• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 10
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 124
  • 34
  • 31
  • 24
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

Zuluaga-Arias, Manuel D. 07 July 2011 (has links)
Earth's radiation budget is directly influenced by aerosols through the absorption of solar radiation and subsequent heating of the atmosphere. Aerosols modulate the hydrological cycle indirectly by modifying cloud properties, precipitation and ocean heat storage. In addition, polluting aerosols impose health risks in local, regional and global scales. In spite of recent advances in the study of aerosols variability, uncertainty in their spatial and temporal distributions still presents a challenge in the understanding of climate variability. For example, aerosol loading varies not only from year to year but also on higher frequency intraseasonal time scales producing strong variability on local and regional scales. An assessment of the impact of aerosol variability requires long period measurements of aerosols at both regional and global scales. The present dissertation compiles a large database of remotely sensed aerosol loading in order to analyze its spatio-temporal variability, and how this load interacts with different variables that characterize the dynamic and thermodynamic states of the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic satellite observations, and reanalysis datasets is used in the analysis to investigate aerosol-environment interactions. A diagnostic study is conducted to produce global and regional aerosol satellite climatologies, and to analyze and compare the validity of aerosol retrievals. We find similarities and differences between the aerosol distributions over various regions of the globe when comparing the different satellite retrievals. A nonparametric approach is also used to examine the spatial distribution of the recent trends in aerosol concentration. A significant positive trend was found over the Middle East, Arabian Sea and South Asian regions strongly influenced by increases in dust events. Spectral and composite analyses of surface temperature, atmospheric wind, geopotential height, outgoing longwave radiation, water vapor and precipitation together with the climatology of aerosols provide insight on how the variables interact. Different modes of variability, especially in intraseasonal time scales appear as strong modulators of the aerosol distribution. In particular, we investigate how two modes of variability related to the westward propagating synoptic African Easterly Waves of the Tropical Atlantic Ocean affect the horizontal and vertical structure of the environment. The statistical significance of these two modes is tested with the use of two different spectral techniques. The pattern of propagation of aerosol load shows good correspondence with the progression of the atmospheric and oceanic synoptic conditions suitable for dust mobilization over the Atlantic Ocean. We present extensions to previous studies related with dust variability over the Atlantic region by evaluating the performance of the long period satellite aerosol retrievals in determining modes of aerosol variability. Results of the covariability between aerosols-environment motivate the use of statistical regression models to test the significance of the forecasting skill of daily AOD time series. The regression models are calibrated using atmospheric variables as predictors from the reanalysis variables. The results show poor forecasting skill with significant error growing after the 3rd day of the prediction. It is hypothesized that the simplicity of linear models results in an inability to provide a useful forecast.
92

The effect of climate and aerosol on crop production: a case study of central Asia

Ozdes, Mehmet 10 July 2012 (has links)
The effect of recent climate change in Central Asia poses a significant and potentially serious challenge to the region’s agricultural sector. An investigation of the aerosol-climate- crop yield correlation in this region is essential for a better understanding of the effect of aerosols and climate on Central Asian agriculture. Our goal is to investigate the linkages between aerosol, climate and major crop production (cotton, maize, wheat, and rice) in specified agricultural regions in the five Central Asian countries. Our approach is to perform the Pearson’s Correlation Coefficient analysis in order to observe the statistical correlation between crop yield, temperature, precipitation, and aerosol optical depth (AOD), for each indicated agricultural region in the selected countries. Besides, using NASA GIOVANNI website tools, we retrieve distribution maps and time series of temperature, precipitation and AOD to facilitate the analyses. The research shows that in some aspects, the relation between AOD, climate, and crop yield is different in Central Asia than in previous global or large scale research hypotheses. The statistical correlations vary not only across countries but also across agricultural regions. For example, in Kazakhstan, opposite correlations exist between precipitation and AOD in two different agricultural regions even though both regions are rain-fed. In the more arid countries (with lower rain rates) such as Turkmenistan and Uzbekistan, no correlation exists between crop production and temperature, precipitation, and AOD, while the less arid (with higher rain rate) countries (Kazakhstan, Kyrgyzstan, and Tajikistan) indicate a positive correlation.
93

Modeling the Direct and Indirect Effects of Atmospheric Aerosols on Tropical Cyclones

