• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 33
  • 16
  • 3
  • Tagged with
  • 161
  • 161
  • 71
  • 47
  • 39
  • 39
  • 29
  • 27
  • 26
  • 24
  • 23
  • 23
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Assimilation variationnelle de données altimétriques dans le modèle océanique NEMO : Exploration de l'effet des non-linéarités dans une configuration simplifiée à haute résolution

Bouttier, Pierre-Antoine 04 February 2014 (has links) (PDF)
Un enjeu majeur des modèles océaniques est de représenter fidèlement les circulations méso- et subméso-échelles afin de simuler leur importante contribution dans la circulation générale et dans le budget énergétique de l'océan. La poursuite de cet objectif se traduit par une augmentation de la résolution spatiale et temporelle à la fois des modèles et des réseaux d'observation de l'océan. Cependant, à ces petites échelles, la dynamique de l'écoulement revêt un caractère fortement turbulent ou non-linéaire. Dans ce contexte, les méthodes actuelles d'assimilation de données (AD), variationnelles en particulier, sont généralement moins performantes que dans un contexte (quasi-) linéaire. L'objectif de cette thèse est d'explorer sous divers aspects le comportement des méthodes variationnelles d'AD dans un modèle d'océan non-linéaire. Pour ce faire, nous avons réalisé une série d'expériences dites jumelles en assimilant des données altimétriques simulées suivant les caractéristiques des satellites altimétriques Jason-1 et SARAL/AltiKA . À l'aide de ces expériences, nous analysons sous différents angles les problématiques posées par les non-linéarités à l'AD. Enfin, nous ouvrons plusieurs pistes d'amélioration de l'efficacité du système d'AD dans ce contexte. Ce travail est basé sur le logiciel de modélisation océanique NEMO, incluant la configuration de bassin océanique turbulent idéalisé SEABASS, à différentes résolutions spatiales. Dans la continuité de la plateforme de recherche en AD avec NEMO, NEMO-ASSIM, nous avons utilisé et contribué au développement de cet ensemble d'outil, comprenant, entre autre, opérateur d'observation, modèles linéaire tangent et adjoint de NEMO, permettant de mener à bien notre étude. Le système d'AD variationnelle utilisé est le logiciel NEMOVAR. Les résultats présentés tentent de lier les échelles caractéristiques des structures d'erreurs d'analyse et l'activité aux petites échelles. Pour ce faire, nous avons utilisé une large gamme de diagnostics, e.g. erreur quadratique moyenne spatiale et temporelle, caractéristiques des fonctions coûts, caractérisation de l'hypothèse linéaire tangente, PSD des champs d'erreurs d'analyse. Nos expériences montrent que le 4DVAR incrémental contrôle efficacement la trajectoire analysée au 1/4° pour de longues fenêtres d'AD (2 mois). Lorsque la résolution augmente, la convergence de l'algorithme apparaît plus lente voire inexistante sous certaines conditions. Cependant, l'algorithme permet encore de réduire convenablement l'erreur d'analyse. Enfin, l'algorithme 3DFGAT se révèle beaucoup moins performant, quelle que soit la résolution. De plus, nous montrons également l'importance de l'adéquation entre la circulation simulée et l'échantillonnage altimétrique, en terme d'échelles spatiales représentées, pour obtenir de meilleures performances. Enfin, nous avons exploré la stratégie de minimisation dite progressive, permettant d'accélérer la convergence du 4DVAR à haute résolution.
112

Assimilation de données et inversion bathymétrique pour la modélisation de l'évolution des plages sableuses

Birrien, Florent 14 May 2013 (has links) (PDF)
Cette thèse présente une plateforme d'assimilation de données issues de l'imagerie vidéo et intégrée au modèle numérique d'évolution de profil de plage 1DBEACH. Le manque de jeux de données bathymétriques haute-fréquence est un des problèmes récurrents pour la modélisation morphodynamique littorale. Pourtant, des relevés topographiques réguliers sont nécessaires non seulement pour la validation de nos modèles hydro-sédimentaires mais aussi dans une perspective de prévision d'évolution morphologique de nos plages sableuses et d'évolution de la dynamique des courants de baïnes en temps réel. Les récents progrès dans le domaine de l'imagerie vidéo littorale ont permis d'envisager un moyen de suivi morphologique quasi-quotidien et bien moins coûteux que les traditionnelles campagnes de mesure. En effet, les images dérivées de la vidéo de type timex ou timestack rendent possible l'extraction de proxys bathymétriques qui permettent de caractériser et de reconstruire la morphologie de plage sous-jacente. Cependant, ces méthodes d'inversion bathymétrique directes sont limitées au cas linéaire et nécessitent, selon les conditions hydrodynamiques ambiantes, l'acquisition de données vidéo sur plusieurs heures voire plusieurs jours pour caractériser un état de plage. En réponse à ces différents points bloquants, ces travaux de thèse proposaient l'implémentation puis la validation de méthodes d'inversion bathymétrique basées sur l'assimilation dans notre modèle de différentes sources d'observations vidéo disponibles et complémentaires. A partir d'informations hétérogènes et non redondantes, ces méthodes permettent la reconstruction rapide et précise d'une morphologie de plage dans son intégralité pour ainsi bénéficier de relevés bathymétriques haute fréquence réguliers.
113

Transport optimal pour l'assimilation de données images / Optimal transportation for images data assimilation

