAs has the smallest DC breakdown, with 3C-SiC and ZB-GaN being over 3 times higher. This follows what is expected and is discussed in detail in the work. The second comparison made is the radio-frequency breakdown of the transistors. When devices are used in high-frequency applications it is possible to operate them beyond DC breakdown levels. This phenomenon is caused by the reaction time of the carriers in the device. It is important to understand this effect if these materials are used in a high-frequency application, since this effect can cause a change in the ability of a material to produce high-power devices. MESFETs made from these materials are compared and the results are discussed in detail.
218

Spin polarization control through resonant states in an Fe/GaAs Schottky barrier

Honda, S., Itoh, H., Inoue, J., Kurebayashi, H., Trypiniotis, T., Barnes, C. H. W., Hirohata, A., Bland, J. A. C. 12 1900 (has links)
No description available.
219

III-V channel MOS devices with atomic-layer-deposited high-k gate dielectrics : interface and carrier transport studies

Shahrjerdi, Davood, 1980- 10 October 2012 (has links)
The performance scaling of metal-oxide-semiconductor field-effect-transistors (MOSFETs) has been historically achieved through shrinking the gate length of transistors for over four decades. Addressing the current challenges with CMOS scaling, the 2005 edition of International Technology Roadmap for Semiconductors has predicted the need for so-called technology boosters involving new materials for the gate dielectric and the channel as well as innovative structures. Theoretical studies suggest that the incorporation of high-mobility channel materials such as germanium and III-Vs could outperform bulk Si technology in terms of switching characteristics. Hence, this has recently led to tremendous research activity to explore the prospects of III-V materials for CMOS applications. Nevertheless, technological challenges such as formation of highquality interface between gate dielectric and III-V channel have hindered the demonstration of enhancement-mode III-V MOSFETs. Hence, tremendous effort has been devoted to study the exact origin of Fermi level pinning at the oxide/III-V interface. On the other hand, the advent of high-k materials has opened up the possibility of exploring new channel materials, for which it is challenging to achieve high-quality interface analogous to that of SiO2 on Si. Lately, III-Vs have been extensively explored in order to find compatible gate dielectrics which can unpin the Fermi level at the interface. Amongst various schemes, atomic layer deposition of high-k dielectrics offers some unique advantages such as reduction of GaAs interfacial oxides upon high-k deposition through an appropriate choice of precursor chemistry. The chief focus of this dissertation is to develop a simple wet clean process prior to high-k deposition, suitable for III-V substrates. The impact of various chemical treatments of GaAs substrates on the properties of high-k/GaAs interface was studied through extensive material and electrical characterization methods. The suitability of the ALD-grown high-k gate dielectrics on GaAs for MOSFET fabrication was explored. Charge trapping was found to result in significant errors in mobility extraction in high-k GaAs interface, where the role of high-k is not well understood. Hence, pulsed I-V and QV measurements and galvanomagnetic effects were utilized in order to directly measure the inversion charge in the channel without being affected by the charge traps as much as possible. It was also found that the material studies on GaAs substrates can be readily extended to other III-V channels, such as InGaAs. / text
220

Main group semiconducting materials : boron arsenide and an ester-functionalized salophen aluminum polymer

Swingle, Sarah Faye 12 September 2013 (has links)
Boron arsenide is a compound main group semiconductor with a theoretical band gap in the range of 1.1 to 1.6 eV. Despite this ideal band gap, experimental studies of boron arsenide are very limited. In the present work, single source precursors with covalent bonds between boron and arsenic and labile ligands have been designed and synthesized. These precursors underwent thermal or chemical treatment to produce boron arsenide materials. Boron arsenide has also been prepared as a thin layer deposited on a boron substrate and a p-type photoelectrode was prepared from this material. The structure of the product was identified on the basis of X-ray diffraction and scanning electron microscopy, and the surface composition was determined by means of X-ray photoelectron spectroscopy. The electrode was found to be photoactive under both visible and UV-visible light irradiation and displayed a photocurrent of approximately 0.1 mA/cm² under UV-visible light irradiation at an applied potential of -0.25 V vs. Ag/AgCl. The valence band was estimated to be -5.1 eV. The indirect band gap, as determined from incident photo-to-electron conversion efficiency plots, is 1.46 eV. An ester-fuctionalized salophen aluminum complex that features a polymerizable bithiophene as the ester R group has been designed and synthesized. Metallopolymers of this type offer the additional advantages of processability and uniformity of the resulting films. The new salophen complex exhibited emission in the blue region at 491 nm with a quantum yield of 8.19%, which is significantly larger than that of the isolated ligand. Electropolymerization of this complex on a platinum button electrode resulted in the formation of an electrically conductive polymer that is also ionically conductive at low scan rates. In the polymeric form, the emission wavelength was found to be red-shifted to 505 nm. / text

Page generated in 0.0504 seconds