• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 39
  • 15
  • 6
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 158
  • 158
  • 158
  • 156
  • 58
  • 50
  • 49
  • 40
  • 40
  • 36
  • 36
  • 30
  • 29
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

The limits of partial life cycle assessment studies in road construction practices: A case study on the use of hydrated lime in Hot Mix Asphalt

Schlegel, T., Puiatti, D., Ritter, H.-J., Lesueur, D., Denayer, C., Shtiza, A. 23 September 2020 (has links)
Extensive published literature shows that hydrated lime improves Hot Mix Asphalt (HMA) durability. Its impact on the environmental impact of HMA has not been investigated. This paper presents a comparative Life Cycle Assessment (LCA) for the use of HMA without hydrated lime (classical HMA) and with hydrated lime (modified HMA) for the lifetime of a highway. System boundaries cover the life cycle from cradle-to-grave, meaning extraction of raw materials to end of life of the road. The main assumptions were: 1. Lifetime of the road 50 years; 2. Classical HMA with a life span of 10 years, maintenance operations every 10 years; 3. Modified HMA with an increase in the life span by 25%, maintenance operations every 12.5 years. For the lifetime of the road, modified HMA has the lowest environmental footprint compared to classical HMA with the following benefits: 43% less primary total energy consumption resulting in 23% lower emissions of greenhouse gases. Partial LCAs focusing only on the construction and/or maintenance phase should be used with caution since they could lead to wrong decisions if the durability and the maintenance scenarios differ. Sustainable construction technologies should not only consider environmental impact as quantified by LCA, but also economic and social impacts as well. Avoiding maintenance steps means less road works, fewer traffic jams and hence less CO2 emissions.
92

Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles

Moro, Alberto, Lonza, Laura 21 December 2020 (has links)
The Well-To-Wheels (WTW) methodology is widely used for policy making in the transportation sector. In this paper updated WTW calculations are provided, relying on 2013 statistic data, for the carbon intensity (CI) of the European electricity mix; detail is provided for electricity consumed in each EU Member State (MS). An interesting aspect presented is the calculation of the GHG content of electricity traded between Countries, affecting the carbon intensity of the electricity consumed at national level. The amount and CI of imported electricity is a key aspect: a Country importing electricity from another Country with a lower CI of electricity will lower, after the trade, its electricity CI, while importing electricity from a Country with a higher CI will raise the CI of the importing Country. In average, the CI of electricity used in EU at low voltage in 2013 was 447 gCO2eq/kWh, which is the 17% less compared to 2009. Then, some examples of calculation of GHG emissions from the use of electric vehicles (EVs) compared to internal combustion engine vehicles are provided. The use of EVs instead of gasoline vehicles can save (about 60% of) GHG in all or in most of the EU MSs, depending on the estimated consumption of EVs. Compared with diesel, EVs show average GHG savings of around 50% and not savings at all in some EU MS.
93

Further study of Life Cycle Assessment of a high density data center cooling system – Teliasonera’s “Green Room” concept : Identification of improvement possibilities using Life Cycle Assessment (LCA) and discussion about the effect of the choice of Life Cycle Impact Assessment (LCIA) methods on the results

Wang, Shan January 2013 (has links)
The growing industry of Information and Communication Technology requires higher computing capacity of data centers. The air conditioning in data centers is a key to assure a sustainable computing environment. However, the traditional cooling systems cost large environmental footprints especially on energy consumption and greenhouse gas emissions. As a result, a green innovation of data center cooling solutions is taking place. The telecommunication company Teliasonera is developing a high density data center cooling system - the “Green Room” and has been studying the environmental performance of this system using a Life Cycle approach. As an extension of the previous study, more aspects of the project i.e. the location of the data center, life span, alternative cooling solutions, energy recovery possibilities and uncertainty analysis is explored using Life Cycle Assessment (LCA) methodology. The comparison of locations of the Green Room indicates that the local temperature and electricity production sources are essential factors for the environmental performance of the Green Room. The analysis of the Green Room’s life span reveals that the utilization phase may not always cause the most significant impact during the whole life cycle of the Green Room. If the life span changes, the manufacture phase may predominate the life cycle of the Green Room. The comparative result of alternative cooling technologies addresses that utilizing “natural coolant” (e.g. geo cooling) is a key for sustainable cooling innovation as it could significantly reduce the environmental footprint of the cooling system. Besides, heating a single building (partly) by the waste heat generated from the Green Room could save 30% of cumulative energy input and could reduce more than half of the total environmental impact. Additionally, results uncertainties caused by the choice of different LCIA methods are discussed in the end of the study. / Teliasonera's Green Room concept
94

