Spelling suggestions: "subject:"asymptotical"" "subject:"assymptotical""
11 |
Autour des équations de contrainte en relativité générale / On the Constraint Equations in General RelativityValcu, Caterina 25 September 2019 (has links)
Le but à long terme de mon travail de recherche est de trouver une alternative viable à la méthode conforme, qui nous permettrait de mieux comprendre la structure géométrique de l'espace des solutions des équations de contrainte. L'avantage du modèle de Maxwell (the drift model) par rapport aux modèles plus classiques est la présence des paramètres supplémentaires. Le prix à payer, par contre, sera que la complexité analytique du système correspondant. Ma thèse a été structuré en deux parties : a. Existence sous la condition de petitesse des données initiales. Nous avons montré que le système de Maxwell est raisonnable dans le sens où nous pouvons le résoudre, malgré sa forte nonliniarité, sous des conditions de petitesse sur ses coefficients, en dimension 3, 4 et 5. Par conséquent, l'ensemble des solutions est non-vide. b. Stabilité Nous montrons la stabilité des solutions du système: ce résultat est obtenu en dimension 3,4 et 5, dans le cas où la métrique est conformément plate, et le drift et petit / The long-term goal of my work is to find a viable alternative to the conformal method, which would allow us to better understand the geometry of the space of solutions of the constraint equations. The advantage of Maxwell's model (the drift model) is the presence of additional parameters. Its downside, however, is that it proves to be much more difficult from an analytic standpoint. My thesis is structued in two parts: a. Existence under suitable smallness conditions. We show that Maxwell's system is sufficiently reasonable: it can be solved even given the presence of focusing non linearities. We prove this under smallness conditions of its coefficients, and in dimensions 3,4 and 5. An immediate consequence is that the set of solutions is non-empty. b. Stability. We verify that the solutions of the system are stable: this result holds in dimensions 3,4 and 5, when the metric is conformally flat and the drift is small
|
12 |
Asymptotische Stabilität von Index-2-Algebro-Differentialgleichungen und ihren DiskretisierungenSantiesteban, Antonio Ramon Rodriguez 02 February 2001 (has links)
Ziel dieser Dissertation ist die Untersuchung der asymptotischen Stabilität numerischer Verfahren für Index-2-Algebro-Differentialgleichungen. Es werden Anfangswertaufgaben für quasilineare Algebro-Differentialgleichungen (ADGln). Die meisten anwendungsrelevanten Aufgaben können damit behandelt werden. Zuerst werden einige Stabilitätsbegrife und Aussagen vorgestellt, die das Fundament für den Rest der Arbeit darstellen. Dies erstreckt sich sowohl auf den kontinuierlichen als auch auf den diskreten Fall. Insbesondere werden Kontraktivitätskonzepte eingeführt und Beziehungen zwischen der Kontraktivität der ADGl und derer der Anwendung eines numerischen Verfahrens. Die eingeführte Kontraktivitätsbegriffe erweitern oder verallgemeinern die bereits bekannten Konzepte. Als wichtigste Aussage in dem Kontraktivitätskontext geht ein Theorem hervor, das allgemeine Bedingungen aufstellt, damit die Anwendung eines IRK(DAE)-Verfahrens auf eine ADGl stabil ist. Bekannte Aussagen für gewöhnliche und Algebro-Differntialgleichungen können als Sonderfälle dieses Ergebnisses gesehen werden. Im weiteren Verlauf der Arbeit wird anhand von neuartigen Index-2-Entkopplungs- und Indexreduktionstechniken die Stabilität von Diskretisierungsverfahren untersucht. Die durchgeführte Analyse erbringt neue Ergebnisse, die eine Verbesserung des Kenntnissstandes in diesem Gebiet darstellen. Die erzielte Aussagen stellen hinreichende Bedingungen, damit ein BDF- oder IRK-Verfahren für eine ADGl das gleiche Stabilitätsverhalten wie für eine gewöhnliche Differentialgleichung besitzt. Diese Ergebnisse werden durch numerishce Beispiele veranschaulicht. Weiterhin stellt man fest, dass eine der gefundenen Voraussetzungen für die Kontraktivität der Anwendung eines algebraisch stabilen IRK(DAE)-Verfahrens, auf eine ebenfalls kontraktive ADGl, genügt. Dieses Ergebnis wurde durch die Anwendung der im ersten Teil dieser Arbeit erzielten Kontraktivitätsaussagen ermöglicht. Die Konsequenzen der soeben genannten Aussage für bestimmte Modelle der Schaltkreissimulation werden ebenfalls erläutert. Aus der oben genannten Analyse, ebenso wie aus der Fachliteratur, geht hervor, dass bei manchen ADGl-Aufgaben die Diskretisierungsverfahren Stabilitätsprobleme aufweisen. Um solche Probleme zu behandeln sind bereits einige Ansätze bekannt. Im letzten Teil der Arbeit werden zwei repräsentativen Ansätze betrachtet und ihre Aussichtschancen für Index-2-Aufgaben anhand eines kritischen Beispieles evaluiert. Des Weiteren wird eine Verallgemeinerung für vollimplizite lineare ADGln des Gear-Gupta-Leimkuhler-Ansatzes (GGL) vorgeschlagen. Der Rest der Arbeit beschäftigt sich mit der Stabilitätsuntersuchung der GGL-Formulierung und der auf sie angewandten numerischen Verfahren. Dafür werden Aussagen dieser Arbeit eingesetzt und man kommt zu der Schlussfolgerung, dass sowohl für die IRK(DAE)- als auch für die BDF-Verfahren die Integration der GGL-Formulierung, natürlich unter bestimmten Voraussetzungen, stabil ist. Dieses Ergebniss wird durch ein numerisches Beispiel belegt. Dabei handelt es um eine Gleichung, die mit einer direkten Anwendung eines Verfahrens Instabilitäten aufweist. Jedoch ist die Integration der entsprechenden GGL stabil. / The purpose of the present PhD work is the asymptotic stability investigation of numerical methods for index 2 differential algebraic equations. Initial value problems are considered for quasi linear differential algebraic equations (DAEs) that cover the most important applications. First some stability concepts and related results are presented, which represent the