Feyeux, Nelson 08 December 2016 (has links)
Pour prédire l'évolution d'un système physique, nous avons besoin d'initialiser le modèle mathématique le représentant, donc d'estimer la valeur de l'état du système au temps initial. Cet état n'est généralement pas directement mesurable car souvent trop complexe. En revanche, nous disposons d'informations du système, prises à des temps différents, incomplètes, mais aussi entachées d'erreurs, telles des observations, de précédentes estimations, etc. Combiner ces différentes informations partielles et imparfaites pour estimer la valeur de l'état fait appel à des méthodes d'assimilation de données dont l'idée est de trouver un état initial proche de toutes les informations. Ces méthodes sont très utilisées en météorologie. Nous nous intéressons dans cette thèse à l'assimilation d'images, images qui sont de plus en plus utilisées en tant qu'observations. La spécificité de ces images est leur cohérence spatiale, l'oeil humain peut en effet percevoir des structures dans les images que les méthodes classiques d'assimilation ne considèrent généralement pas. Elles ne tiennent compte que des valeurs de chaque pixel, ce qui résulte dans certains cas à des problèmes d'amplitude dans l'état initial estimé. Pour résoudre ce problème, nous proposons de changer d'espace de représentation des données : nous plaçons les données dans un espace de Wasserstein où la position des différentes structures compte. Cet espace, équipé d'une distance de Wasserstein, est issue de la théorie du transport optimal et trouve beaucoup d'applications en imagerie notamment.Dans ce travail nous proposons une méthode d'assimilation variationnelle de données basée sur cette distance de Wasserstein. Nous la présentons ici, ainsi que les algorithmes numériques liés et des expériences montrant ses spécificités. Nous verrons dans les résultats comment elle permet de corriger ce qu'on appelle erreurs de position. / Forecasting of a physical system is computed by the help of a mathematical model. This model needs to be initialized by the state of the system at initial time. But this state is not directly measurable and data assimilation techniques are generally used to estimate it. They combine all sources of information such as observations (that may be sparse in time and space and potentially include errors), previous forecasts, the model equations and error statistics. The main idea of data assimilation techniques is to find an initial state accounting for the different sources of informations. Such techniques are widely used in meteorology, where data and particularly images are more and more numerous due to the increasing number of satellites and other sources of measurements. This, coupled with developments of meteorological models, have led to an ever-increasing quality of the forecast.Spatial consistency is one specificity of images. For example, human eyes are able to notice structures in an image. However, classical methods of data assimilation do not handle such structures because they take only into account the values of each pixel separately. In some cases it leads to a bad initial condition. To tackle this problem, we proposed to change the representation of an image: images are considered here as elements of the Wasserstein space endowed with the Wasserstein distance coming from the optimal transport theory. In this space, what matters is the positions of the different structures.This thesis presents a data assimilation technique based on this Wasserstein distance. This technique and its numerical procedure are first described, then experiments are carried out and results shown. In particularly, it appears that this technique was able to give an analysis of corrected position.
114

Solving regularized nonlinear least-squares problem in dual space with application to variational data assimilation / Résolution de problèmes des moindres carrés non-linéaires régularisés dans l'espace dual avec applications à l'assimilation de données

