• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architecture asynchrone pour l'efficacité énergétique et l'amélioration du rendement en fabrication dans les technologies décananométriques : application à un système sur puce multi-coeurs / Asynchronous Architecture for Power Efficiency and Yield Enhancement in the Decananometric Technologies : application to a Multi-Core System-on-Chip

Zakaria Radwan, Hatem Mohamed 24 February 2011 (has links)
La réduction continuelle des dimensions dans les technologies CMOS a ouvert la porte à la conception de circuits complexes multi-cœurs (SoC). Malheureusement dans les technologies nanométriques, les performances des systèmes intégrés après fabrication ne sont pas complètement prédictibles. En effet, les variations des procédés de fabrication sont très importantes aux échelles des puces. Par conséquent, la conception de tels systèmes dans les technologies nanométriques est désormais contrainte par de nombreux paramètres tels que la robustesse aux variations des procédés de fabrication et la consommation d'énergie. Ceci implique de disposer d'algorithmes efficaces, intégrés dans la puce, susceptibles d'adapter le comportement du système aux variations des charges des processeurs tout en faisant face simultanément aux variations des paramètres qui ne peuvent pas être prédits ou modélisées avec précision au moment de la conception. Dans ce contexte, ce travail de thèse porte sur la conception de systèmes dit « GALS » (Globally Asynchronous Locally Synchronous) conçus autour d’un réseau de communication intégré à la puce (Network-on-Chip ou NoC) exploitant les nouvelles générations de technologie CMOS. Une nouvelle méthode permettant de contrôler dynamiquement la vitesse des différents îlots du NoC grâce à un contrôle de la tension et de la fréquence en fonction de la qualité locale des procédés de fabrication sur chaque îlot est proposée. Cette technique de contrôle permet d’améliorer les performances du système en consommation, et d’augmenter son rendement en fabrication grâce à l’utilisation des synergies au sein du système intégré. La méthode de contrôle est basée sur l’utilisation d'un anneau asynchrone programmable capable de prendre en compte la charge de travail dynamique et les effets de la variabilité des procédés de fabrication. Le contrôleur évalue en particulier la limite supérieure de fréquence de fonctionnement pour chaque domaine d'horloge. Ainsi, il n'est plus nécessaire de garantir les performances temporelles de chaque nœud au moment de la conception. Cela relâche considérablement les contraintes de fabrication et permet du même coup l'amélioration du rendement. / Continuous scaling of CMOS technology push circuit designs towards multi-core complex SoCs. Moreover, with the nanometric technologies, the integrated system performances after fabrication will not be fully predictable. Indeed, the process variations really become huge at the chip scale. Therefore the design of such complex SoCs in the nanoscale technologies is now constrained by many parameters such as the energy consumption and the robustness to process variability. This implies the need of efficient algorithms and built-in circuitry able to adapt the system behavior to the workload variations and, at the same time, to cope with the parameter variations which cannot be predicted or accurately modeled at design time. In this context, this thesis work addresses the design of GALS-based NoC architectures in the upcoming CMOS technologies. A novel methodology to dynamically control the speed of different voltage-frequency NoC islands according to the process variability impact on each domain is proposed. This control technique can improve the performances, the energy consumption, and the yield of future SoC architectures in a synergistic manner. The control methodology is based on the design of an asynchronous programmable self-timed ring where the controller takes into account the dynamic workload and the process variability effects. The controller especially considers the operating frequency limit which does not exceed the maximum locally allowed value for a given clock domain. With such an approach, it is no more required to separately guaranty the performance for each node. This drastically relaxes the fabrication constraints and helps the yield enhancement.
2

Formal Verification Methodologies for NULL Convention Logic Circuits

Le, Son Ngoc January 2020 (has links)
NULL Convention Logic (NCL) is a Quasi-Delay Insensitive (QDI) asynchronous design paradigm that aims to tackle some of the major problems synchronous designs are facing as the industry trend of increased clock rates and decreased feature size continues. The clock in synchronous designs is becoming increasingly difficult to manage and causing more power consumption than ever before. NCL circuits address some of these issues by requiring less power, producing less noise and electro-magnetic interference, and being more robust to Process, Voltage, and Temperature (PVT) variations. With the increase in popularity of asynchronous designs, a formal verification methodology is crucial for ensuring these circuits operate correctly. Four automated formal verification methodologies have been developed, three to ensure delay-insensitivity of an NCL circuit (i.e., prove Input-Completeness, Observability, and Completion-Completeness properties), and one to aid in proving functional equivalence between an NCL circuit and its synchronous counterpart. Note that an NCL circuit can be functionally correct and still not be input-complete, observable, or completion-complete, which could cause the circuit to operate correctly under normal conditions, but malfunction when circuit timing drastically changes (e.g., significantly reduced supply voltage, extreme temperatures). Since NCL circuits are implemented using dual-rail logic (i.e., 2 wires, rail0 and rail1, represent one bit of data), part of the functional equivalence verification involves ensuring that the NCL rail0 logic is the inverse of its rail1 logic. Equivalence verification optimizations and alternative invariant checking methods were investigated and proved to decrease verification times of identical circuits substantially. This work will be a major step toward NCL circuits being utilized more frequently in industry, since it provides an automated verification method to prove correctness of an NCL implementation and equivalence to its synchronous specification, which is the industry standard.
3