Further study of Life Cycle Assessment of a high density data center cooling system – Teliasonera’s “Green Room” concept : Identification of improvement possibilities using Life Cycle Assessment (LCA) and discussion about the effect of the choice of Life Cycle Impact Assessment (LCIA) methods on the results

Wang, Shan January 2013 (has links)
The growing industry of Information and Communication Technology requires higher computing capacity of data centers. The air conditioning in data centers is a key to assure a sustainable computing environment. However, the traditional cooling systems cost large environmental footprints especially on energy consumption and greenhouse gas emissions. As a result, a green innovation of data center cooling solutions is taking place. The telecommunication company Teliasonera is developing a high density data center cooling system - the “Green Room” and has been studying the environmental performance of this system using a Life Cycle approach. As an extension of the previous study, more aspects of the project i.e. the location of the data center, life span, alternative cooling solutions, energy recovery possibilities and uncertainty analysis is explored using Life Cycle Assessment (LCA) methodology. The comparison of locations of the Green Room indicates that the local temperature and electricity production sources are essential factors for the environmental performance of the Green Room. The analysis of the Green Room’s life span reveals that the utilization phase may not always cause the most significant impact during the whole life cycle of the Green Room. If the life span changes, the manufacture phase may predominate the life cycle of the Green Room. The comparative result of alternative cooling technologies addresses that utilizing “natural coolant” (e.g. geo cooling) is a key for sustainable cooling innovation as it could significantly reduce the environmental footprint of the cooling system. Besides, heating a single building (partly) by the waste heat generated from the Green Room could save 30% of cumulative energy input and could reduce more than half of the total environmental impact. Additionally, results uncertainties caused by the choice of different LCIA methods are discussed in the end of the study. / Teliasonera's Green Room concept
95

Exploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessment

Peñaloza, Diego January 2015 (has links)
There is an urgency within the building sector to reduce its greenhouse gas emissions and mitigate climate change. An increased proportion of biobased building materials in construction is a potential measure to reduce these emissions. Life cycle assessment (LCA) has often been applied to compare the climate impact from biobased materials with that from e.g. mineral based materials, mostly favouring biobased materials. Contradicting results have however been reported due to differences in methodology, as there is not yet consensus regarding certain aspects. The aim of this thesis is to study the implications from non-traditional practices in climate impact assessment of timber buildings, and to discuss the shortcomings of current practices when assessing such products and comparing them with non-renewable alternatives. The traditional practices for climate impact assessment of biobased materials have been identified, and then applied to a case study of a building with different timber frame designs and an alternative building with a concrete frame. Then, non-traditional practices were explored by calculating climate impact results using alternative methods to handle certain methodological aspects, which have been found relevant for forest products in previous research such as the timing of emissions, biogenic emissions, carbon storage in the products, end-of-life substitution credits, soil carbon disturbances and change in albedo. These alternative practices and their implications were also studied for low-carbon buildings. The use of non-traditional practices can affect the climate impact assessment results of timber buildings, and to some extent the comparison with buildings with lower content of biobased building materials. This effect is especially evident for energy-efficient buildings. Current normal practices tend to account separately for forest-related carbon flows and aspects such as biogenic carbon emissions and sequestration or effects from carbon storage in the products, missing to capture the forest carbon cycle as a whole. Climate neutrality of wood-based construction materials seems like a valid assumption for studies which require methodological simplification, while other aspects such as end-of-life substitution credits, soil carbon disturbances or changes in albedo should be studied carefully due to their potentially high implications and the uncertainties around the methods used to account for them. If forest phenomena are to be included in LCA studies, a robust and complete model of the forest carbon cycle should be used. Another shortcoming is the lack of clear communication of the way some important aspects were handled. / <p>QC 20150310</p>
96

Technical Development of Waste Sector in Sweden: Survey and LifeCycle Environmental Assessment of Emerging Technologies

