Spelling suggestions: "subject:"asset pricing models"" "subject:"asset apricing models""
21 |
A New Value Premium : Value Creation in the Swedish stock marketJalili, Lemar, Höög, Samuel, Blank, Simon January 2022 (has links)
Value creation in any stock market is a highly discussed topic with an abundant amount of generalized models aiming to predict future returns. Although no such tool exists yet there are, however, acknowledged models from peer-reviewed journals that have received a lot of attention over the years in examining company performance. This thesis is therefore built on the well-known Fama-French three-factor model. The original Fama-French three-factor model is extended by adding a new size premium and a new value premium, both based upon the spread between the return on invested capital (ROIC) – the weighted average cost of capital (WACC). The purpose of this is to make the returns of a portfolio account for cash flow and debt on top of risk, size, and value premium for a company. This thesis finds that the ROIC-WACC spread adds explanatory power to the existing Fama and French three-factor model on the Swedish stock market. The research method of this study is quantitative and deductive. The considered period is six years between the years 2014 and 2020.
|
22 |
An Investigation of Dividend Signalling on the New Zealand Stock Exchange in the 1990s and of Several New Tools Employable in such an InvestigationAnderson, Warwick Wyndham January 2006 (has links)
This thesis investigates the nature of joint dividend-and-earnings signalling in announcements to the New Zealand Stock Exchange in the 1990s. Initially the Market Model is used to compute expected returns, and the abnormal returns derived from these are subjected to restricted least squares regressions to separate out a putative dividend signal from the concurrent earnings signal. But with the Market Model, the zero-value company returns associated with an absence of trading in thinly traded stocks are over-represented in returns distributions leading to problems of bias. New models are developed that explicitly exploit zero returns. The first alternative methodology entails friction modelling, which uses a maximum likelihood estimation procedure to find the relationship coefficients and the range of returns that should be considered as zero, and then proceeds to treat them as a separate category. The second alternative methodology is that of state asset models, which take a fresh new look at investor perceptions of the connection between movements in company returns and those of the concurrent underlying market. Zero-value company returns cease to be zero in value, where a state model is rotated, or alternatively they can be modelled as an extra state. All three methodologies furnish some evidence of dividend signalling; but this evidence is highly dependent on small changes within the given methodology.
|
23 |
[pt] ENSAIOS EM FINANÇAS EMPÍRICAS / [en] ESSAYS ON EMPIRICAL FINANCEPEDRO HENRIQUE ROSADO DE CASTRO 29 December 2020 (has links)
[pt] Esta tese é composta por dois ensaios sobre finanças empíricas. O primeiro se concentra nos mercados de câmbio e apresenta medidas de mudanças na inclinação da estrutura de curto prazo das taxas de juros
para os EUA e outros países de G10, usando contratos de futuros de 3 e 6 meses. Essas mudanças na inclinação têm impacto imediato nos retornos da moeda e também forte efeito retardado nas semanas seguintes, o que implica que as moedas são previsíveis tanto dentro quanto fora da amostra. Os
investidores que condicionam na inclinação para negociar taticamente uma carteira comprada em moedas G10 contra o Dólar americano melhoram os índices de Sharpe para 0,4-0,9, em relação a 0,15 de uma estratégia de buy and hold. Uma carteira de moeda neutra em dólares que classifica as moedas dos países do G10 de acordo com a inclinação no cross-section também oferece índices de Sharpe mais altos do que outras estratégias de moeda como o carry trade. Essas descobertas são compatíveis com uma
reação defasada do mercado de câmbio às informações sobre taxas de juros. O segundo ensaio propõe uma nova medida que usa apenas informações de dispersão cross-section de betas do modelo CAPM para prever retornos agregados de mercado para os EUA. Esta escolha de preditores é baseada em