Asynchronous Design Of Systolic Array Architectures In Cmos

Ismailoglu, Ayse Neslin 01 April 2008 (has links) (PDF)
In this study, delay-insensitive asynchronous circuit design style has been adopted to systolic array architectures to exploit the benefits of both techniques for improved throughput. A delay-insensitivity verification analysis method employing symbolic delays is proposed for bit-level pipelined asynchronous circuits. The proposed verification method allows datadependent early output evaluation to co-exist with robust delay-insensitive circuit behavior in pipelined architectures such as systolic arrays. Regardless of the length of the pipeline, delay-insensitivity verification of a systolic array with early output evaluation paths in onedimension is reduced to analysis of three adjacent systoles for eight possible early/late output evaluation scenarios. Analyzing both combinational and sequential parts concurrently, delay-insensitivity violations are located and corrected at structural level, without diminishing the early output evaluation benefits. Since symbolic delays are used without imposing any timing constraints on the environment / the method is technology independent and robust against all physical and environmental variations. To demonstrate the verification method, adders are selected for being at the core of data processing systems. Two asynchronous adder topologies in the delay-insensitive dual-rail threshold logic style, having data-dependent early carry evaluation paths, are converted into bit-level pipelined systolic arrays. On these adders, data-dependent delay-insensitivity violations are detected and resolved using the proposed verification technique. The modified adders achieved the targeted O(log2n) average completion time and -as a result of bit-level pipelining- nearly constant throughput against increased bit-length. The delay-insensitivity verification method could further be extended to handle more early output evaluation paths in multi-dimension.
4

Design of an Innovative GALS (Globally Asynchronous Locally Synchronous), Non-Volatile Integrated Circuit for Space Applications / Conception de Circuit Intégré Innovant GALS (Globally Asynchronous Locally Synchronous) Non-Volatile pour Application Spatiale

