Spelling suggestions: "subject:"artificial light"" "subject:"artificial might""
21 |
A Case Study of the Spatial Relationship between Bat Pass Frequency and Artificial Light Pollution along a Bike Trail in Portage County, OhioHudzik, Stefanie A. January 2015 (has links)
No description available.
|
22 |
DNA origami structures for artificial light-harvesting and optical voltage sensingHemmig, Elisa Alina January 2018 (has links)
In the past decade, DNA origami self-assembly has been widely applied for creating customised nanostructures with base-pair precision. In this technique, the unique chemical addressability of DNA can be harnessed to create programmable architectures, using components ranging from dye or protein molecules to metallic nanoparticles. In this thesis, we apply DNA nanotechnology for developing novel light-harvesting and optical voltage sensing nano-devices. We use the programmable positioning of dye molecules on a DNA origami plate as a mimic of a light-harvesting antenna complex required for photosynthesis. Such a structure allows us to systematically analyse optimal design concepts using different dye arrangements. Complementary to this, we use the resistive-pulse sensing technique in a range of electrolytes to characterise the mechanical responses of DNA origami structures to the electric field applied. Based on this knowledge, we assemble voltage responsive DNA origami structures labelled with a FRET pair. These undergo controlled structural changes upon application of an electric field that can be detected through a change in FRET efficiency. Such a DNA-based device could ultimately be used as a sensitive voltage sensor for live-cell imaging of transmembrane potentials.
|
23 |
Macroecological patterns of plant species and anthropogenic activitiesCorrea Cano, María Eugenia January 2015 (has links)
The study of macroecology not only identifies patterns in the distribution and abundance of species at large spatial and temporal scales, it also gives insight into the processes underlying those patterns. The contribution of this work is not limited to helping develop the field of ecology per se, but also provides important insights into the understanding of large scale processes like climate change, the spread of introduced species, pest control and how increasing pressure from anthropogenic activities threatens biodiversity and ecosystem services. During the first decade following its formal inception, most of the progress in macroecology was made through studies of animal species, and research into plant species continues to lag far behind. This thesis contributes to the study of the macroecology of plant species by examining some selected macroecological patterns that have been studied only for animal species and by including an important issue that might have significant effects on diverse macroecological patterns, namely anthropogenic activities. The second and third chapters of the thesis address the generalised individuals-area relationship (GIAR) and the patch individuals-area relationship (PIAR), two macroecological relationships not previously explored for plant species. I show for the first time the existence of negative GIARs at the intraspecific and interspecific levels in plant species, similar to those documented for animal species. Unlike animal species, I did not find a broadly consistent intraspecific PIAR in plant species; more than half of the tested species showed negative PIARs. The resource concentration hypothesis may help explain those positive PIARs that were observed. The fourth chapter considers the effect of past human activities on current patterns of plant species richness at a landscape scale. Using a detailed database on the historical anthropogenic activities for Cornwall, U.K., I examine the relationship between species richness and the area covered by each historical land-use at two different spatial resolutions (10km x 10km and 2km x 2km). I find that at the 10km x10km scale human activities carried out since the 17th and 19th centuries explain an important proportion of the variation in current plant species richness. In contrast, a model at 2km x 2km scale with upland woods and the total land area of a grid cell explain only 5% of the variation. The fifth and sixth chapters focus on how artificial light at night (ALAN), which has increasingly come to attention as a significant anthropogenic pressure on species, is interacting with the distributions of plant species. In the fourth chapter, I consider the plant family Cactaceae to determine the proportion of the global distribution ranges of species that is being influenced by ALAN, and how this changes with the size of these distribution ranges and over a 21-year period (1992 to 2012). I found that >80% of cacti species are experiencing ALAN somewhere in their distribution range, and that there is a significant upward trend in ALAN in the ranges of the vast majority of species. For the sixth chapter, I consider similar issues for the threatened plant species of Britain, exploiting new remote sensing imagery of nighttime lighting at a very fine spatial resolution (c.340x340m2). Only 8% of Britain is free of artificial light at night and in consequence a high number of threatened plant species have a high proportion of their range under some influence of ALAN.