argumentos teóricos simples de que as medidas associadas à dispersão dos betas do CAPM, em alguns cenários, devem ser relacionadas aos retornos futuros de mercado esperados. Essas medidas de dispersão de fato prevêem o prêmio de risco de mercado em vários horizontes e fornecem alto poder preditivo dentro e fora da amostra. O R2 fora da amostra atinge até 10 porcento na frequência anual (0,7 porcento mensal) e são robustos a diferentes janelas de estimação. Ao contrário da maioria das medidas encontradas na literatura, a nossa não é baseado em preço ou valuation ratios. Nossas medidas variam com o ciclo econômico e se correlacionam com outras variáveis de previsão comumente usadas, como razões de dividendo-preço e consumo-riqueza, mas fornecem poder explicativo acima e além dos preditores padrão. Nossos resultados fornecem evidências adicionais de que a dispersão dos betas ao longo do tempo é função da variação temporal do prêmio de risco de mercado. / [en] The thesis is composed of two essays on empirical finance. The first focuses on FX markets and presents measures of interest rates shortterm structure slope changes for the US and other G10 countries using 3-
and 6-month futures contracts. These changes in slopes have immediate impact on currency returns but also a strong delayed effect over the following weeks, implying that currencies are predictable both in and outof-sample. Investors that condition on slope to tactically trade a long G10 portfolio improve Sharpe ratios to 0.4-0.9, relative to 0.15 for a buy-andhold strategy. A dollar-neutral currency portfolio that sorts G10 country currencies on the cross-section slope also deliver higher Sharpe ratios than other currency strategies, such as the carry trade. These findings are compatible with delayed currency market reaction to information in interest rates. The second essay proposes a novel measure that solely use crosssectional
dispersion information on CAPM betas to forecast aggregate market returns for the US. This choice of predictors is based on simple theoretical arguments that measures associated with the dispersion of
CAPM betas, in some settings, should be related with expected future market returns. We find that these dispersion measures do indeed forecast market risk premium over multiple horizons and deliver high in-sample and out-of-sample predictive power: out-of-sample R2 reaches up to 10 percent at the annual frequency (0.7 percent monthly) and are robust to different estimation windows. Unlike most measures in the literature, ours is not a price- or valuation-based ratio. Our approach is also an alternative to models that use the cross-section of valuation ratios to infer the conditional market risk premium. Our measures vary with the business cycle and correlate with other commonly used forecasting variable such as dividend-price or consumption-wealth ratios, but they provide explanatory power above and beyond the standard predictors. Our findings provide additional evidence that the betas dispersion across time is a function of time varying risk premium.
|
24 |
Misspecified financial models in a data-rich environmentNokho, Cheikh I. 03 1900 (has links)
En finance, les modèles d’évaluation des actifs tentent de comprendre les différences de rendements observées entre divers actifs. Hansen and Richard (1987) ont montré que ces modèles sont des représentations fonctionnelles du facteur d’actualisation stochastique que les investisseurs utilisent pour déterminer le prix des actifs sur le marché financier. La littérature compte de nombreuses études économétriques qui s’intéressent à leurs estimations et à la comparaison de leurs performances, c’est-à-dire de leur capa- cité à expliquer les différences de rendement observées. Cette thèse, composée de trois articles, contribue à cette littérature.
Le premier article examine l’estimation et la comparaison des modèles d’évaluation des actifs dans un environnement riche en données. Nous mettons en œuvre deux méthodes de régularisation interprétables de la distance de Hansen and Jagannathan (1997, HJ ci-après) dans un contexte où les actifs sont nombreux. Plus précisément, nous introduisons la régularisation de Tikhonov et de Ridge pour stabiliser l’inverse de la matrice de covariance de la distance de HJ. La nouvelle mesure, qui en résulte, peut être interprétée comme la distance entre le facteur d’actualisation d’un modèle et le facteur d’actualisation stochastique valide le plus proche qui évalue les actifs avec des erreurs contrôlées. Ainsi, ces méthodes de régularisation relâchent l’équation fondamentale de l’évaluation des actifs financiers. Aussi, elles incorporent un paramètre de régularisation régissant l’ampleur des erreurs d’évaluation. Par la suite, nous présentons une procédure pour estimer et faire des tests sur les paramètres d’un modèle d’évaluation des actifs financiers avec un facteur d’actualisation linéaire en minimisant la distance de HJ régularisée. De plus, nous obtenons la distribution asymptotique des estimateurs lorsque le nombre d’actifs devient grand. Enfin, nous déterminons la distribution de la distance régularisée pour comparer différents modèles d’évaluation des actifs. Empiriquement, nous estimons et comparons quatre modèles à l’aide d’un ensemble de données comportant 252 portefeuilles.