Lee, Keun-Hee 2011 December 1900 (has links)
The direct and indirect effects of aerosols on the hurricane ‘Katrina’ have been investigated using the WRF model with a two-moment bulk microphysical scheme and modified Goddard shortwave radiation scheme. Simulations of the hurricane ‘Katrina’ are conducted under the three aerosol scenarios: 1) the clean case with an aerosol number concentration of 200 cm-1, 2) the polluted case with a number concentration of 1000 cm-1, and 3) the aerosol radiative effects (AR) case with same aerosol concentration as polluted case but with a modified shortwave radiation scheme. The polluted and AR cases have much larger amounts of cloud water and water vapor in troposphere, and the increased cloud water can freeze to produce ice water paths. A tropical cyclone in dirty and dusty air has active rainbands outside the eyewall due to aerosol indirect effects. The aerosol direct effect can lead to the suppressing of convection and weakening of updraft intensity by warming the troposphere and cooling the surface temperature. However, these thermal changes in atmosphere are concerned with the enhanced amounts of cloud hydrometeors and modification of downdraft and corresponding the low level winds in rainband regions. Thus, the AR case can produce the enhanced precipitation even in the weakest hurricane. When comparing the model performance between aerosol indirect and direct effect by ensemble experiments, the adjustment time of the circulation due to modification of the aerosol radiative forcing by aerosol layers may take a longer time than the hurricane lifetime, and the results from the simulated hurricane show that it is more sensitive to aerosol indirect effects which are related to the cloud microphysics process changes. From this aerosol study, we can suggest that aerosols can influence the cloudiness, precipitation, and intensity of hurricanes significantly, and there may be different results in the meso-scale convective clouds cases. The hurricane system is a large and complex convective system with enormous heating energy and moistures. Moreover, relationships between various hydrometeors in hurricane systems are difficult to isolate and thus, it needs further study with more realistic cloud microphysical processes, aerosol distributions, and parameterizations.
94

Emissões veiculares em São Paulo: quantificação de fontes com modelos receptores e caracterização do material carbonáceo / Vehicle emissions in São Paulo: quantification of sources with receptor models and characterization of carbonaceous matter