|
24 |
Impact of different light sources on the responses of mothZhou, Yanhe January 2021 (has links)
In recent decades, the negative effects of artificial light at night on natural ecosystems have attracted the attention of ecologists. Studies have shown that artificial light at night leads to a considerable reduction in insects and has a worrying impact on terrestrial ecosystems, including nocturnal insects (e.g. Lepidoptera) such as moths. Warm white light is generally expected to have a lower ecological impact compared with cold white light which has a higher proportion of blue light (< 500 nm). The aim of this study is to investigate the impact of three light emitting diode (LED) light sources with different spectral power distributions on the responses of the greater wax moth (Galleria mellonella) under controlled experimental settings. In this experiment, three light sources with different spectral power distribution and dark condition were used and the start response time, time active, time flap wings, time flap wings / time active, main activity area and stop area of the greater wax moth were investigated. The light treatment used were: (1) darkness (n = 13); (2) warm-white light (correlated color temperature of 2675 K, n = 12); (3) white light (4070 K, n = 4); (4) cold white light (6200 K, n = 8). The experiment was performed in a rectangular light-tight box under controlled conditions. Main activity area showed significant difference between warm-white light and cold white light. With cold white light, a larger proportion of the moths were active in the area with the highest light levels, while the main activity area in the warm white light was in the zone with the lowest light levels. Other variables, however, did not show significant differences. The conclusion is that warm white light had a lower ecological impact than cold white light due to a larger proportion of moth is attracted to areas with stronger light. The results support the notion that in outdoor environments, warm white LEDs (maximum 3000 K) should be preferred compared to cold white light LEDs (over 3000 K), to reduce the impact on insects such as moths. The low correlated color temperature light sources used outdoors deserves more in-depth development and research.
|
25 |
Research and development of stock management strategies to optimise growth potential in on-growing of Atlantic cod, Gadus morhua, and Atlantic halibut, Hippoglossus hippoglossusCowan, Mairi E. January 2011 (has links)
Aquaculture is an essential developing sector for world food production, however the attainment of sexual maturity during commercial on-growing is a major bottleneck to industry expansion. Sexual maturation brings a commercial loss due to reduced growth performance as well as reduced immune function. Furthermore, serious concerns exist over potential genetic interaction with native stocks through broadcast spawning or spawning interaction by escapees. In the north Atlantic region, the Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus) are key aquaculture species in which industry expansion is limited by pre-harvest sexual maturation. However, through a species specific combination of modern technologies and refinement in management practices it is possible that this sexual maturation can be controlled and on-growing potential enhanced. Thus the overall aim of this thesis was to conduct novel research that will improve our understanding of the underlying mechanisms that regulate sexual maturation, whilst also advancing the optimisation of technologies for the management of maturation in cod and halibut. In Atlantic cod, owing to the inconsistent inhibition of maturation in commercial conditions, ever increasing intensities of light and in some cases narrow spectrum technologies are being used to try to combat this problem. Firstly, this PhD project investigated the potential welfare impacts of high intensity artificial lighting which have not been studied to date (Chapter 2). The work specifically investigated the effect of traditional metal halide and novel green cathode lighting on the stress response, innate immunity, retina structure, feeding activity and light perception of Atlantic cod. Results indicated that although acute responses to light were observed, there were no clear significant long term effects of any of the lighting treatments on these parameters. Regarding light perception, interestingly even when subjected to high intensity constant lighting (metal halide mean tank intensity: 16.6 watts m-2), cod still demonstrated a day/night rhythm in melatonin release which suggests perception of the overlying ambient photoperiod. The second trial of this PhD project investigated the efficacy of shading of ambient photoperiod in addition to constant lighting to inhibit maturation of cod outdoors (Chapter 3). This aimed at improving the performance of artificial lighting regimes in the open cage system during commercial on-growing by reducing