Le deuxième article estime et compare dix modèles d’évaluation des actifs, à la fois inconditionnels et conditionnels, en utilisant la distance de HJ régularisée et 3 198 portefeuilles s’étendant de juillet 1973 à juin 2018. Ces portefeuilles combinent les portefeuilles bien connus triés par caractéristiques avec des micro-portefeuilles. Les micro-portefeuilles sont formés à l’aide de variables financières mais contiennent peu d’actions (5 à 10), comme indiqué dans Barras (2019). Par conséquent, ils sont analogues aux actions individuelles, offrent une grande variabilité de rendements et améliorent le pouvoir discriminant des portefeuilles classiques triés par caractéristiques. Parmi les modèles considérés, quatre sont des modèles macroéconomiques ou théoriques, dont le modèle de CAPM avec consommation (CCAPM), le modèle de CAPM avec consommation durable (DCAPM) de Yogo (2006), le modèle de CAPM avec capital humain (HCAPM) de Jagannathan and Wang (1996), et le modèle d’évaluation des actifs avec intermédiaires financiers (IAPM) de He, Kelly, and Manela (2017). Cinq modèles basés sur les anomalies sont considérés, tels que les modèles à trois (FF3) et à cinq facteurs (FF5) proposés par Fama and French, 1993 et 2015, le modèle de Carhart (1997) intégrant le facteur Momentum dans FF3, le modèle de liquidité de Pástor and Stambaugh (2003) et le modèle q5 de Hou et al. (2021). Le modèle de consommation de Lettau and Ludvigson (2001) utilisant des données trimestrielles est également estimé. Cependant, il n’est pas inclus dans les comparaisons en raison de la puissance de test réduite. Par rapport aux modèles inconditionnels, les modèles conditionnels tiennent compte des cycles économiques et des fluctuations des marchés financiers en utilisant les indices d’incertitude macroéconomique et financière de Ludvigson, Ma, and Ng (2021). Ces modèles conditionnels ont des erreurs de spécification considérablement réduites. Les analyses comparatives des modèles inconditionnels indiquent que les modèles macroéconomiques présentent globalement les mêmes pouvoirs explicatifs. De plus, ils ont un pouvoir explicatif global inférieur à celui des modèles basés sur les anomalies, à l’exception de FF3. L’augmentation de FF3 avec le facteur Momentum et de liquidité améliore sa capacité explicative. Cependant ce nouveau modèle est inférieur à FF5 et q5. Pour les modèles conditionnels, les modèles macroéconomiques DCAPM et HCAPM surpassent CCAPM et IAPM. En outre, ils ont des erreurs de spécification similaires à celles des modèles conditionnels de Carhart et de liquidité, mais restent en deçà des modèles FF5 et q5. Ce dernier domine tous les autres modèles.
Le troisième article présente une nouvelle approche pour estimer les paramètres du facteur d’actualisation linéaire des modèles d’évaluation d’actifs linéaires mal spécifiés avec de nombreux actifs. Contrairement au premier article de Carrasco and Nokho (2022), cette approche s’applique à la fois aux rendements bruts et excédentaires. La méthode proposée régularise toujours la distance HJ : l’inverse de la matrice de second moment est la matrice de pondération pour les rendements bruts, tandis que pour les rendements excédentaires, c’est l’inverse de la matrice de covariance. Plus précisément, nous dérivons la distribution asymptotique des estimateurs des paramètres du facteur d’actualisation stochastique lorsque le nombre d’actifs augmente. Nous discutons également des considérations pertinentes pour chaque type de rendements et documentons les propriétés d’échantillon fini des estimateurs. Nous constatons qu’à mesure que le nombre d’actifs augmente, l’estimation des paramètres par la régularisation de l’inverse de la matrice de covariance des rendements excédentaires présente un contrôle de taille supérieur par rapport à la régularisation de l’inverse de la matrice de second moment des rendements bruts. Cette supériorité découle de l’instabilité inhérente à la matrice de second moment des rendements bruts. De plus, le rendement brut de l’actif sans risque présente une variabilité minime, ce qui entraîne une colinéarité significative avec d’autres actifs que la régularisation ne parvient pas à atténuer. / In finance, asset pricing models try to understand the differences in expected returns observed among various assets. Hansen and Richard (1987) showed that these models are functional representations of the discount factor investors use to price assets in the financial market. The literature counts many econometric studies that deal with their estimation and the comparison of their performance, i.e., how well they explain the differences in expected returns. This thesis, divided into three chapters, contributes to this literature.
The first paper examines the estimation and comparison of asset pricing models in a data-rich environment. We implement two interpretable regularization schemes to extend the renowned Hansen and Jagannathan (1997, HJ hereafter) distance to a setting with many test assets. Specifically, we introduce Tikhonov and Ridge regularizations to stabilize the inverse of the covariance matrix in the HJ distance. The resulting misspecification measure can be interpreted as the distance between a proposed pricing kernel and the nearest valid stochastic discount factor (SDF) pricing the test assets with controlled errors, relaxing the Fundamental Equation of Asset Pricing. So, these methods incorporate a regularization parameter governing the extent of the pricing errors. Subsequently, we present a procedure to estimate the SDF parameters of a linear asset pricing model by minimizing the regularized distance. The SDF parameters completely define the asset pricing model and determine if a particular observed factor is a priced source of risk in the test assets. In addition, we derive the asymptotic distribution of the estimators when the number of assets and time periods increases. Finally, we derive the distribution of the regularized distance to compare comprehensively different asset pricing models. Empirically, we estimate and compare four empirical asset pricing models using a dataset of 252 portfolios.