Gürol, Selime 14 June 2013 (has links)
Cette thèse étudie la méthode du gradient conjugué et la méthode de Lanczos pour la résolution de problèmes aux moindres carrés non-linéaires sous déterminés et régularisés par un terme de pénalisation quadratique. Ces problèmes résultent souvent d'une approche du maximum de vraisemblance, et impliquent un ensemble de m observations physiques et n inconnues estimées par régression non linéaire. Nous supposons ici que n est grand par rapport à m. Un tel cas se présente lorsque des champs tridimensionnels sont estimés à partir d'observations physiques, par exemple dans l'assimilation de données appliquée aux modèles du système terrestre. Un algorithme largement utilisé dans ce contexte est la méthode de Gauss- Newton (GN), connue dans la communauté d'assimilation de données sous le nom d'assimilation variationnelle des données quadridimensionnelles. Le procédé GN repose sur la résolution approchée d'une séquence de moindres carrés linéaires optimale dans laquelle la fonction coût non-linéaire des moindres carrés est approximée par une fonction quadratique dans le voisinage de l'itération non linéaire en cours. Cependant, il est bien connu que cette simple variante de l'algorithme de Gauss-Newton ne garantit pas une diminution monotone de la fonction coût et sa convergence n'est donc pas garantie. Cette difficulté est généralement surmontée en utilisant une recherche linéaire (Dennis and Schnabel, 1983) ou une méthode de région de confiance (Conn, Gould and Toint, 2000), qui assure la convergence globale des points critiques du premier ordre sous des hypothèses faibles. Nous considérons la seconde de ces approches dans cette thèse. En outre, compte tenu de la grande échelle de ce problème, nous proposons ici d'utiliser un algorithme de région de confiance particulier s'appuyant sur la méthode du gradient conjugué tronqué de Steihaug-Toint pour la résolution approchée du sous-problème (Conn, Gould and Toint, 2000, p. 133-139) La résolution de ce sous-problème dans un espace à n dimensions (par CG ou Lanczos) est considérée comme l'approche primale. Comme alternative, une réduction significative du coût de calcul est possible en réécrivant l'approximation quadratique dans l'espace à m dimensions associé aux observations. Ceci est important pour les applications à grande échelle telles que celles quotidiennement traitées dans les systèmes de prévisions météorologiques. Cette approche, qui effectue la minimisation de l'espace à m dimensions à l'aide CG ou de ces variantes, est considérée comme l'approche duale. La première approche proposée (Da Silva et al., 1995; Cohn et al., 1998; Courtier, 1997), connue sous le nom de Système d'analyse Statistique de l'espace Physique (PSAS) dans la communauté d'assimilation de données, commence par la minimisation de la fonction de coût duale dans l'espace de dimension m par un CG préconditionné (PCG), puis revient l'espace à n dimensions. Techniquement, l'algorithme se compose de formules de récurrence impliquant des vecteurs de taille m au lieu de vecteurs de taille n. Cependant, l'utilisation de PSAS peut être excessivement coûteuse car il a été remarqué que la fonction de coût linéaire des moindres carrés ne diminue pas monotonement au cours des itérations non-linéaires. Une autre approche duale, connue sous le nom de méthode du gradient conjugué préconditionné restreint (RPCG), a été proposée par Gratton and Tshimanga (2009). Celle-ci génère les mêmes itérations en arithmétique exacte que l'approche primale, à nouveau en utilisant la formule de récurrence impliquant des vecteurs taille m. L'intérêt principal de RPCG est qu'il en résulte une réduction significative de la mémoire utilisée et des coûts de calcul tout en conservant la propriété de convergence souhaitée, contrairement à l'algorithme PSAS. / This thesis investigates the conjugate-gradient method and the Lanczos method for the solution of under-determined nonlinear least-squares problems regularized by a quadratic penalty term. Such problems often result from a maximum likelihood approach, and involve a set of m physical observations and n unknowns that are estimated by nonlinear regression. We suppose here that n is large compared to m. These problems are encountered for instance when three-dimensional fields are estimated from physical observations, as is the case in data assimilation in Earth system models. A widely used algorithm in this context is the Gauss-Newton (GN) method, known in the data assimilation community under the name of incremental four dimensional variational data assimilation. The GN method relies on the approximate solution of a sequence of linear least-squares problems in which the nonlinear least-squares cost function is approximated by a quadratic function in the neighbourhood of the current nonlinear iterate. However, it is well known that this simple variant of the Gauss-Newton algorithm does not ensure a monotonic decrease of the cost function and that convergence is not guaranteed. Removing this difficulty is typically achieved by using a line-search (Dennis and Schnabel, 1983) or trust-region (Conn, Gould and Toint, 2000) strategy, which ensures global convergence to first order critical points under mild assumptions. We consider the second of these approaches in this thesis. Moreover, taking into consideration the large-scale nature of the problem, we propose here to use a particular trust-region algorithm relying on the Steihaug-Toint truncated conjugate-gradient method for the approximate solution of the subproblem (Conn, Gould and Toint, 2000, pp. 133-139). Solving this subproblem in the n-dimensional space (by CG or Lanczos) is referred to as the primal approach. Alternatively, a significant reduction in the computational cost is possible by rewriting the quadratic approximation in the m-dimensional space associated with the observations. This is important for large-scale applications such as those solved daily in weather prediction systems. This approach, which performs the minimization in the m-dimensional space using CG or variants thereof, is referred to as the dual approach. The first proposed dual approach (Courtier, 1997), known as the Physical-space Statistical Analysis System (PSAS) in the data assimilation community starts by solving the corresponding dual cost function in m-dimensional space by a standard preconditioned CG (PCG), and then recovers the step in n-dimensional space through multiplication by an n by m matrix. Technically, the algorithm consists of recurrence formulas involving m-vectors instead of n-vectors. However, the use of PSAS can be unduly costly as it was noticed that the linear least-squares cost function does not monotonically decrease along the nonlinear iterations when applying standard termination. Another dual approach has been proposed by Gratton and Tshimanga (2009) and is known as the Restricted Preconditioned Conjugate Gradient (RPCG) method. It generates the same iterates in exact arithmetic as those generated by the primal approach, again using recursion formula involving m-vectors. The main interest of RPCG is that it results in significant reduction of both memory and computational costs while maintaining the desired convergence property, in contrast with the PSAS algorithm. The relation between these two dual approaches and the question of deriving efficient preconditioners (Gratton, Sartenaer and Tshimanga, 2011), essential when large-scale problems are considered, was not addressed in Gratton and Tshimanga (2009).
115

Modelisation directe et inverse d'ecoulements geophysiques viscoplastiques par methodes variationnelles : Application a la glaciologie / Direct and inverse modeling of viscoplastic geophysical flows using variational methods : Application to glaciology