Lopes, Jeremy 18 September 2017 (has links)
Aujourd'hui, il existe plusieurs façons de développer des circuits microélectroniques adaptés aux applications spatiales qui répondent aux contraintes sévères de l'immunité contre les radiations, que ce soit en termes de technique de conception ou de processus de fabrication. Le but de ce doctorat est d'une part de combiner plusieurs techniques nouvelles de microélectronique pour concevoir des architectures adaptées à ce type d'application et d'autre part, d'incorporer des composants magnétiques non-volatiles intrinsèquement robustes aux rayonnements. Un tel couplage serait tout à fait novateur et profiterait sans précédent, en termes de surface, de consommation, de robustesse et de coût.Contrairement à la conception de circuits synchrones qui reposent sur un signal d'horloge, les circuits asynchrones ont l'avantage d'être plus ou moins insensibles aux variations temporel résultant par exemple des variations du processus de fabrication. En outre, en évitant l'utilisation d'une horloge, les circuits asynchrones ont une consommation d'énergie relativement faible. Les circuits asynchrones sont généralement conçus pour fonctionner en fonction des événements déterminés grâce à un protocole de "poignée de main" spécifique.Pour les applications avioniques et spatiales, il serait souhaitable de fournir un circuit asynchrone rendu robuste contre les effets des radiations. En effet, la présence de particules ionisantes à haute altitude ou dans l'espace peut induire des courants perturbateurs dans des circuits intégrés qui peuvent être suffisants pour provoquer un basculement à l'état binaire maintenu par une ou plusieurs grilles. Cela peut provoquer un dysfonctionnement du circuit, connu dans l'état de l'art en tant que single event upset (SEU). Il a été proposé de fournir un module redondant double (Dual Modular Redundency: DMR) ou un module redondant triple (Tripple Modular Redundcy: TMR) dans une conception de circuit asynchrone afin de fournir une protection contre les radiations. De telles techniques s'appuient sur la duplication du circuit dans le cas de DMR, ou en triplant le circuit dans le cas de TMR, et en détectant une discordance entre les sorties des circuits comme indication de l'apparition d'une SEU.L'intégration de composants non-volatils intrinsèquement robustes, tels que les jonctions de tunnel magnétique (JTM), l'élément principal de la mémoire MRAM, pourrait conduire à de nouvelles façons de retenir les données dans des environnements difficiles. Les dispositifs JTM sont constitués de matériaux ferromagnétiques avec des propriétés magnétiques qui ne sont pas sensibles aux rayonnements. Les données sont stockées sous la forme de la direction de l'aimantation et non sous la forme d'une charge électrique, qui est une propriété essentielle pour les applications spatiales. Il est également largement reconnu dans le domaine de la microélectronique que les circuits intégrés fabriqués sur les substrats SOI (Silicon On Insulator) sont plus robustes aux radiations.Il existe donc un besoin dans l'état de l'art pour un circuit ayant une surface et une consommation d'énergie relativement faibles, et qui permet une récupération après un SEU sans nécessiter de réinitialisation et qui présente des caractéristiques non-volatiles. L'objectif de ce doctorat est de combiner tous les avantages mentionnés ci-dessus en regroupant plusieurs méthodes de conception microélectronique répondant aux contraintes des applications spatiales dans une nouvelle architecture. Un Circuit complet a été imaginé, conçu, simulé et envoyé en fabrication. Ce circuit est composé d'un pipeline asynchrone d'additionneur et d'un test intégré complexe connu sous le nom de BIST (Built In Self Test). Apres fabrication, ce circuit sera testé. Premièrement des tests fonctionnels vont être réalisés, puis des tests sous laser pulsé seront menés ainsi que sous attaques aux ions lourds. / Today, there are several ways to develop microelectronic circuits adapted for space applications that meet the harsh constraints of immunity towards radiation, whether in terms of technical design or manufacturing process. The aim of this doctorate is on the one hand to combine several novel techniques of microelectronics to design architectures adapted to this type of application, and on the other hand to incorporate non-volatile magnetic components inherently robust to radiation. Such an assembly would be quite innovative and would benefit without precedent, in terms of surface, consumption, robustness and cost.In contrast with synchronous circuit designs that rely on a clock signal, asynchronous circuits have the advantage of being more or less insensitive to delay variations resulting for example from variations in the manufacturing process. Furthermore, by avoiding the use of a clock, asynchronous circuits have relatively low power consumption. Asynchronous circuits are generally designed to operate based on events determined using a specific handshake protocol.For aviation and/or spatial applications, it would be desirable to provide an asynchronous circuit that is rendered robust against the effects of radiation. Indeed, the presence of ionising particles at high altitudes or in space can induce currents in integrated circuits that may be enough to cause a flip in the binary state held by one or more gates. This may cause the circuit to malfunction, known in the art as a single event upset (SEU). It has been proposed to provide dual modular redundancy (DMR) or triple modular redundancy (TMR) in an asynchronous circuit design in order to provide radiation protection. Such techniques rely on duplicating the circuit in the case of DMR, or triplicating the circuit in the case of TMR, and detecting a discordance between the outputs of the circuits as an indication of the occurrence of an SEU.The integration of inherently robust non-volatile components, such as Magnetic Tunnel Junctions (MTJ), the main element of MRAM memory, could lead to new ways of data retention in harsh environments. MTJ devices are constituted of ferromagnetic materials with magnetic properties that are not sensitive to radiation. Data is stored in the form of the direction of the magnetisation and not in the form of an electric charge, which is an essential property for space applications. It is also widely recognised in the field of microelectronics that integrated circuits manufactured on SOI (Silicon On Insulator) substrates are more robust to radiation.There is thus a need in the art for a circuit having relatively low surface area and power consumption, and that allows recovery following an SEU without requiring a reset and that has non-volatile characteristics. The objective of this doctorate is to combine all the above mentioned benefits by regrouping several methods of microelectronic design responding to the constraints of space applications into a novel architecture. A complete circuit has been created, designed, simulated, validated and sent to manufacturing in a 28nm FD-SOI process. This circuit is composed of an adder pipeline and a complex BIST (Build In Self Test). When fabricated, this circuit will be tested. First a functional test will be realised, then laser pules attacks will be performed and finally a heavy ions attack campaign.
5

Conception d'un processeur ultra basse consommation pour les noeuds de capteurs sans fil / Design of an ultra low power processor for wireless sensor nodes