The second paper estimates and compares ten asset pricing models, both unconditional and conditional, utilizing the regularized HJ distance and 3198 portfolios spanning July 1973 to June 2018. These portfolios combine the well-known characteristic-sorted portfolios with micro portfolios. The micro portfolios are formed using firms' observed financial characteristics (e.g. size and book-to-market) but contain few stocks (5 to 10), as discussed in Barras (2019). Consequently, they are analogous to individual stocks, offer significant return spread, and improve the discriminatory power of the characteristics-sorted portfolios. Among the models, four are macroeconomic or theoretical models, including the Consumption Capital Asset Pricing Model (CCAPM), Durable Consumption Capital Asset Pricing Model (DCAPM) by Yogo (2006), Human Capital Capital Asset Pricing Model (HCAPM) by Jagannathan and Wang (1996), and Intermediary Asset pricing model (IAPM) by He, Kelly, and Manela (2017). Five anomaly-driven models are considered, such as the three (FF3) and Five-factor (FF5) Models proposed by Fama and French, 1993 and 2015, the Carhart (1997) model incorporating momentum into FF3, the Liquidity Model by Pástor and Stambaugh (2003), and the Augmented q-Factor Model (q5) by Hou et al. (2021). The Consumption model of Lettau and Ludvigson (2001) using quarterly data is also estimated but not included in the comparisons due to the reduced power of the tests. Compared to the unconditional models, the conditional ones account for the economic business cycles and financial market fluctuations by utilizing the macroeconomic and financial uncertainty indices of Ludvigson, Ma, and Ng (2021). These conditional models show significantly reduced pricing errors. Comparative analyses of the unconditional models indicate that the macroeconomic models exhibit similar pricing performances of the returns. In addition, they display lower overall explanatory power than anomaly-driven models, except for FF3. Augmenting FF3 with momentum and liquidity factors enhances its explanatory capability. However, the new model is inferior to FF5 and q5. For the conditional models, the macroeconomic models DCAPM and HCAPM outperform CCAPM and IAPM. Furthermore, they have similar pricing errors as the conditional Carhart and liquidity models but still fall short of the FF5 and q5. The latter dominates all the other models.
This third paper introduces a novel approach for estimating the SDF parameters in misspecified linear asset pricing models with many assets. Unlike the first paper, Carrasco and Nokho (2022), this approach is applicable to both gross and excess returns as test assets. The proposed method still regularizes the HJ distance: the inverse of the second-moment matrix is the weighting matrix for the gross returns, while for excess returns, it is the inverse of the covariance matrix. Specifically, we derive the asymptotic distribution of the SDF estimators under a double asymptotic condition where the number of test assets and time periods go to infinity. We also discuss relevant considerations for each type of return and document the finite sample properties of the SDF estimators with gross and excess returns. We find that as the number of test assets increases, the estimation of the SDF parameters through the regularization of the inverse of the excess returns covariance matrix exhibits superior size control compared to the regularization of the inverse of the gross returns second-moment matrix. This superiority arises from the inherent instability of the second-moment matrix of gross returns. Additionally, the gross return of the risk-free asset shows minimal variability, resulting in significant collinearity with other test assets that the regularization fails to mitigate.