Djacinto Aparecido Monteiro dos Santos Junior 12 May 2015 (has links)
A significativa emissão veicular na Região Metropolitana de São Paulo (RMSP), com mais de 7 milhões de veículos e uma população da ordem de 18 milhões de habitantes, fazem desta uma área crítica do ponto de vista de níveis de poluentes atmosféricos. Neste trabalho foi obtida a determinação quantitativa de fontes de poluentes atmosféricos na RMSP, em particular do material carbonáceo na fração fina (PM2.5) do aerossol atmosférico, focando na componente veicular. Como parte do projeto FONTES, coordenado pela Petrobrás, PUC-Rio e IFUSP, foram operadas por 1 ano quatro estações de amostragem localizadas em Congonhas (CGH), Ibirapuera (IBP), Cerqueira César (FSP) e Instituto de Física da USP (IFP), no período entre agosto de 2011 e janeiro de 2014. A concentração em massa de material particulado fino (PM2.5), grosso (PM2.5-10), e inalável (PM10) foi determinada através de análise gravimétrica. Íons solúveis foram determinados por cromatografia iônica (IC), elementos traços por fluorescência de raios-X (XRF) e as concentrações de black carbon equivalente por refletância ótica. As componentes de carbono orgânico (OC) e carbono elementar (EC), bem como as diversas frações carbonáceas foram determinadas por análises termo-ópticas em equipamento da Sunset Inc., seguindo vários protocolos analíticos. As concentrações de gases tais como CO, NOx, e O3 foram fornecidas por estações de monitoramento da CETESB. Modelos receptores tais como APFA (Absolute Principal Factor Analysis) foram usados na determinação quantitativa de fontes de poluentes. Observou-se uma grande similaridade nas concentrações medidas nas estações, indicando uma homogeneidade nas concentrações e composição de aerossóis da moda fina (PM2.5) na RMSP. Nas estações amostradoras IFP, FSP e IBP foram observadas concentrações entre 10 e 12g m-3 na fração fina e na faixa de 16 a 18 g m-3 na fração grossa. Em CGH, observou-se uma concentração média de 34 g m-3, para PM10. O balanço químico de massa mostrou, na fração fina, impacto predominante de aerossóis orgânicos (~50%), EC (~20%) e sulfato (~20%). Na fração grossa verificaram-se concentrações dominantes de aerossóis de poeira do solo (~40%). A APFA identificou e quantificou o impacto das componentes veicular (~60%), ressuspensão de solo (~10%), emissões industriais e de sulfato (~20%), aerossol marinho (~5%) e aerossol secundário (~5%). O impacto da componente veicular é dominante na RMSP. A aplicação dos modelos receptores forneceu a caracterização do material carbonáceo de acordo com as fontes de emissões e um perfil de volatilidade do material carbonáceo. / The large vehicle fleet in the Metropolitan Region of São Paulo (RMSP), with more than 7 million vehicles and a population of about 18 million people, make this a critical area from the point of view of atmospheric pollutants levels. This work focused on the quantitative determination of air pollutant sources, focusing at the vehicular component and the carbonaceous material in the fine fraction (PM2.5) of the atmospheric aerosol of RMSP. As part of the FONTES research project, coordinated by Petrobrás, PUC-Rio and IFUSP, it was operated for 1 year four sampling stations located in Congonhas (CGH), Ibirapuera (IBP), Cerqueira César (FSP) and the Institute of Physics at USP (IFP) during the period from August 2011 to January 2014. The mass concentrations of fine (PM2.5), coarse (PM2.5-10) and inhalable (PM10) particulate matter was determined by gravimetric analysis. Soluble ions were determined by ion chromatography (IC), trace elements by X-ray fluorescence (XRF) and equivalent black carbon (EBC) concentration by optical reflectance. The organic carbon (OC) and elemental carbon (EC) components, as well as several carbonaceous fractions were determined by thermo-optical analysis using a Sunset Inc. equipment, following various analytical protocols. The concentration of gases such as CO, NOx, and O3 were obtained from CETESB air pollution monitoring stations. Receptors models such APFA (Absolute Principal Factor Analysis) were used for the quantification of the impacts of polluting sources. It was observed similar concentrations in the several sampling stations, showing uniformity in the concentrations and aerosol composition of PM2.5 in the RMSP. For the sites IFP, FSP and IBP were observed concentrations between 10 and 12 g m-3 in the fine fraction and in the range from 16 to 18 g m-3 in the coarse fraction. In the CGH site, there was an average concentration of 34 g m-3 of PM10. The chemical mass balance showed large presence of organic aerosols (~50%), EC (~20%) and sulfate (~20%) in the fine mode fraction. In the coarse fraction soil dust aerosols (~40%) dominates. The APFA identified and quantified the impact of vehicular components (~60%), soil dust (~10%), industrial emissions and sulfate (~20%), marine aerosol (~5%) and secondary aerosol (~5%). Vehicular emissions is the major air pollution component at the RMSP. The application of receptor models has provided the source characterization of carbonaceous material according to their volatility profile.
95

Assesment Of Air Quality And Anthropogenic Aerosol Fraction Over India Using Observations And Model