the relative difference between day/night light intensities. The trial was conducted over a one year period where a low and high shade treatment were tested in outdoor tanks. Shading increased the relative night time illumination to 6.6% and 31.3% of daytime levels respectively, compared to <2% in an unshaded set-up. Both shading treatments were effective at suppressing sexual development in cod as confirmed through measurements of gonadosomatic index, histological analysis of gonadal development, oocyte diameter measurements and sex steroid profiles as well as measurements of growth. In addition to research at the applied level in Atlantic cod, this thesis has also extended to the fundamental level and explored one of the potential mechanisms relaying photoperiod signal to the endogenous regulation of sexual maturation in cod, namely the kisspeptin system (Chapter 4). Partial sequences for the signal peptide Kiss2 and its receptor Kissr4 were isolated and described showing similarity to other teleost species such as the medaka, Oryzias latipes and stickleback, Danio rerio. Novel molecular qPCR assays were designed and developed to measure the expression of both genes in male and female cod over a maturation cycle and compared to cod under constant lighting which remained immature. Interestingly, expression patterns of kiss2 and kissr4 did not reveal any clear association with season or photoperiod treatment. However, pituitary expression of gonadotropins (FSH, follicle stimulating hormone; LH, luteinising hormone) did show a differential expression in relation to treatment from early winter approximately 4-6 months after the photoperiod change. These new results are in contradiction with the hypothesis that the kisspeptin system would be involved in the initiation of gametogenesis, as shown in mammals. However, the FSH/LH data defines a window during which time kisspeptin or another GnRH stimulating mechanism must be active, this compels the need further investigation. In Atlantic halibut farming, all-female production removes the concerns of production losses through sexual maturation. Accordingly, this thesis investigated the potential/feasibility of generating monosex populations by FACS (fluorescence activated cell sorting) semen sexing based on cellular DNA content, as proven in terrestrial agriculture. Results however did not show any clear differences between the DNA of sperm in a range of species tested (Atlantic halibut, cod, sea bass, perch) suggesting that this technique may not be applicable in such species. The project also focussed on the production of a population of sex reversed halibut broodstock (neomales) that will generate, in the long term, a basis for traditional monosex population generation in the UK. Two in feed MDHT (17α-methyldihydrotestosterone) treatments were tested with the aim to reduce the use of hormone. Results were very successful with a hormone treatment of 5ppm MDHT generating a 97% phenotypic male population thus suggesting the presence of sex-reversed halibut which can be used for future monosex production. Overall, this work aimed to develop and/or refine potential remediation techniques for sexual maturation in two key commercially important farmed marine fish species, cod and halibut, as well as further our understanding on the regulation of puberty. The knowledge gained from this work provides a means to optimise the techniques employed in the industry and has the potential to increase production and profitability without compromising farmed animal welfare, thus ultimately promoting the sustainable expansion of the Atlantic cod and halibut aquaculture.
|
26 |
Impacts of light pollution on bat spatiotemporal dynamics in France : implications for outdoor lighting planning / Impacts de la pollution lumineuse et de ses mesures de réductions sur les dynamiques spatiotemporelles des chiroptères en FranceAzam, Clémentine 12 December 2016 (has links)
La pollution lumineuse, induite par l’utilisation massive d’éclairage artificiel la nuit, est un changement global qui affecte une partie importante des écosystèmes terrestres et marins, et qui soulève de nombreuses inquiétudes quant à son influence sur la biodiversité et le fonctionnement des écosystèmes. En effet, la pollution lumineuse induit de nombreux impacts sur les rythmes circadiens et saisonniers des organismes, et affecte leurs mouvements et leurs distributions spatiales. L’accumulation de ces impacts dans le temps et dans l’espace sur les différentes espèces peut ainsi entrainer des perturbations en cascade sur les dynamiques spatiotemporelles des communautés et sur les écosystèmes.Dans ce contexte, l’objectif de cette thèse est de caractériser les impacts de l’éclairage artificiel sur les activités de chauves-souris (ordre: chiroptère) à de multiples échelles spatiales afin d’élaborer des mesures de gestion de l’éclairage public qui limitent ses impacts négatifs sur la biodiversité. Nous avons utilisé les chauves-souris