Martin, Nathan 10 July 2013 (has links)
Un certain nombre d’écoulements géophysiques, tels que les écoulements de glace ou de lave magmatique, impliquent le mouvement gravitaire à faible nombre de Reynolds d’un fluide viscoplastique à surface libre sur un socle rocheux. Leur modélisation fait apparaître des lois de comportement rhéologique et des descriptions de leurs intéractions avec le socle rocheux qui reposent sur des paramétrisations empiriques. Par ailleurs, l’observation systématique de ce type d’écoulements avec une grande précision est rarement possible ; les données associées à l’observation de ces écoulements, principalement des données de surface (télédétections), peuvent être peu denses, manquantes ou incertaines. Elles sont aussi le plus souvent indirectes : des paramètres inconnus comme le glissement basal ou la rhéologie sont difficilement mesurables in situ.Ce travail de thèse s’attache à la modélisation directe et inverse de ces écoulements géophysiques, particulièrement les écoulements de glace, par des méthodes variationnelles à travers la résolution du problème de Stokes pour les fluides en loi de puissance.La méthode de résolution du problème direct (Stokes non-linéaire) repose sur le principe du minimum de dissipation qui mène à un problème variationnel de type point-selle à quatre champs pour lequel on montre l’existence de solutions. La condition d’incompressibilité et la loi de comportement représentent alors des contraintes associées au problème de minimisation. La recherche des points critiques du lagrangien correspondant est réalisée à l’aide d’un algorithme de type lagrangien augmenté, discrétisé par éléments finis triangles à trois champs. Cet algorithme conduit à un important gain tant en temps de calcul qu’en utilisation mémoire par rapport aux algorithmes classiques.On s’intéresse ensuite à la modélisation numérique inverse de ces fluides à l’aide du modèle adjoint et des deux principaux outils associés : l’analyse de sensibilité et l’assimilation de données. On étudie tout d’abord la modélisation rhéologique de ces fluides à travers les deux paramètres principaux de la loi de comportement : la consistance du fluide et l’exposant rhéologique. Des analyses de sensibilité sur ces paramètres définis localement, permettent de quantifier leurs poids relatifs au sein du modèle d’écoulement, en termes de vitesses de surface. L’identification de ces grandeurs est également réalisée. L’ensemble des résultats est résumé comme une méthodologie vers une “rhéométrie virtuelle” pouvant représenter une aide solide à la mesure rhéologique.Le glissement basal, paramètre majeur dans la dynamique de la glace, est investigué selon la même approche. Les analyses de sensibilité mettent en avant une capacité à voir à travers le caractère “filtré” et non-local de la transmission de la variabilité basale vers la surface, ouvrant des perspectives vers l’utilisation des sensibilités pour la définition de lieux d’intérêt pour l’observation et la mesure. Ce glissement basal, modélisation empirique d’un processus complexe et multiéchelle, est ensuite utilisé pour la comparaison avec une méthode inverse approximative courante en glaciologie (méthode négligeant la dépendance de la viscosité à la vitesse, i.e. la non-linéarité). Le modèle adjoint, obtenu par différentiation automatique et évalué par accumulation retour, permet de définir cette approximation comme un cas limite de la méthode inverse complète. Ce formalisme mène à une généralisation du processus d’évaluation numérique de l’état adjoint, ajustable en précision et en temps de calcul en fonction de la qualité des données et du niveau de détail souhaité dans la reconstruction.L’ensemble de ces travaux est associé au développement du logiciel DassFlow-Ice de simulation directe et inverse de fluides viscoplastiques à surface libre. Ce logiciel prospectif bidimensionnel, diffusé dans la communauté glaciologique, a donné lieu au développement d’une version tridimensionnelle. / Several geophysical flows, such as ice flows or lava flows, are described by a gravity-driven low Reynolds number movement of a free surface viscoplastic fluid over a bedrock. Their modeling involves constitutive laws, typically describing their rheological behavior or interactions with their bedrock, that lean on empirical parameterizations. Otherwise, the thorough observation of this type of flows is rarely possible; data associated to the observation of these flows, mainly remote-sensed surface data, can be sparse, missing or uncertain. They are also generally indirect : unknown parameters such as the basal slipperiness or the rheology are difficult to measure on the field.This PhD work focuses on the direct and inverse modeling of these geophysical flows described by the power-law Stokes model, specifically dedicated to ice flows, using variational methods.The solution of the direct problem (Stokes non-linear) is based on the principle of minimal dissipation that leads to a variational four-field saddle-point problem for which we ensure the existence of a solution. In this context, the incompressibility condition and the constitutive rheological law represent constraints associated to the minimization problem. The critical points of the corresponding Lagrangian are determined using an augmented Lagrangian type algorithm discretized using three- field finite elements. This algorithm provides an important time and memory saving compared to classical algorithms.We then focus on the inverse numerical modeling of these fluids using the adjoint model through two main associated tools : sensitivity analysis and data assimilation. We first study the rheological modeling through the two principal input parameters (fluid consistency and rheological exponent). Sensitivity analyses with respect to these locally defined parameters allow to quantify their relative weights within the flow model, in terms of surface velocities. Identification of these parameters is also performed. The results are synthetized as a methodology towards “virtual rheometry” that could help and support rheological measurements.The basal slipperiness, major parameter in ice dynamics, is investigated using the same approach. Sensitivity analyses demonstrate an ability to see beyond the ”filtered” and non-local transmission of the basal variability to the surface. Consequently these sensitivities can be used to help defining areas of interest for observation and measurement. This basal slipperiness, empirical modeling of a multiscale complex process, is then used to carry on a comparison with a so called “self-adjoint” method, common in glaciology (neglecting the dependency of the viscosity on the velocity, i.e. the non-linearity). The adjoint model, obtained by automatic differentiation and evaluated by reverse accumulation, leads to define this approximation as a limit case of the complete inverse method. This formalism allows to generalize the process of the numerical evaluation of the adjoint state into an incomplete adjoint method, adjustable in time and accuracy depending on the quality of the data and the level of detail required in the identification.All this work is associated to the development of DassFlow-Ice software dedicated to the direct and inverse numerical simulation of free-surface viscoplastic fluids. This bidimensional prospective software, distributed within the glaciological com- munity, serves as a model for the current development of the tridimensional version.
116

Ajustement optimal des paramètres de forçage atmosphérique par assimilation de données de température de surface pour des simulations océaniques globales / Optimal adjustment of atmospheric forcing parameters for long term simulations of the global ocean circulation.