Uz Zaman, Atiq January 2009 (has links)
Waste can be considered as an urban burden or as a valuable resource depending on how it ismanaged. Different waste treatment technologies are available at present to manage municipal solidwaste (MSW). Various actors are involved to develop waste treatment technology for certain area.The aim of this study is to analyze the driving forces in technical development in waste sector inSweden. The study is also done to identify emerging waste management technology in Sweden.Moreover, a comparative study of existing and emerging technologies is done by Life CycleAssessment (LCA) model. An extensive literature review and pilot questionnaire survey among thewaste management professionals’ is done for the study. LCA model is developed by SimaProsoftware CML2 baseline method is used for identifying environmental burden from the wastetechnologies.Dry composting, Pyrolysis-Gasification (P-G), Plasma-Arc are identified as potential emergingtechnologies for waste management system in Sweden. Technical developments of thesetechnologies are influenced by indigenous people’s behavior, waste characteristics, regulations, healthor environmental impact and global climate change. Comparative LCA model of P-G andIncineration shows that, P-G is a favorable waste treatment technology than Incineration for MSW,especially in acidification, global warming and aquatic eco-toxicity impact categories.
97

Life Cycle Assessment of Lettuce Production Systems : A Case Study Performed at Hollbium / Livscykelanalys av produktionssystem för sallad : En fallstudie utförd vid Hollbium

Mujkic, Selma, Andakudi Kesavan, Kaushik Narasimhan January 2020 (has links)
Agriculture is one of the most carbon-intensive sectors in today’s world. With demand for food soaring to feed an ever-increasing population, many methods are employed to produce food, ranging from open-field to greenhouse systems. However, due to their large environmental footprint, urban agriculture methods such as soilless culture systems are increasingly becoming a preferred method for food production. A case study has been performed at Hollbium in Stockholm, Sweden for the purpose of evaluating potential environmental impacts of Hollbium Loop, a vertical hydroponic system used for food production. This is achieved by carrying out a stand-alone assessment of Hollbium Loop, to identify potential environmental hotspots over the product’s lifetime of 10 years. Furthermore, Hollbium Loop’s system is compared to the production of lettuce in a horizontal open-field, a greenhouse farming system and nutrient film technique located in Spain, to identify potential trade-offs. Attributional life cycle assessment (ALCA) has been employed as a methodology with an explicit focus on eight impact categories at a midpoint level. The results of the study indicate that hotspots of environmental impacts in Hollbium Loop’s life cycle are due to the use of an internal combustion engine vehicle for maintenance, production of electronic components and the consumption of electricity in the use phase. In contrast, the results from the comparative scenarios indicated that Hollbium Loop from a life cycle perspective had the highest impacts under all impact categories in relation to the other three systems of food production. When the distance for transportation within the maintenance phase is reduced to a reasonable figure, Hollbium Loop no longer had the highest impacts within global warming and fossil resource scarcity, showing that the distance traversed plays a key role in mitigating the impacts. Other aspects and assumptions are also analyzed further using a sensitivity analysis, which shows that there is scope for decreasing Hollbium Loop’s environmental footprint. It is therefore recommended that Hollbium puts its efforts into optimizing the distance and modes of transport utilized and increasing the outer frame thickness of the Loop to make it sturdy and robust. Finally, it is also advised to increase the Loop’s vertical length to increase the yield per cycle, thereby reducing the overall impacts per kilogram of lettuce produced. / Jordbruket är en av de mest kolintensiva sektorerna i dagens värld. Med en efterfrågan på livsmedel som stiger för att föda en ständigt ökande befolkning, används många metoder för att producera livsmedel. Dessa metoder omfattar allt från öppna fält till växthussystem. På grund av deras stora miljöpåverkan blir emellertid stadsnära jordbruksmetoder, såsom system för hydroponiska odlingar (odlingar utanför jorden) en alltmer föredragen metod för livsmedelsproduktion. En fallstudie har genomförts hos Hollbium i Stockholm, Sverige med syfte att genomföra en utvärdering av den potentiella miljöpåverkan för Hollbium Loop, ett vertikalt hydroponiskt system som används för livsmedelsproduktion. Detta uppnås genom att först utföra en fristående bedömning av Hollbium Loop och på så sätt identifiera potentiella riskområden under produktens livslängd på tio år. Dessutom jämförs Hollbium Loops system med produktionen av sallad i ett horisontellt öppet fält, ett växthusodlingssystem och en näringsfilmsteknik i Spanien för att identifiera potentiella avvägningar. Attributiv livscykelanalys (ALCA) har använts som metod med ett tydligt fokus på åtta karakteriseringsfaktorer för mittpunkt. Resultaten i studien indikerar att riskområden för miljöpåverkan i Hollbium Loops livscykel beror på en användning av fordon med förbränningsmotor i underhållsfasen, produktion av elektroniska komponenter och elförbrukning i användningsfasen. Däremot visade resultaten från de jämförande scenarierna att Hollbium Loop ur ett livscykelperspektiv har den högsta miljöpåverkan i alla påverkanskategorier i jämförelse med de tre andra systemen för livsmedelsproduktion. När avståndet för transport inom underhållsfasen reduceras till en rimlig nivå så hade Hollbium Loop inte längre den högsta påverkan inom global uppvärmning och knappa fossila resurser, vilket visar att det avståndet spelar en nyckelroll för att mildra effekterna. Andra aspekter och antaganden analyseras också vidare med hjälp av en känslighetsanalys, som således visar att det finns utrymme för att minska Hollbium Loops miljöavtryck. Det rekommenderas därför att Hollbium satsar på att optimera avståndet och de transportsätt som används, men att även öka tjockleken av den yttre ramen för att göra den stabil och robust. Slutligen rekommenderas det även att öka systemets vertikala längd för att öka avkastning och därmed minska de totala effekterna per kilo producerad sallad.
98