comme modèle d’étude car elles sont nocturnes et directement exposées à la pollution lumineuse, et sont considérées comme des espèces bio indicatrices de la réponse des espèces aux pressions anthropiques.Dans un premier temps, nous avons caractérisé l’impact relatif de la pollution lumineuse à l’échelle du paysage par rapport aux autres pressions de changements d’usage des sols en utilisant une base de données nationale de sciences participatives. Nous avons trouvé que la pollution lumineuse avait un impact négatif sur l’activité et la probabilité de présence des espèces de chiroptères les plus communes en France, et que cet impact était significativement plus fort que celui de l’artificialisation des sols, mais moins important que celui de l’agriculture intensive. Ces résultats confirment l’importance de prendre en compte l’éclairage public dans les stratégies d’aménagement du territoire pour restaurer efficacement de l’obscurité dans les paysages anthropisés.Ainsi, nous avons élaboré une expérience in situ pour déterminer si i) restaurer de l’obscurité dans le temps en éteignant les lampadaires pour une partie de la nuit (extinction nocturne), ou ii) limiter l’étendue spatiale de l’éclairage à proximité d’éléments naturels pouvaient être des mesures efficaces pour créer des zones corridors et des zones de refuges obscurs dans les paysages anthropisés. Nos résultats ont montré que les mesures actuelles d’extinction ne limitaient pas efficacement l’impact de l’éclairage sur les espèces de chiroptères sensibles à la lumière. Par contre, nous avons déterminé que les lampadaires devraient être séparés d’au moins 50 m des corridors écologiques, et que l’intrusion de lumière dans la végétation autour des zones éclairées ne devrait pas dépasser 0.1 lux pour permettre l’utilisation de ces espaces par les espèces sensibles à la lumière.En conclusion, cette thèse a mis en lumière l’importance de traiter la question de la pollution lumineuse à de multiples échelles spatiales pour bien caractériser ses impacts sur la biodiversité. Elle a par ailleurs permis de souligner l’importance de la prise en compte de cette pollution dans l’aménagement du territoire, et de proposer des critères écologiques qui pourraient être intégrés dans les futur normes et standards européens pour l’éclairage public. / Light pollution induced by the widespread use of nighttime artificial lighting is a global change affecting substantial part of terrestrial and marine ecosystems. As a result, major concerns have been raised about its hidden impacts on biodiversity and ecosystem functioning. Light pollution has major impacts on the circadian and seasonal cycles of organisms, and on their movements and spatial distributions. As a whole, light pollution likely disrupts the spatiotemporal dynamics of biological communities and ecosystems. In this context, the aim of this PhD was to characterize the impacts of nighttime artificial lighting on bat activity (order: chiroptera) at multiple spatial scales in order to propose reduction measures that can effectively limit the adverse impacts of light pollution on biodiversity. We used bats as model species as they are nocturnal and directly exposed to light pollution and they are considered to be good indicators of the response of biodiversity to anthropogenic pressure.We first intended to characterize the extent of effect of light pollution at a landscape scale relative to major land-use pressures that are threatening biodiversity worldwide. Using a French national-scale citizen science database, we found that landscape-scale level of light pollution negatively affected common bat species, and that this effect was significantly stronger than the effect of impervious surfaces but weaker than the effect of intensive agriculture. This highlighted the crucial need to account for outdoor lighting in land-use planning in order to restore darkness in human-inhabited landscapes.Thus, through an in situ experiment, we investigated whether i) restoring darkness in a landscape for a part of the night through part-night lighting schemes, or ii) restraining the spatial extent of lighting at the vicinity of natural elements were effective options to enhance dark ecological corridors in human-inhabited landscapes. We found that part-night lighting schemes were unlikely to effectively mitigate the impacts of artificial lighting on light-sensitive species. However, we revealed that streetlights should be separated from ecological corridors by at least 50 m, and that the light trespass should be lower than 0.1 lux to allow their effective use by light-sensitive species.Overall, this PhD thesis revealed the major importance of addressing light pollution issues at multiple spatial scales to characterize its impacts on biodiversity. It also exposed the crucial importance of integrating outdoor lighting in land-use planning strategies and proposed to implement ecological criteria in future European standards for outdoor lighting.