|
25 |
Cross-Section of Stock Returns: : Conditional vs. Unconditional and Single Factor vs. Multifactor ModelsVosilov, Rustam, Bergström, Nicklas January 2010 (has links)
<p>The cross-sectional variation of stock returns used to be described by the Capital Asset Pricing Model until the early 90‟s. Anomalies, such as, book-to-market effect and small firm effect undermined CAPM‟s ability to explain stock returns and Fama & French (1992) have shown that simple firm attributes, like, firm size and book-to-market value can explain the returns far better than Beta. Following Fama & French many other researchers examine the explanatory powers of CAPM and other asset pricing models. However, most of those studies use US data. There are some researches done in different countries than US, however more out-of-sample studies need to be conducted.</p><p>To our knowledge there are very few studies using the Swedish data and this thesis contributes to that small pool of studies. Moreover, the studies testing the CAPM use the unconditional version of the model. There are some papers suggesting the use of a conditional CAPM that would exhibit better explanatory powers than the unconditional CAPM. Different ways of conditioning the CAPM have been proposed, but one that we think is the least complex and possible to make use of in the business world is the dual-beta model. This conditional CAPM assumes a different relationship between beta and stock returns during the up markets and down markets. Furthermore, the model has not thoroughly been tested outside the US. Our study is the first to use the dual-beta model in Sweden. In addition, the momentum effect has lately been given some attention and Fama & French‟s (1993) three factor model has not been able to explain the abnormal returns related to that anomaly. We test the Fama & French three factor model, CAPM and Carhart‟s four factor model‟s explanatory abilities of the momentum effect using Swedish stock returns. Ultimately, our aim is to find the best model that describes stock return cross-section on the Stockholm Stock Exchange.</p><p>We use returns of all the non-financial firms listed on Stockholm Stock Exchange between September, 1997 and April, 2010. The number of companies included in our time sample is 366. The results of our tests indicate that the small firm effect, book-to-market effect and the momentum effect are not present on the Stockholm Stock Exchange. Consequently, the CAPM emerges as the one model that explains stock return cross-section better than the other models suggesting that Beta is still a proper measure of risk. Furthermore, the conditional version of CAPM describes the stock return variation far better than the unconditional CAPM. This implies using different Betas to estimate risk during up market conditions and down market conditions.</p>
|
26 |
Cross-Section of Stock Returns: : Conditional vs. Unconditional and Single Factor vs. Multifactor ModelsVosilov, Rustam, Bergström, Nicklas January 2010 (has links)
The cross-sectional variation of stock returns used to be described by the Capital Asset Pricing Model until the early 90‟s. Anomalies, such as, book-to-market effect and small firm effect undermined CAPM‟s ability to explain stock returns and Fama & French (1992) have shown that simple firm attributes, like, firm size and book-to-market value can explain the returns far better than Beta. Following Fama & French many other researchers examine the explanatory powers of CAPM and other asset pricing models. However, most of those studies use US data. There are some researches done in different countries than US, however more out-of-sample studies need to be conducted. To our knowledge there are very few studies using the Swedish data and this thesis contributes to that small pool of studies. Moreover, the studies testing the CAPM use the unconditional version of the model. There are some papers suggesting the use of a conditional CAPM that would exhibit better explanatory powers than the unconditional CAPM. Different ways of conditioning the CAPM have been proposed, but one that we think is the least complex and possible to make use of in the business world is the dual-beta model. This conditional CAPM assumes a different relationship between beta and stock returns during the up markets and down markets. Furthermore, the model has not thoroughly been tested outside the US. Our study is the first to use the dual-beta model in Sweden. In addition, the momentum effect has lately been given some attention and Fama & French‟s (1993) three factor model has not been able to explain the abnormal returns related to that anomaly. We test the Fama & French three factor model, CAPM and Carhart‟s four factor model‟s explanatory abilities of the momentum effect using Swedish stock returns. Ultimately, our aim is to find the best model that describes stock return cross-section on the Stockholm Stock Exchange. We use returns of all the non-financial firms listed on Stockholm Stock Exchange between September, 1997 and April, 2010. The number of companies included in our time sample is 366. The results of our tests indicate that the small firm effect, book-to-market effect and the momentum effect are not present on the Stockholm Stock Exchange. Consequently, the CAPM emerges as the one model that explains stock return cross-section better than the other models suggesting that Beta is still a proper measure of risk. Furthermore, the conditional version of CAPM describes the stock return variation far better than the unconditional CAPM. This implies using different Betas to estimate risk during up market conditions and down market conditions.
|
27 |
An Empirical Analysis of Herd Behavior in Sweden's First North Growth Market on NASDAQ NordicSingh, Bavneet, Maslarov, Boris January 2024 (has links)
In this paper, market participants’ tendency to form investor herds in the stocks listed on Nasdaq First North Growth Market of Sweden is examined for the period from 2018 to 2023. The models used in this study to detect herd behavior in stocks consist of two measures of dispersions, Cross-Sectional Standard Deviation of returns (CSSD) and Cross-Sectional Absolute Deviation of returns (CSAD), which were proposed by Christie and Huang (1995) and Chang, et al. (2000), respectively. An equally-weighted index consisting of all of the stocks that have traded on this market during the period is created and a quantitative analysis is conducted. Evidence showed absence of herd behavior when using both models, as well as when accounting for robustness tests consisting of small, mid-and large cap portfolios. Our results also support the prediction of rational asset pricing models, which suggest that stock return dispersions around the market returns increase during periods of market stress.
|
Page generated in 0.1012 seconds