A SYNERGETIC APPROACH TO PRODUCE DURABLE, HIGHLY RECYCLED PAVEMENT MIXTURES

Abdalla, Ahmed, 0000-0001-5558-2405 January 2022 (has links)
Recently, Sustainable engineering has become a necessity due to the limited availability of virgin materials, environmental concerns, and the lack of economic resources. According to the United Nations, "Sustainable engineering is the process of using resources in a way that does not compromise the environment or deplete the materials for future generations." However, developing cost-efficient and long-term road infrastructure has always been a challenge. Therefore, novel solutions are required to extend the pavement life cycle and minimize raw materials utilization to overcome this challenge. This research focuses on integrating the waste material to produce rheological engineered asphalt mixtures as pavement material. This study utilized three wastes, which are Off-spec fly ash (OFA), Reclaimed Asphalt Pavement (RAP), and finally, a bio-oil extracted from Spent Coffee Ground (SCG). OFA is a viable source for recycling due to the quantities produced yearly and deposited in landfills. For many years fly ash has been effectively used as a partial replacement for Portland cement in producing different types of concrete, embankments, and soil stabilization. Most of the underutilized fly ash is Off-Spec. That was the motive behind adopting the OFA in this study. This study aims to investigate the fly ash's interaction with the asphalt binder as an additive rather than a filler. Few studies evaluated this hypothesis regarding fly ash as an additive. Moreover, this research's novelty comes as there is a lack of research evaluating the fly ash-asphalt physio-chemical interaction. RAP utilization in roads infrastructure became a current state of practice. Most state Departments of Transportation (DOTs) have been using RAP at a composition average of about 20% of the mix by mass. This study focuses on maximizing the utilization of the RAP content through using a bio-oil extracted from the SCG as a new promising rejuvenator. Spent coffee ground is not well recycled, and almost six million tons are sent to landfills every year. This waste was found to release methane into the atmosphere; methane is the second-most abundant greenhouse gas and has a global warming potential up to 86 times greater than CO2, which is highly harmful to the environment. In this study, the overreaching goal is to develop a green, innovative, and sustainable approach by recycling three different types of wastes (OFA, RAP, and SCGO) to achieve high-performance asphalt pavements. In addition, this study documents the science-based approach to successfully integrating these wastes as substitutes to the asphalt binder. Results show that some OFAs are associated with improved rheological performance, damage healing, and cracking resistance as an asphalt binder additive. The improvement is attributed to the level of interaction between the binder and the physical and chemical characteristics of the OFA. The use of rejuvenators further improved the aging resistance of the ash blends, suggesting high potential synergy, especially the proposed SCGO rejuvenator, which promotes utilizing it as a promising eco-friendly rejuvenator in the asphalt pavement industry. After engineering a product built by OFA and rejuvenators, these results have been validated by mixtures’ scale testing. 62% optimum RAP content is suggested to be utilized with an 11% dosage of the proposed SCGO rejuvenator as binder replacement. For the new engineered OFA/rejuvenators products, a 30% optimum RAP content is suggested to be used. Finally, Life Cycle Assessment (LCA) is conducted to evaluate the environmental potential of utilizing multi recycled materials in the Hot Mix Asphalt (HMA) industry. The results show a reduction in environmental impacts with RAP utilization and the new eco-friendly products (OFA and SCGO rejuvenator). Shifting HMA plant fuel to natural gas instead of Heavy Fuel Oil (HFO) offers considerable potential environmental benefits. Adopting the Ultrasonic Assisted-oil Extraction (UAE) as SCGO rejuvenator extraction method showed less energy and solvent consumption than the Soxhlet extraction, resulting in less environmental impacts. / Civil Engineering
99