|
27 |
Adaptation of smallholder maize farmers to temperature and rainfall variability in Capricorn District Municipality, Limpopo Province, South AfricaMazwi, Kabelo Makadikwe January 2019 (has links)
Thesis (M. Sc.) -- University of LImpopo, 2019 / Refer to document
|
28 |
Ecological Modelling of Lake Ecosystems: Integrating hydro-thermodynamics and biogeochemistry in a reduced complexity frameworkLópez Moreira Mazacotte, Gregorio Alejandro 10 January 2019 (has links)
Freshwater lakes are among the most important ecosystems for both human and other biological communities. They account for about 87% of surface freshwater in the planet, thus constituting a major source of drinking water. They also provide a wide range of ecosystem services that go from the sustenance of a rich biodiversity to the regulation of hydrological extremes; from the provision of a means for recreation to the support of local economies, e.g., through tourism and fisheries, just to cite a few. Lakes are now also widely recognised as natural early warning systems, their responses potentially being effective indicators of local, regional and global scale phenomena such as acidification and climate change, respectively. This is because of their high sensitivity to environmental factors of the most diverse nature that can rapidly alter the course of their evolution. Examples of this are the observed abrupt shifts between alternative stable states in shallow lakes, which led them to become the archetype, go-to example in alternative stable state theory. Therefore, attaining a good scientific understanding of the many processes that take place within these ecosystems is fundamental for their adequate management. Among the tools that serve this purpose, ecological models are particularly powerful ones.
Since their introduction in the 1960s, the development of mechanistic ecological models has been driven by their wide spectrum of potential applications. Nevertheless, these models often fall into one of the two following categories: overly simplistic representations of isolated processes, with limited potential to explain real-world observations as they fail to see the bigger picture; or overly complex and over-parameterised models that can hardly improve scientific understanding, their results being too difficult to analyse in terms of fundamental processes and controls. Moreover, it is now well known that an increased complexity in the mechanistic description of ecological processes, does not necessarily improve model accuracy, predictive capability or overall simulation results. To the contrary, a simpler representation allows for the inclusion of more links between model components, feedbacks which are usually overlooked in highly-complex models that partially couple a hydro-thermodynamic module to a biogeochemical one.
However, ecological processes are now known to have the potential to significantly alter the physical response of aquatic ecosystems to environmental forcing. For example, steadily increasing concentrations of coloured dissolved organic carbon, a process known as brownification (also browning), as well as the intense phytoplankton blooms that characterise lakes undergoing severe nutrient enrichment, a process known as eutrophication, have been shown to have the potential to alter the duration of the stratified period, thermal structure and mixing regime of some lakes.
In this thesis, with the aim of addressing the limitation of partially-coupled models to account for such feedbacks, we further develop a process-based model previously reported in scientific literature. Subsequent studies have already built upon this model in the last few years. In Chapter 2, we do so too by integrating hydro-thermodynamics and biogeochemistry in a reduced complexity framework, i.e., customising the model so that each version only includes the fundamental processes that, brought together, sufficiently describe the studied phenomena.
Two case studies served the purpose of testing the adaptability and applicability of the developed model under different configurations and requirements. Limnological data for these two studies were measured at high spatial and temporal resolutions by means of an automated profiling system and recorded as part of two large-scale mesocosm experiments conducted in 2015 and 2016 at the IGB LakeLab in Lake Stechlin, Brandenburg, Germany. Meteorological datasets were also made available to us for both periods by the German Federal Environment Agency.
The scope of the first experiment, which we describe in Chapter 3, was that of detecting any changes attributable to eutrophication and browning, in the competition for nutrients and light between four different groups of lake primary producers. These four groups are phytoplankton, periphyton, epiphyton and macrophytes. The model version for this study, therefore, includes equations for all four groups. By tailoring the model to these very specific needs with relative ease, we demonstrate its versatility and hint at its potential.
The second experiment, described in Chapter 4, sought to shed light on the largely unknown effects of an increase in the diffuse luminance of the night sky that is due to artificial light at night (artificial skyglow) on lake metabolic rates, i.e., gross primary productivity, ecosystem respiration and net ecosystem productivity (the difference between the first two). For this purpose, an empirical equation for dissolved oxygen concentration was included, the parameters of which were estimated by means of a Markov Chain Monte Carlo sampling method within a Bayesian statistical framework, showing the compatibility, with these statistical methods, of our otherwise fully deterministic model.