basis for further investigations. This background concerns both, the continuous and the discreet case. Especially contractivity concepts are introduced and the relationship between the asymptotic stability of the DAE and the numerical method applied to it is established. The new contractivity concepts extend or generalize the already known concepts. The most important result in this context is a theorem that establishes general conditions under which the application of an algebraic stable IRK(DAE) method to a DAE is contractive. Well-known assertions for ordinary and differential algebraic equations can be considered as special cases of this general result. Later on the stability of numerical discretizations applied to index-2 DAEs is investigated. This is made possible by the introduction of new decopling and index reduction techniques. The analysis makes new insights in the asymptotic of numerical methods for DAEs possible. The obtained results state sufficient conditions in order that a BDF or an IRK(DAE) method applying to DAEs shows the same asymptotic stability properties as for ODEs. These results are illustrated by some numerical examples. Moreover, it can be realized that one of the found conditions is sufficient in order to show contractivity of the application of an algebraic stable IRK(DAE) method, supposed the DAE is contractive. This assertion is possible based on the general theorem mentioned in the paragraph above. Further some consequences of the mentioned results for electric network models are shown. According to both, the above mentioned analysis and the specialized literature of this field, the application of numerical methods to some special DAEs shows asymptotic stability problems. A few approaches are known to manage such difficult equations. Two exponents of these techniques are considered and their chances of success for index-2 DAEs are evaluated with the application to a critical example. A generalization of the Gear-Gupta-Leimkuhler (GGL) approach is proposed for full implicit linear DAEs. This generalization is investigated in detail in the rest of the paper, concerning both the analytical and the numerical asymptotic stability of the GGL equation and the numerical methods applied to it correspondingly. The result is, that, if some conditions are fulfilled, IRK(DAE) and BDF methods for the GGL equation will produce stable solutions. This result is illustrated by a numerical example. The application of the methods directly to the considered DAE produces unstable solutions. However, the integration of the corresponding GGL formulation is stable. The obtained result opens new possibility for the numerical treatment of instabilities by differential algebraic equations.
|
13 |
Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix modelsBothner, Thomas Joachim 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_)$ for all values of the real parameter $\gamma$.
|
14 |
Estimation de la vitesse de retour à l'équilibre dans les équations de Fokker-Planck / Estimation of the rate of return to equilibrium in Fokker-Planck's equationsNdao, Mamadou 18 July 2018 (has links)
Ce mémoire de thèse est consacré à l’équation de Fokker-Planckpartial_ f=∆f+div(Ef).Il est subdivisé en deux parties :une partie linéaire et une partie non linéaire. Dans la partie linéaire on considère un champ de vecteur E(x) dépendant seulement de x. Cette partie est constituée des chapitres 3, 4 et 5. Dans le chapitre 3 on montre que l’opérateur linéaire Lf :=∆ f + div(E f ) est le générateur d’un semi-groupe fortement continu (SL(t))_{t≥0} dans tous les espaces L^p. On y établit également que le semi-groupe (SL(t))_{t≥0} est positif et ultracontractif. Dans le chapitre 4 nous montrons comment est qu’une décomposition adéquate de l’opérateur L permet d’établir certaines propriétés du semi-groupe (SL(t))_{t≥0} notamment sa bornitude. Le chapitre 5 est consacré à l’existence d’un état d’équilibre. De plus on y montre que cet état d’équi- libre est asymptotiquement stable. Dans la partie non linéaire on considère un champ de vecteur de la forme E(x,f) := x+nabla (a*f) ou a et f sont des fonctions assez régulières et * est l’opérateur de convolution. Cette parties est contituée des chapitre 6 et 7. Dans le chapitre 6 nous établissons que poura appartenant à W^{2,infini}_locl’équation de Fokker-Planck non linéaire admet une unique solution locale dans l’espace L^2_{K_alpha} (R^d). Dans le dernier chapitre nous montrons que le problème non linéaire admet une solution globale. De plus cette solution dépend continument des données. / This thesis is devoted to the Fokker-Planck équation partial_t f =∆f + div(E f).It is divided into two parts. The rst part deals with the linear problem. In this part we consider a vector E(x) depending only on x. It is composed of chapters 3, 4 and 5. In chapter 3 we prove that the linear operator Lf :=∆f + div(Ef ) is an in nitesimal generator of a strong continuous semigroup (SL(t))_{t≥0}. We establish also that (SL(t))_{t≥0} is positive and ultracontractive. In chapter 4 we show how an adequate decomposition of the linear operator L allows us to deduce interesting properties for the semigroup (SL(t))_{t≥0}. Indeed using this decomposition we prove that (SL(t))_{t≥0} is a bounded semigroup. In the last chapter of this part we establish that the linear Fokker-Planck admits a unique steady state. Moreover this stationary solution is asymptotically stable.In the nonlinear part we consider a vector eld of the form E(x, f ) := x +nabla (a *f ), where a and f are regular functions. It is composed of two chapters. In chapter 6 we establish that fora in W^{2,infini}_locthe nonlinear problem has a unique local solution in L^2_{K_alpha}(R^d); . To end this part we prove in chapter 7 that the nonlinear problem has a unique global solution in L^2_k(R^d). This solution depends continuously on the data.
|
Page generated in 0.0435 seconds