Meinvielle, Marion 17 January 2012 (has links)
La température de surface de l'océan (SST) est depuis l'avènement des satellites, l'une des variables océaniques la mieux observée. Les modèles réalistes de circulation générale océanique ne la prennent pourtant pas en compte explicitement dans leur fonction de forçage. Dans cette dernière, seules interviennent les variables atmosphériques à proximité de la surface (température, humidité, vitesse du vent, radiations descendantes et précipitations) connues pour être entachées d'incertitudes importantes dès lors qu'on considère l'objectif d'étudier la variabilité à long terme de l'océan et son rôle climatique. La SST est alors classiquement utilisée en assimilation de données pour contraindre l'état du modèle vers une solution en accord avec les observations mais sans corriger la fonction de forçage. Cette approche présente cependant les inconvénients de l'incohérence existant potentiellement entre la solution « forcée » et « assimilée ». On se propose dans cette thèse de développer dans un contexte réaliste une méthode d'assimilation de données de SST observée pour corriger les paramètres de forçage atmosphérique sans correction de l'état océanique. Le jeu de forçage faisant l'objet de ces corrections est composé des variables atmosphériques issues de la réanalyse ERAinterim entre 1989 et 2007. On utilise pour l'estimation de paramètres une méthode séquentielle basée sur le filtre de Kalman, où le vecteur d'état est augmenté des variables de forçage dont la distribution de probabilité a priori est évaluée via des expériences d'ensemble. On évalue ainsi des corrections de forçage mensuelles applicables dans un modèle libre pour la période 1989-2007 en assimilant la SST issue de la base de données de Hurrel (Hurrel, 2008), ainsi qu'une climatologie de salinité de surface (Levitus, 1994). Cette étude démontre la faisabilité d'une telle démarche dans un contexte réaliste, ainsi que l'amélioration de la représentation des flux océan-atmosphère par l'exploitation d'observations de la surface de l'océan. / Sea surface temperature (SST) is more accurately observed from space than near-surface atmospheric variables and air-sea fluxes. But ocean general circulation models for operational forecasting or simulations of the recent ocean variability use, as surface boundary conditions, bulk formulae which do not directly involve the observed SST. In brief, models do not use explicitly in their forcing one of the best observed ocean surface variable, except when assimilated to correct the model state. This classical approach presents however some inconsistency between the “assimilated” solution of the model and the “forced” one. The objective of this research is to develop in a realistic context a new assimilation scheme based on statistical methods that will use SST satellite observations to constrain (within observation-based air-sea flux uncertainties) the surface forcing function (surface atmospheric input variables) of ocean circulation simulations. The idea is to estimate a set of corrections for the atmospheric input data from ERAinterim reanalysis that cover the period from 1989 to 2007. We use a sequential method based on the SEEK filter, with an ensemble experiment to evaluate parameters uncertainties. The control vector is extended to correct forcing parameters (air temperature, air humidity, downward longwave and shortwave radiations, precipitation, wind velocity). Over experiments of one month duration, we assimilate observed monthly SST products (Hurrel, 2008) and SSS seasonal climatology (Levitus, 1994) data, to obtain monthly parameters corrections that we can use in a free run model This study shows that we can thus produce in a realistic case, on a global scale, and over a large time period, an optimal flux correction set that improves the forcing function of an ocean model using sea surface observations.
117

Assimilation de données pour l'initialisation et l'estimation de paramètres d'un modèle d'évolution de calotte polaire / Data assimilation for initialisation and parameter estimation of an ice sheet evolution model

Bonan, Bertrand 15 November 2013 (has links)
L'évolution des calottes polaires est régie à la fois par une dynamique d'écoulement complexe et par des mécanismes tel le glissement à la base, la température de la glace ou le bilan de masse en surface. De plus, de nombreuses boucles de rétroactions sont constatées entre les différents phénomènes impliquées. Tout ceci rend la modélisation de cette évolution complexe. Malgré tout, un certain nombre de modèles ont été développés dans cette optique. Ceux-ci font tous intervenir des paramètres influents qui dans certains cas sont peu ou pas connus. Ils nécessitent donc d'être correctement spécifiés. L'assimilation de données peut permettre une meilleure estimation de ces paramètres grâce à l'utilisation d'observations qui sont peu nombreuses en glaciologie. Dans cette thèse, nous nous intéressons à la mise en place de systèmes d'assimilation performants pour deux problèmes inverses concernant l'évolution des calottes polaires. Pour mieux nous concentrer sur ce point, nous avons travaillé avec un modèle d'évolution de calotte simplifié (appelé Winnie) qui, cependant, représente bien la plupart des processus complexes de la dynamique de la glace, et permet de travailler à différentes échelles de temps. Dans un premier temps, nous mettons en place une approche 4D-Var pour la reconstruction de l'évolution d'un paramètre climatique influant sur l'évolution d'une calotte sur une échelle de temps typique de 20 000 ans. Elle nécessite notamment l'écriture du code adjoint du modèle. Dans un second temps, nous nous intéressons au problème du spin-up. Ce problème de calibration du modèle pour des simulations à échelle de temps courtes (pas plus de 100 ans) consiste plus particulièrement en la reconstruction conjointe de l'état initial, de la topographie du socle rocheux et des paramètres de glissement basal. Nous développons ici une approche filtre de Kalman d'ensemble pour résoudre ce problème. / Ice sheet evolution is both driven by a complex flow dynamics and by physical mechanisms such as basal sliding, ice temperature or surface mass balance. In addition to those, many feedback loops are observed between the different implicated phenomena. That explains how complex is to model this evolution. However several models have been developed in that purpose. These models depend on influential parameters, which often are unfortunately poorly known. So they need to be correctly specified. Data assimilation can give a better estimation of these parameters thanks to observations which are quite rare in glaciology. In this thesis, we work on the setup of efficient data assimilation systems for two inverses problems involving ice sheet evolution. We work with a simplified ice sheet evolution model called Winnie in order to focus on the setup. Nevertheless Winnie takes into account the major complex processes of ice dynamics and can be used for studies with different time scales. The first part of the thesis focuses on developing a 4D-Var approach in order to retrieve the evolution of a climatic parameter for a typical time scale of 20 000 years. This approach require the implementation the adjoint code of the evolution model. In a second part, we focus on the spin-up problem. This calibration problem for short term (maximum 100 years) simulations involve retrieving jointly the initial state, the bedrock topography and basal sliding parameters. In order to solve this problem we develop an Ensemble Kalman Filter approach.
118