In Chapter 5, we present a theoretical study on the ecological controls of light and thermal patterns in lake ecosystems. A series of simulations were performed to determine in which cases ecological processes such as eutrophication and brownification may have an observable effect on the physical response of lakes to environmental forcing, which we assessed along a latitudinal gradient. Results show that, in general, across all examined latitudes, and consistent with previous studies, accounting for phytoplankton biomass results in higher surface temperatures during the warm-up phase, slightly lower water temperatures during the cool-down phase, and a shallower thermocline throughout the entire stratified period. This effect is relatively more important in eutrophic lakes where intense blooms are likely. This importance, however, decreases as lakes get browner.
Finally, in line with the overall scope of the SMART EMJD, in Chapter 6 we illustrate the case of Ypacaraí Lake, the most important lake in landlocked Paraguay, hoping to provide an example of how interdisciplinary research and international intersectoral collaboration can help bridge the gap between science and management of freshwater ecosystems. This lake presents very special hydro-ecological conditions, such as very high turbidity that can impair phytoplankton growth despite its nutrient-based trophic state indices having consistently fallen within the hyper-eutrophic range in recent years. A strong interest in its complex functioning, through modelling, was taken early on. This led to a collaborative research line being established among several public and private institutions in Italy, Germany and Paraguay. Results so far include:
• three concluded UniTN Master theses in Environmental Engineering, partly developed in Paraguay, the first two in collaboration with the “Nuestra Señora de la Asunción” Catholic University (UCNSA) and the third one with the National University of Asunción (UNA);
• a collaborative UCNSA-UniTN research proposal submitted for consideration to receive funding through the PROCIENCIA Programme of the National Council of Science and Technology of Paraguay (CONACYT); and
• the first multidisciplinary review that has ever been published about the case of Ypacaraí Lake, which highlights the importance of such a collaborative and integrative approach to further advance scientific knowledge and effectively manage this ecosystem.
|
29 |
Artificiellt ljus på natten : – en fenomenografisk studie om Sveriges kunskapsläge gällande ljusförorening som miljöproblem / Artificial light at night : – a phenomenographic study of Sweden’s state of knowledge regarding light pollution as an environmental problemLjungentorp, Robin January 2021 (has links)
Ljusförorening är ett miljöproblem vilket inbegripes som ett nytt och globalt framväxande fenomen i samband med himlaglim. Miljöproblemet i Sverige erkänns i viss mån med det nuvarande kunskapsläge. Dock saknas det en del kunskap för att komplettera ontologin för att bidra till ökad legitimitet för miljöproblemet bland allmänheten och Sveriges instanser. Studiens teoretiska analysramverket bestod av allmänningens tragedi, biogeoastronomiska natten och legitimitet, som användes till att analysera empirin härlett från studiens intervjumetod. Metoden hade en kvalitativ fenomenografisk ansats som innefattade ett strategiskt urval som var Sveriges instanser. Där uppdagades bristen på opinionsbildning i Riksdagen och Regeringen, trots att det finns motioner som har framlagts som vill att ljusförorening ska uppmärksammas, men att problemet hanteras snarare som en trafikfråga istället för miljöfråga. En del av förklaringen till varför det påverkar samverkan mellan Sveriges instanser för att motverka miljöproblemet. Ljusföroreningar påverkar ekologin och alla dess arter, varav krävs det tydligare riktlinjer för kommuner i deras belysningsplaner gällande att minska deras miljöpåverkan (särskilt för de nattaktiva arter som drabbas) för att nå målet till en mer hållbar belysning; varav ekologiska, ekonomiska och sociala aspekter vävs samman. Varav satsningar att bevara och etablera mörkerreservat är en pusselbit, vilket kan genomföras i samklang med Miljöbalkens författningar. / Light pollution is an environmental problem which is part of a new and globally emerging phenomenon in connection with skyglow. The environmental problem in Sweden is recognized to some extent with the current state of knowledge. However, there is also a lack of knowledge to complete the ontology in order to contribute to increased legitimacy for the environmental problem among the public and within its instances. The study's theoretical analytical framework consisted of the tragedy of the commons, biogeoastronomical night and legitimacy, which were used to analyze the empirical data derived from the study's interview method. The method had a qualitative phenomenographic approach that included a strategic selection of Sweden's instances. Where the lack of opinion formation was discovered in the Parliament and the Government, despite the fact that there is a proposition that has been presented that wants to light pollution to be noticed, but the problem is handled rather as a traffic issue instead of an environmental issue. Part of the explanation for why it affects the collaboration between Sweden's instances to counteract the environmental problem. Light pollution affects the ecology and all its species, which requires clearer guidelines for municipalities in their lighting plans regarding reducing their environmental impact (especially for the nocturnal species affected) in order to achieve the goal of more sustainable lighting; whereof which ecological, economic, and social aspects are woven together. In which investments to preserve and establish the dark sanctuary is a piece of the puzzle, which can be carried out in accordance with the Swedish Environmental Code constitutions.