Srivastava, Nishi 08 1900 (has links) (PDF)
Air quality degradation is emerging to be an issue of major concern in India. Recent investigations have shown that anthropogenic aerosols have significant impact on climate as well as on health. In fourth assessment report of IPCC, it has been mentioned that radiative effects of anthropogenic aerosols constitute one of the major uncertainties in assessing aerosol-induced climate impact. In addition to climate impacts, aerosol causes respiratory and cardiovascular diseases, air quality degradation, acidification of aquatic and terrestrial ecosystems. Characterization of anthropogenic aerosol fraction (defined as the fraction of anthropogenic aerosols to composite aerosols) is an appealing topic of research in current scenario. The first step towards achieving this goal is to separate natural aerosol from composite aerosols, which is a complex task. The main objective of this thesis work is the assessment of air quality and anthropogenic aerosol fraction over India using observations (ground-based as well as satellite-based) and chemistry-transport model. Specifically objectives are (a) assessment of air quality and anthropogenic aerosol fraction over Indian region (b) develop a method to derive natural aerosol properties over land and oceans using multi-satellite data analysis, which is first step towards separating natural aerosol effects from its anthropogenic counter parts and (c) evaluate performance of CHIMERE chemistry-transport model for Indian region and validate its suitability to air quality studies over India. In this thesis, different approaches have been followed such as ground-based observations, multi-satellite data analysis and CHIMERE transport model. We have used multi-year observations of particulate mass (PM) concentration, aerosol black carbon (BC) mass concentration and aerosol optical depth (AOD) from a network of observatories to make an assessment of ambient air quality over India. First, we have developed a method to estimate dust and sea-salt optical depth using multi-satellite data analysis. This enabled the determination of anthropogenic aerosol fraction over land and ocean and we have validated this method by comparing against observations. Surprisingly, even over desert locations in India and Saudi Arabia, the anthropogenic fraction were unexpectedly high (~0.3 to 0.4) and the regionally averaged anthropogenic fraction over India was 0.620.06 (for the year 2004). The CHIMERE chemistry-transport model was used to simulate PM, BC and AOD over India and are compared with measurements. Evaluation of CHIMERE output shows that diurnal and seasonal trends are captured reasonably well by the model. It was found that absolute magnitudes differ substantially during monsoon months. Model simulations are also used to estimate anthropogenic fraction over Indian region and are compared with observations. Implications of the results are discussed. Mineral dust constitutes the single largest contributor of natural aerosols over continents. The first step towards separating natural aerosol radiative impact from its anthropogenic counterparts over continents is to gather information on dust aerosols. The infrared (IR) radiance (10.5–12.5 mm) acquired from the Kalpana satellite (8-km resolution) was used to retrieve regional characteristics of dust aerosols over the Afro-Asian region during the winter of 2004, coinciding with a national aerosol campaign. Here, we used aerosol-induced IR radiance depression as an index of dust load. The regional distribution of dust over various arid and semi-arid regions of India and adjacent continents has been estimated, and these data in conjunction with regional maps of column aerosol optical depth (AOD) are used to infer anthropogenic aerosol fraction. Surprisingly, even over desert locations in India and Saudi Arabia, the anthropogenic fraction were relatively high (0.3 to 0.4) and the regionally averaged anthropogenic fraction over India was 0.62 ±0.06. Sea-salt constitutes the single largest contributor of natural aerosols over oceans. We derive sea-salt aerosol distribution using a method utilizing multi-satellite data analysis. This information was used in conjunction with dust aerosols retrieval to calculate anthropogenic fraction over land and ocean. First, we derived a relation between MODIS AOD and NCEP wind speed at the sea-surface. An exponential increase in AOD as a function of wind speed was observed from mid of southern ocean to northern Arabian Sea. Latitudinal variation of wind independent component of optical depth (τ0) and wind index (b) was used to estimate the sea-salt optical depth over Arabian Sea. The value of τ0 showed an exponential increase as we move towards north from 35°S while b showed linear increase. The derived relations for the τ0 and b have been used to derive the sea-salt AOD distribution over oceanic regions in the domain (Eq-30°N; 30°E-110°E). Then we subtract the natural aerosol contribution from composite AOD data from MISR to obtain anthropogenic aerosol fraction. Over Indian region, high anthropogenic fraction was observed over northern belt specifically Indo-Gangetic Plains (IGP). Annually averaged anthropogenic fraction over Indian domain (4N-29.5N; 67E-88.5E) is ~0.43. Further, we have investigated the impact of sea-surface winds on sea-salt radiative effect in visible and infrared region with the help of SBDART radiative transfer model. The SBDART simulations have shown that at 15 m s-1, sea-salt induced shortwave cooling at the sea-surface was -86 W m-2. Derivation of anthropogenic aerosol fraction over whole Indian domain has demonstrated the importance of anthropogenic aerosols. This observation motivated us to examine the air quality over Bangalore, a fast growing city in India. We have analyzed data from ground based measurements of particulate matter, observations from satellites and also model simulations. Comparison with national threshold indicates that more than 50% of observations were above the residential threshold. To represent the air quality of Bangalore we have calculated the air quality index (AQI) for air pollutants. Coarse spatial and temporal resolution of observational data is one major shortcoming in such analysis. Therefore, satellite observations are alternative to quantify the air quality over large area. We have used MODIS AOD and RSPM to develop an empirical relation between these two parameters. A reasonably good agreement was observed between measured RSPM and RSPM derived using satellite data (by applying empirical relation). The CHIMERE chemistry-transport model was used to simulate PM, BC and AOD over India and are compared with measurements. Evaluation of CHIMERE output shows that diurnal and seasonal trends are captured reasonably well by the model. It was found that absolute magnitudes differ substantially during pre-monsoon and monsoon months. Model simulations are also used to estimate anthropogenic fraction over Indian region and are compared with observations. Implications of the results and future scope are discussed. The validation of model results suggests that CHIMERE model is suitable for simulating air quality over India with reasonable accuracy. This would in turn help us to address the impacts of air pollution on regional climate and help policy makers in order to reduce the air pollution. In summary, we have developed a new method to infer natural aerosol (sea-salt and dust) properties using multi-satellite data analysis. This technique has been applied to derive anthropogenic aerosol fraction over Indian region. Surprisingly, even over desert locations in India and Saudi Arabia, the anthropogenic fraction were relatively high (0.3 to 0.4) and regionally averaged anthropogenic fraction over India was 0.62±0.06 in 2004. This study indicates that multi-satellite observations can provide a powerful tool in monitoring air quality. We have noticed that anthropogenic fraction was 0.62 in 2004 and reduced to 0.43 in 2008. Major anthropogenic aerosol over India is BC and decreasing trend in BC could be one of the reasons for the decrease in anthropogenic fraction from 2004 to 2008. The CHIMERE chemistry-transport model was used to simulate PM, BC and AOD over India and are compared with measurements. Evaluation of CHIMERE output shows that diurnal and seasonal trends are captured reasonably well by the model. It was found that absolute magnitudes differ substantially during pre-monsoon and monsoon months. Presence of elevated aerosol layers during these seasons could be one of the sources for such discrepancy. Model simulations of anthropogenic fraction over Indian region are compared with observations and found good agreement. Results from this thesis moves us one step forward to reduce the uncertainties involved in anthropogenic aerosol fraction, its spatial and temporal distributions and regional distribution of OC/BC ratio, which are most important parameters in order to assess the climate forcing by anthropogenic aerosols.
96