Lifecycle Assessment of a Lithium-ion Battery Storage System for Frequency Regulation in a Real-World Application

Sulemanu, Samuel January 2023 (has links)
Integrating more renewable energy sources into the grid has caused increased instability due to the intermittency of renewable energy sources. Hence, the need for grid balancing strategies such as frequency regulation has intensified. Areim, a Nordic real estate investment company, through this thesis, aims to have an assessment conducted to estimate the environmental benefits or consequences of using their specific battery system as a participant in the Swedish frequency regulation market, using the lifecycle assessment framework. The study only considered the cradle-to-gate lifecycle scope, excluding the product disposal stage, and the impact categories used align with the Environmental Footprint assessment methodology. The functional unit is in per kilo-watthour delivered, and the batteries are expected to deliver 933 kWh of electric energy over the estimated lifetime of 15 years. The normalized carbon emissions caused by delivering 1 kWh of energy for frequency regulation using the status quo prequalified technologies primarily comprised of hydropower, combined heat and power, and battery energy storage produce 4.75 kgCO2eq. Introducing Areim's specific battery system 200 kW bid into the prequalified technologies mix by substitution produces 0.075 kgCO2eq fewer carbon emissions per kWh delivered. The sensitivity analysis further supports that Areim will yield added carbon emission savings by increasing its available prequalified re-source capacity in the market. The findings of this thesis can be used to support Areim and other companies interested in grid support services such as frequency regulation to decide whether it is beneficial to use their specific battery systems for such services from an environmental effect perspective.
100

Environmental Impacts of Electronic Media : A Comparison of a Magazine’s Tablet and Print Editions

Ahmadi Achachlouei, Mohammad January 2013 (has links)
The aim of this thesis is to assess potential environmental impacts of electronic media distribution and consumption—from a life cycle perspective—as compared to those of print media. The thesis consists of a cover essay and two papers appended at the end of the thesis. The cover essay summarizes the papers and puts them in context. The main objectives of the thesis are twofold: to assess potential environmental impacts of production and consumption of tablet editions of magazines from a life cycle perspective (Paper I), and to compare potential environmental impacts of a magazine’s print edition with that of its tablet edition (Paper II). The thesis examines the following specific research questions: (1) What are the main environmental impacts of print and tablet editions? (2) Which activities are giving rise to the main environmental impacts of the print and tablet editions? (3) What are the key factors influencing these impacts? (4) What are major data gaps and uncertainties? Based on the present assessment, it is clear that for the print magazine, pulp and paper production is the principal cause of most of the potential environmental impacts. For this reason, the use of recycled paper, rather than virgin fiber, in newsprint production may considerably offset environmental impacts. For the tablet edition, the content production dominates the potential environmental impacts when readers are few. This appears to be the case in an emerging state of the magazine, but with distribution of more media products to smaller groups of people, this may persist for “mature” products as well. As the number of tablet readers grows, more of the environmental impact of the is due to manufacturing of the device and electronic distribution. However, content production may still be a major factor, depending on the specific environmental impacts studied. / <p>QC 20130306</p>

Page generated in 0.0705 seconds