Assimilation de données pour les problèmes non-Gaussiens : méthodologie et applications à la biogéochimie marine / Data assimilation for non Gaussian problems : methodology and applications to biogeochemistry

Metref, Sammy 27 November 2015 (has links)
L'assimilation de données pour les géosciences est une discipline cherchant à améliorer notre connaissance d'un système physique en se basant sur l'information issue de modèles numériques simulant ce système et sur l'information issue des mesures observant ce système. Les méthodes d'assimilation de données traditionnellement utilisées (e.g. le 4DVar ou les filtres de Kalman d'ensemble) reposent sur des hypothèses de Gaussianité des probabilités en jeu et de linéarité des modèles. Avec la complexification des modèles et des réseaux d'observations, ces hypothèses sont de plus en plus injustifiées et donc pénalisantes. Cette complexification est particulièrement forte en océanographie couplée à la biogéochimie marine.Les objectifs de cette thèse sont de mieux comprendre l'apparition des non-Gaussianités dans un problème d'estimation, d'envisager une méthode d'assimilation de données adaptée aux problèmes fortement non-Gaussiens et, dans le cadre du couplage de la dynamique océanique et de la biogéochimie marine, d'explorer la pertinence de l'utilisation de méthodes non-Gaussiennes.Dans un premier temps, une étude méthodologique est conduite. Cette étude, appuyé par des illustrations avec le modèle de Lorenz à trois variables, permet de mettre en évidence les limitations des méthodes traditionnellement utilisées, face à des problèmes non-Gaussiens. Cette étude aboutit sur le développement d'un filtre d'assimilation de données d'ensemble entièrement non-Gaussien : le Multivariate Rank Histogram Filter (MRHF).Il est montré que le MRHF est performant dans des régimes fortement non-Gaussiens (notamment dans un régime bimodal) pour un nombre de membres relativement faible.Dans un second temps, une étude numérique est conduite. Cette étude est réalisée aux travers d'expériences jumelles basées sur un modèle vertical 1D, ModECOGeL, couplant la dynamique et la biogéochimie en mer Ligure. Nous simulons différents réseaux d'observations combinant des profils in situ et des données satellites. Plusieurs méthodes d'assimilation sont alors comparées à l'aide de diagnostics d'évaluation d'ensemble avancés.Nos expériences montrent l'impact du réseau d'observations et des variables de contrôle, sur le degré de non-Gaussianité d'un problème d'estimation. Le contrôle de la partie dynamique du modèle par des observations de la dynamique à différentes fréquences est un problème quasi-Gaussien, qu'un filtre aux moindres carrés, tel l'Ensemble Transform Kalman Filter, résout bien. En revanche pour ces mêmes observations, le contrôle de la biogéochimie s'avère être un problème non-Gaussien et nécessite l'utilisation d'un filtre non-Gaussien.Enfin, il est montré que l'assimilation de la couleur de l'eau, pour le contrôle mixte de la dynamique et de la biogéochimie, est améliorée par des méthodes adaptées aux non-Gaussianités, tel l'Ensemble Kalman Filter anamorphosé. De plus, l'augmentation de la fréquence d'observation de la couleur de l'eau rend incontournable l'utilisation de filtres fondamentalement non-Gaussiens comme le MRHF. / Data assimilation for Geosciences is a discipline seeking to improve our knowledge of a physical system based on the information from numerical models simulating this system and the information from the measures observing this system. The data assimilation methods traditionally used (eg the 4DVAR or the ensemble Kalman filters) are based on assumptions of Gaussianity of the probabilities involved and linearity of the models. With the increasing complexity of models and observation networks, these assumptions are increasingly unjustified and therefore penalizing. This complexity is particularly strong in oceanography coupled with marine biogeochemistry.The objectives of this thesis are to understand the appearance of non Gaussianity in an estimation problem, to think out a data assimilation method adapted to highly non Gaussian problems and, in the coupling of ocean dynamics and marine biogeochemistry, to explore the relevance of the use of non Gaussian methods.At first, a methodological study is conducted. This study, supported by illustrations with the three variable Lorenz model, allows to highlight the limitations of traditional methods when facing non Gaussian problems. This study led to the development of a fully non Gaussian data assimilation filter : the Multivariate Rank Histogram Filter (MRHF).It is shown that the MRHF is efficient in highly non Gaussian regimes (including in a bimodal regime) for a relatively small number of members.Secondly, a numerical study is conducted. This study is conducted with twin experiments based on a 1D vertical model, ModECOGeL, coupling dynamics and biogeochemistry in the Ligurian Sea. We simulate different observation networks combining in situ profiles and satellite data. Several data assimilation methods are then compared using advanced ensemble evaluation diagnoses.Our experiments show the impact of observation networks and controled variables on the degree of non Gaussianity in an estimation problem. The control of the dynamic part of the model by observations of the dynamics at different frequencies is a quasi Gaussian problem, which a least squared filter such as the Ensemble Transform Kalman Filter solves well. In contrast, for the same observations, the control of biogeochemistry proves to be a non Gaussian problem and requires the use of a non Gaussian filter. Finally, it is shown that assimilation of ocean color data, for the joint control of the dynamic and the biogeochemistry, is improved by methods adapted for non Gaussianities such as the Anamorphosed Ensemble Kalman Filter. In addition, increasing the ocean color observation frequency makes unavoidable the use of fundamentally non Gaussian filters such as the MRHF.
119