Détermination expérimentale de la vitesse de dépôt sec des aérosols submicroniques en milieu naturel : influence de la granulométrie, des paramètres micrométéorologiques et du couvert / Experimental determination of submicron aerosol dry deposition velocity onto rural canopies : influence of aerosol size, of micrometeorological parameters and of the substrate

Damay, Pierre 07 April 2010 (has links)
Pour évaluer l'impact d’un rejet accidentel ou chronique de polluants dans les écosystèmes, il est important d’étudier le dépôt sec des aérosols en milieu rural. Le manque de données expérimentales en milieu rural sur la vitesse de dépôt sec des particules ayant une taille inférieure à 1 μm conduit à des incertitudes au vu des modèles et de leurs différences, qui vont jusqu’à dépasser un ordre de grandeur. Le but de cette étude est de développer une mesure directe de la vitesse de dépôt sec des aérosols (Vd), notamment en utilisant un impacteur à basse pression (Electrical Low Pressure Impactor, ELPI, DEKATI), à travers des mesures expérimentales in situ. L’originalité de la méthode est le calcul des flux de dépôt par corrélation turbulente. Les vitesses de dépôt sec ont été obtenues pour des aérosols atmosphériques de tailles comprises entre 7 nm et 2 μm, sur un terrain plat dans le sud-ouest de la France, sous différentes conditions atmosphériques, ainsi que sur différents couverts (maïs, herbe, sol nu). Vd est analysée en fonction du diamètre des particules et l’impact des conditions micro météorologiques est étudié. / To evaluate the impact of accidental or chronic pollutant releases on ecosystems, we must study the dry deposition of aerosols in rural areas. The lack of experimental data on the dry deposition velocity of particle sizes below 1 μm over rural environments leads to uncertainties regarding models and differences between them, which exceed one order of magnitude. The aim of thisstudy is to develop a method, especially using an Electrical Low Pressure Impactor (Outdoor ELPI, DEKATI) to determine aerosol dry deposition velocities (Vd) over rural areas through experimental measurements. This method is based on eddy covariance flux calculation and spectral analysis correction. Dry deposition velocities were obtained for atmospheric aerosols sizing from 7 nm to2 μm, in the South-West of France on a flat terrain under varied meteorological conditions andvaried substrates (maize, grass and earth). Vd was analysed as a function of the particle diameters, and the impact of micrometeorological parameters was studied.
97

Retrieval of aerosol optical depth from MODIS data at 500 m resolution compared with ground measurement in the state of Indiana