|
30 |
The effects of artificial lighting on activity of Namib Desert bats (Mammalia: Chiroptera)Curtis, Angela Lesley 12 1900 (has links)
The large-scale use of artificial light throughout the night has occurred in the last 100 years and continues to increase globally. Artificial light impacts many animal and plant taxa. The effects of artificial light on bats is species specific. The Namib Desert in Namibia is still relatively dark but subject to the same drivers of increasing development and urbanization that have increased the spread of artificial light globally. This study investigated the effects of the introduction of ultraviolet, yellow and white artificial light on the activity of bats in a rural environment with minimal development in the Namib Desert. Four sites, 100 m apart, had one light and one bat detector each. The fourth light was a dark control. Each site was sampled four times by each light type. Bat activity was recorded by the bat detectors. Eight bat species were recorded during the experiment. Activity increased for open air and clutter-edge foraging species analysed. Broadband white light caused the highest increases in activity followed by yellow light when compared with the dark control site. Ultraviolet light caused the lowest increases in activity contrary to expectations. / Mengwaga ye 100 ya go feta go bile le koketšego ye kgolo ya tšhomišo ya seetša sa maitirelo bošego ka moka. Setlwaedi se se ata kudu lefaseng ka moka go feta pele, gomme se ama diphoofolo tše ntši le mehuta ya dimela. Leganata la Namib go la Namibia gabotse le sa ntše le swiswetše, eupša le ka fase ga dikgontšhi tša go oketša tlhabollo le toropofatšo tšeo di hlotšego koketšego tšhomišong ya seetša sa maitirelo lefaseng ka bophara. Dikhuetšo tša seetša sa maitirelo go memankgagane di fapana go ya ka mohuta. Nyakišišo ye e nyakišišitše dikhuetšo tša tsebagatšo ya seetša sa maitirelo sa go phadima, serolwane le se sešweu go modiro wa memankgagane ka tikologong ya nagaselegae ya go ba le tlhabollo ye nyane ka Leganateng la Namib. Seetša se setee le tithekethara e tee ya mankgagane di hlomilwe go le lengwe le le lengwe la mafelo a mane, a go arogantšhwa ka 100 m. Seetša sa bone se be se le taolo ya leswiswi. Lefelo le lengwe le le lengwe le dirilwe mohlala makga a mane ka mohuta wo mongwe le wo mongwe wa seetša. Modiro wa mankgagane e rekotilwe ka ditithekethara tša mankgagane. Mehuta ya mankgagane ye seswai e rekotilwe nakong ya eksperimente. Modiro wa mehuta ya sebakabakeng le ya go sela thobekgeng ye e sekasekilwego e oketšegile. Seetša se sešweu sa porotepente se hlotše dikoketšego tša modiro, sa latelwa ke seetša se se serolwane, ge se bapetšwa le lefelo la taolo ya leswiswi. Go fapana le ditetelo, seetša sa go phadima se hlotše dikoketšego tša fasefase modirong. / School of Environmental Sciences / M. Sc. (Nature Conservation)
|
Page generated in 0.0684 seconds