Reconstitution de la convection du manteau terrestre par assimilation de données séquentielle / Reconstruction of Mantle Circulation Using Sequential Data Assimilation

Bocher, Marie 25 November 2016 (has links)
Cette thèse vise à proposer de nouvelles méthodes permettant de reconstruire la circulation dans le manteau terrestre et l'évolution de la tectonique de surface pour les deux cents derniers millions d'années. Nous utilisons des modèles numériques de convection mantellique dans lesquels la dynamique de surface est comparable à la tectonique terrestre. En combinant ces modèles avec des reconstructions de la tectonique des plaques il est possible d'estimerla structure et l'évolution du champ de température dans le manteau. Jusqu'à présent, l'inclusion des reconstructions de la tectonique des plaques se faisait en imposant des conditions aux limites du modèle (équilibre des forces, vitesses imposées...). Ces techniques, bien que permettant de tester la validité de différents scénarios tectoniques alternatifs, n'autorisent pas de rétroaction dynamique de la convection mantellique sur la tectonique de surface.Dans ce travail, nous avons développé des techniques d'assimilation de données permettant d'intégrer les reconstructions de la tectonique des plaques dans un modèle numérique tout en laissant se développer de manière auto-cohérente cette rétroaction. Les techniques développées permettent également de prendre en compte les incertitudes associées aux reconstructions de la tectonique des plaques et de calculer les erreurs sur l'estimation finale de la circulationmantellique.Dans un premier temps, nous avons développé un filtre de Kalman suboptimal qui permet d'estimer la structure et l'évolution de la circulation mantellique la plus probable à partir d'un modèle numérique de convection et d'une sérietemporelle d'observations de surface, ainsi que de leurs incertitudes respectives.Ce filtre a été testé sur des expériences synthétiques. Celles-ci consistent à tenter de retrouver une évolution témoin à partir d'une série temporelle de données issues de cette évolution. Ces expériences ont montré qu'il était possible, enprincipe, de reconstruire la structure et l'évolution de l'ensemble du manteau à partir d'observations de vitesses et de flux de chaleur à la surface.Dans un second temps, nous avons développé un filtre de Kalman d'ensemble. Ce filtre permet non seulement d'estimer de manière plus précise la géométrie des structures mantelliques, mais aussi les incertitudes sur cette estimation. / This dissertation focuses on the developpement of data assimilation methods to reconstruct the circulation of the Earth's mantle and the evolution of its surface tectonics for the last 200~Myrs. We use numerical models of mantle convection in which the surface dynamics is similar to the Earth's. By combining these models with plate tectonics reconstructions, it is possible to estimate the structure and evolution of the temperature field of the mantle. So far, the assimilation of plate tectonics reconstructions was done by imposing specific boundary conditions in the model (force balance, imposed velocities...). These techniques, although insightful to test the likeliness of alternative tectonic scenarios, do not allow the full expression of the dynamical feedback between mantle convection and surface tectonics. We develop sequential data assimilation techniques able to assimilate plate tectonics reconstructions in a numerical model while simultaneously letting this dynamicalfeedback develop self-consistently. Moreover, these techniques take into account errors in plate tectonics reconstructions, and compute the error on the final estimation of mantle circulation.First, we develop a suboptimal Kalman filter. This filter estimates the most likely structure and evolution of mantle circulation from a numerical model of mantle convection, a time series of surface observations and the uncertainty on both. This filter was tested on synthetic experiments. The principle of a synthetic experiment is to apply the data assimilation algorithm to a set of synthetic observations obtained from a reference run, and to then compare the obtained estimation of the evolution with the reference evolution. The synthetic experiments we conducted showed that it was possible, in principle, to reconstruct the structure and evolution of the whole mantle from surface velocities and heat flux observations.Second, we develop an Ensemble Kalman Filter. Instead of estimating the most likely evolution, an ensemble of possible evolutions are computed. This technique leads to a better estimation of the geometry of mantle structures and a more complete estimation of the uncertainties associated.
120

Downscaling wind energy resource from mesoscale to local scale by nesting and data assimilation with a CFD model / Descente en échelle de la ressource en énergie éolienne de la mésoéchelle à l'échelle locale par imbrication et assimilation de données à l'aide d'un modèle de CFD