Alhaj Mohamad, Fahed 05 May 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Objective: "The purpose of this research is: Study the use of Moderate Resolution Imaging Spectroradiometer (MODIS) data in retrieving the aerosol optical depth (AOD) over Indiana State at high resolution of 500 meters. Examine the potential of using the resulted AOD data as an indicator of particulate air pollution by comparing the satellite derived AOD data with the ground measurements (provided from the continuous air monitors available over the study area). If an association should be found, AOD data would be used to map particulate matter (PM) concentration. Assess current and future ambient concentrations of air pollutants in the State of Indiana using the AOD."
98

MULTIPHASE ATMOSPHERIC CHEMISTRY OF SELECTED SECONDARY ORGANIC AEROSOLS

Ana C Morales (14216438) 06 December 2022 (has links)
<p>  </p> <p>Secondary organic aerosols (SOA) play an important role in the Earth’s radiative budget due to their potential to either warm or cool the atmosphere through light absorption or light scattering, respectively, and to cool or warm the lower atmosphere by acting as cloud condensation nuclei. SOA are air-suspended liquid and semi-solid droplets that form through multiphase chemical processes. Atmospheric photochemical oxidation of volatile organic compounds (VOCs) in the presence of air pollutants, such as NO<sub>x</sub> (NO + NO<sub>2</sub>) and the OH radical, promote formation of low volatility organic products that eventually condense to form SOA. To better understand the sources and sinks, formation, and fate of SOA, laboratory studies investigating oxidation of a biogenic VOC as well as anthropogenic emissions of SOA precursors were conducted. The first study (<em>Chapter 3</em>) investigated the OH-initiated oxidation of β-ocimene, a biogenic volatile organic compound (BVOC) released from vegetation, including forests, agricultural landscapes, and grasslands emitted during the daytime. The oxidation of BVOCs in the presence of NO<sub>x</sub> leads to the formation of functionalized organic nitrate (RONO<sub>2</sub>) compounds and isomers that easily condense to form SOA. To understand their atmospheric fate, the RONO<sub>2</sub> hydrolysis rate constants were quantified and found to be highly pH dependent. The findings of this study provide key insights into the formation and fate of organic nitrates and NO<sub>x</sub> cycling in forested environments from daytime monoterpenes that were not previously included in atmospheric models. </p> <p>The second study (<em>Chapters 4 and 5</em>) investigated condensed waste emissions generated during Cured-In-Place-Pipe (CIPP) installations. This installation process is the most popular, least expensive, and most frequently used technology that cures leaking sanitary and stormwater sewers. Waste plumes discharged during pipe manufacture are complex multi-phase mixtures of volatile and semi-volatile organic compounds (VOC and SVOC, respectively), primary organic aerosols and SOA, fine debris of partially cured resin, and direct emission of nanoplastic particles that are all blown into the atmospheric environment at significant concentrations at worksites. This work unveiled a direct emission source of airborne nanoplastic particles as well as substantial concentrations of hazardous compounds and SOA precursors that were previously unrecognized. </p>
99

Acid-Base Equilibria in Organic-Solvent/Water Mixtures and Their Relevance to Gas/Particle Partitioning in the Atmosphere and in Tobacco Smoke