Berthier, Florent 08 December 2016 (has links)
Les travaux de cette thèse se concentrent sur la réduction de l'énergie consommée et l'amélioration des temps de réveil du microcontrôleur par des innovations au niveau de l'architecture, du circuit et de la gestion de l'énergie. Ces travaux proposent une architecture de microcontrôleur partitionnée entre un processeur de réveil programmable, appelé Wake Up Controller, s'occupant des tâches courantes du nœud de capteurs et un processeur principal gérant les tâches irrégulières. Le Wake Up Controller proposé dans ces travaux de thèse est un processeur RISC 16-bit dont le jeu d'instructions a été adapté pour gérer les tâches régulières du nœud, et n'exécute que du code sur interruptions. Il est implémenté en logique mixte asynchrone/synchrone. Un circuit a été fabriqué en technologie UTBB FDSOI 28nm intégrant le Wake-Up Controller. Le cœur atteint une performance de 11,9 MIPS pour 125μW de consommation moyenne en phase active et un réveil depuis le mode de veille en 55ns pour huit sources de réveil possibles. La consommation statique est d'environ 4μW pour le cœur logique asynchrone à 0,6V sans utilisation de gestion d'alimentation (power gating) et d'environ 500nW avec. / This PhD work focuses on the reduction of energy consumption and wake up time reduction of a WSN node microcontroller through innovations at architectural, circuit and power management level. This work proposes a partitioned microcontroller architecture between a programmable wake up processor, named Wake Up Controller on which this work is focused, and a main processor. The first deals with the common tasks of a wireless sensor node while the second manages the irregular tasks. TheWake Up Controller proposed in this work is a 16-bit RISC processor whose instruction set has been adapted to handle regular tasks of a sensor node. It only executes code on interruptions. It is implemented in asynchronous / synchronous mixed logic to improve wake up time and energy. A circuit was fabricated in a 28nm UTBB FDSOI technology integrating the Wake Up Controller. The core reaches 11,9 MIPS for 125 μW average power consumption in active phase and wakes up from sleep mode in 55ns from eight possible interruption sources. The static power consumption is around 4μW for the asynchronous logic core at 0.6V without power gating and 500nW when gated.
6

Asynchronous Physical Unclonable Function using FPGA-based Self-Timed Ring Oscillator

Silwal, Roshan 27 November 2013 (has links)
No description available.
7

Méthode de discrétisation adaptée à une logique événementielle pour l'utra-faible consommation : application à la reconnaissance de signaux physiologiques / Discretization method adapted to an event-logic architecture for ultra-low power consumption : a physiological pattern recognition application

Le Pelleter, Tugdual 13 May 2015 (has links)
Les systèmes embarqués mobiles font partis intégrante de notre quotidien. Afin de les rendre plus adaptésaux usages, ils ont été miniaturisés et leur autonomie a été augmentée, parfois de façon très considérable.Toutefois, les propositions d’amélioration butent désormais sur les possibilités de la technologie des circuitsintégrés. Pour aller plus loin, il faut donc envisager de repenser la chaîne de traitement du signal afin deréduire la consommation de ces dispositifs. Cette thèse développe une approche originale pour exploiterefficacement l’échantillonnage par traversée de niveaux d’une part et, d’autre part, associe cet échantillonnageà une logique évènementielle afin de réduire drastiquement la consommation d’énergie des systèmesintégrés autonomes. Une méthode de discrétisation adaptée à une application de reconnaissance de signauxphysiologiques, utilisée comme exemple dans cette thèse, y est présentée. Un premier prototype en logiqueévènementielle (asynchrone) sur circuit FPGA a permis de valider cette stratégie et de démontrer les bénéficesde cet échantillonnage dédié en termes de réduction de l’activité par rapport à un échantillonnage uniforme.Un second prototype en logique asynchrone et conçu en technologie CMOS AMS 0.35 μm a permis de validerpar simulation électrique un gain extrêmement important sur la consommation électrique du dispositif. / Our everyday life is highly dependent on mobile embedded systems. In order to make them suitable to differentapplications, they have underwent size reduction and lifetime extension. However, these improvementsare currently limited by the possibilities of the integrated circuits technologies. In order to push back theboundaries, it is necessary to reconsider the whole digital signal processing chain from scratch to sustain thepower consumption reduction in this kind of system. This work develops on the first hand a strategy thatsmartly uses the level-crossing sampling scheme and on the other combines this sampling method with eventlogicto highly reduce the power consumption in mobile embedded systems. A discretisation method adaptedto the recognition of physiological patterns application is described. A first event-logic (asynchronous) prototypeimplemented on FPGA proved the potential benefits that an adapted sampling scheme could offersto reduce activity compared to a uniform sampling scheme. Electrical simulations performed on a secondprototype, also designed in asynchronous logic, with CMOS AMS 0.35 μm technology, validated a high gainin power consumption.

Page generated in 0.0432 seconds