Duraisamy Jothiprakasam, Venkatesh 14 May 2014 (has links)
Le développement de la production d'énergie éolienne nécessite des méthodes précises et bien établies pour l'évaluation de la ressource éolienne, étape essentielle dans la phase avant-projet d'une future ferme. Au cours de ces deux dernières décennies, les modèles d'écoulements linéaires ont été largement utilisés dans l'industrie éolienne pour l'évaluation de la ressource et pour la définition de la disposition des turbines. Cependant, les incertitudes des modèles linéaires dans la prévision de la vitesse du vent sur terrain complexe sont bien connues. Elles conduisent à l'utilisation de modèles CFD, capables de modéliser les écoulements complexes de manière précise autour de caractéristiques géographiques spécifiques. Les modèles méso-échelle peuvent prédire le régime de vent à des résolutions de plusieurs kilomètres mais ne sont pas bien adaptés pour résoudre les échelles spatiales inférieures à quelques centaines de mètres. Les modèles de CFD peuvent capter les détails des écoulements atmosphériques à plus petite échelle, mais nécessitent de documenter précisément les conditions aux limites. Ainsi, le couplage entre un modèle méso-échelle et un modèle CFD doit permettre d'améliorer la modélisation fine de l'écoulement pour les applications dans le domaine de l'énergie éolienne en comparaison avec les approches opérationnelles actuelles. Une campagne de mesure d'un an a été réalisée sur un terrain complexe dans le sud de la France durant la période 2007-2008. Elle a permis de fournir une base de données bien documentée à la fois pour les paramètres d'entrée et les données de validation. La nouvelle méthodologie proposée vise notamment à répondre à deux problématiques: le couplage entre le modèle méso-échelle et le modèle CFD en prenant en compte une forte variation spatiale de la topographie sur les bords du domaine de simulation, et les erreurs de prédiction du modèle méso-échelle. Le travail réalisé ici a consisté à optimiser le calcul du vent sur chaque face d'entrée du modèle CFD à partir des valeurs issues des verticales du modèle de méso-échelle, puis à mettre en œuvre une assimilation de données basée sur la relaxation newtonienne (nudging). La chaîne de modèles considérée ici est composée du modèle de prévision de Météo-France ALADIN et du code de CFD open-source Code_Saturne. Le potentiel éolien est ensuite calculé en utilisant une méthode de clustering, permettant de regrouper les conditions météorologiques similaires et ainsi réduire le nombre de simulations CFD nécessaires pour reproduire un an (ou plus) d'écoulement atmosphérique sur le site considéré. La procédure d'assimilation est réalisée avec des mesures issues d'anémomètre à coupelles ou soniques. Une analyse détaillée des simulations avec imbrication et avec ou sans assimilation de données est d'abord présentée pour les deux directions de vent dominantes, avec en particulier une étude de sensibilité aux paramètres intervenant dans l'imbrication et dans l'assimilation. La dernière partie du travail est consacrée au calcul du potentiel éolien en utilisant une méthode de clustering. La vitesse annuelle moyenne du vent est calculée avec et sans assimilation, puis est comparée avec les mesures non assimilées et les résultats du modèle WAsP. L'amélioration apportée par l'assimilation de données sur la distribution des écarts avec les mesures est ainsi quantifiée pour différentes configurations / The development of wind energy generation requires precise and well-established methods for wind resource assessment, which is the initial step in every wind farm project. During the last two decades linear flow models were widely used in the wind industry for wind resource assessment and micro-siting. But the linear models inaccuracies in predicting the wind speeds in very complex terrain are well known and led to use of CFD, capable of modeling the complex flow in details around specific geographic features. Mesoscale models (NWP) are able to predict the wind regime at resolutions of several kilometers, but are not well suited to resolve the wind speed and turbulence induced by the topography features on the scale of a few hundred meters. CFD has proven successful in capturing flow details at smaller scales, but needs an accurate specification of the inlet conditions. Thus coupling NWP and CFD models is a better modeling approach for wind energy applications. A one-year field measurement campaign carried out in a complex terrain in southern France during 2007-2008 provides a well documented data set both for input and validation data. The proposed new methodology aims to address two problems: the high spatial variation of the topography on the domain lateral boundaries, and the prediction errors of the mesoscale model. It is applied in this work using the open source CFD code Code_Saturne, coupled with the mesoscale forecast model of Météo-France (ALADIN). The improvement is obtained by combining the mesoscale data as inlet condition and field measurement data assimilation into the CFD model. Newtonian relaxation (nudging) data assimilation technique is used to incorporate the measurement data into the CFD simulations. The methodology to reconstruct long term averages uses a clustering process to group the similar meteorological conditions and to reduce the number of CFD simulations needed to reproduce 1 year of atmospheric flow over the site. The assimilation procedure is carried out with either sonic or cup anemometers measurements. First a detailed analysis of the results obtained with the mesoscale-CFD coupling and with or without data assimilation is shown for two main wind directions, including a sensitivity study to the parameters involved in the coupling and in the nudging. The last part of the work is devoted to the estimate of the wind potential using clustering. A comparison of the annual mean wind speed with measurements that do not enter the assimilation process and with the WAsP model is presented. The improvement provided by the data assimilation on the distribution of differences with measurements is shown on the wind speed and direction for different configurations

Page generated in 0.1083 seconds