DeGagne, Julia Lynn 11 March 2016 (has links)
Acid-base equilibria in organic particulate matter (PM) are poorly understood, but have important implications for air quality and public health. First, acid-base reactions in organic particulate matter affect the gas/particle partitioning of organic compounds in the atmosphere, and these processes are not currently represented in atmospheric and climate change models. Second, the acid-base balance of tobacco smoke affects the amount of nicotine absorbed by the smoker, and a greater understanding of this balance would help to relate cigarette smoke composition to the addictive properties of cigarettes. This work presents data related to both air quality and tobacco smoke modeling. The gas/particle partitioning behavior of organic acids and bases is highly dependent on acid-base equilibria and speciation between neutral and ionic forms, because ionic compounds do not volatilize. Descriptions of acid dissociation behavior in atmospheric PM have, to date, focused primarily on phases in which the solvent is water; however, atmospheric PM may include up to 90% organic matter. Data is presented here describing the acid dissociation behavior of organic acids and protonated amines in organic/aqueous mixtures (chosen to approximate the characteristics of organic PM) with varying levels of water content. In such mixtures, the preferential solvation of ions and neutral molecules (by the aqueous portion or the organic portion, respectively) affects the acid-base equilibria of the solutes. It is demonstrated that neutralization reactions between acids and bases that create ions are likely to have non-negligible effects on gas/particle partitioning under certain atmospheric conditions. Thus, including acid-base reactions in organic gas/particle partitioning models could result in a greater proportion of acidic and basic compounds partitioning to the particulate phase. In addition, the acid dissociation constants (pKa values) of atmospherically-relevant acids and bases vary with water content. Specifically, as water content increases, the pKa values of organic acids decrease dramatically, while the pKa values of protonated amines changes only slightly. This situation can result in drastically different speciations and partitioning behavior depending on water content. This second part of this work reports some of the data needed to develop an acid-base balance for tobacco smoke PM using electroneutrality as a governing principle. Five brands of cigarettes were sampled and the smoke PM extracted. Cations (sodium, potassium, and ammonia) and anions (organic acids, nitrate, nitrite, and chloride) were measured using ion chromatography. Ammonia and organic acids were also re-measured after the acidification of the sample in order to determine whether "bound" forms of these compounds exist in cigarette PM. Weak acids were determined by acid-base titration to determine whether or not all of the weak acids (including organic acids) had been accounted for by the ion chromatography. Weak bases were also determined by acid-base titration, and the majority of weak base is expected to be accounted for by total nicotine (to be measured in a separate analysis). In terms of total acidic species and total basic species, two of the five cigarette brands measured were relatively basic, and three were relatively acidic. Between 50% and 89% of the titrated acids were accounted for by the anionic species measured in ion chromatography. Based on samples tested after sample acidification, about half of the potential ammonia in tobacco smoke PM exists in "bound" form. The speciation of weak acids and bases in tobacco smoke PM cannot be determined from this data alone, because the equilibrium constants of acid-base reactions are not understood in complex organic media. The data presented here, when combined with data from free-base and total nicotine analyses, represent a first step toward a predictive model of acid-base behavior in tobacco smoke PM.
100

Characterisation of ambient atmospheric aerosols using accelerator-based techniques

Sekonya, Kamela Godwin 15 April 2010 (has links)
Atmospheric haze, which builds up over South Africa including our study areas, Cape Town and the Mpumalanga Highveld under calm weather conditions, causes public concern. The scope of this study was to determine the concentration and composition of atmospheric aerosol at Khayelitsha (an urban site in the Western Cape) and Ferrobank (an industrial site in Witbank, Mpumalanga). Particulate matter was collected in Khayelitsha from 18 May 2007 to 20 July 2007 (i.e. 20 samples) using a Partisol-plus sampler and a Tapered Element Oscillating Microbalance (TEOM) sampler. Sampling took place at Ferrobank from 07 February 2008 to 11 March 2008 (6 samples) using a Partisol-plus sampler and an E-sampler. The gravimetric mass of each exposed sample was determined from pre- and post-sampling weighing. The elemental composition of the particulate matter was determined for 16 elements at Khayelitsha using Proton Induced X-ray Emission (PIXE). The concentration of the elements Al, Si, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Br, Sn, and Pb was determined by analysing the PIXE spectra obtained. In similar manner, the elemental composition of the particulate matter was determined for 15 elements at Ferrobank (Al, Si, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Br and Pb). The average aerosol mass concentrations for different days at the Khayelitsha site were found to vary between 8.5 μg/m3 and 124.38 μg/m3. At the Khayelitsha site on three occasions during the sampling campaign the average aerosol mass concentrations exceeded the current South African air quality standard of 75 μg/m3 over 24 h. At the Ferrobank site, there are no single days that exceeded the limit of the South African air quality standard during the sampling campaign. Enrichment factors for each element of the particles sampled with an aerodynamic diameter of less than 10 μm (PM10) samples have been calculated in order to identify their possible sources. The analysis yielded five potential sources of PM10 : soil dust, sea salt, gasoline emissions, domestic wood and coal combustion. Interestingly, enrichment factor values for the Khayelitsha samples show that sea salt constitutes a major source of emissions, while Ferrobank samples, the source apportionment by unique ratios (SPUR) indicate soil dust and coal emission are the major sources of pollution. The source apportionment at Khayelitsha shows that sea salt and biomass burning are major source of air pollution.

Page generated in 0.0957 seconds