Spelling suggestions: "subject:"atomic force"" "subject:"atomic sorce""
721 |
Theoretical and experimental studies in III-Nitride semiconductor alloysAguileta Vazquez, Raul Ricardo 06 1900 (has links)
III-Nitride semiconductor materials have garnered significant attention among researchers due to their diverse applications stemming from their remarkable electrical and optical properties. This present thesis encompasses theoretical investigations conducted on InAlN and AlGaN for the purpose of designing light-emitting diodes (LEDs), along with experimental characterization experiments on BGaN thin films. The primary objective of this research is to delve deeply into the optoelectronic applications of InAlN and analyze the current state of BGaN.
Theoretical studies were carried out on InAlN-based deep-ultraviolet (DUV) LEDs, with a particular focus on elucidating the polarization properties exhibited by this material when combined with AlGaN. Additionally, an estimation of the band alignment of this system was included, taking into account the available reported data. The intention behind this work is to underscore the importance of designing novel optoelectronic devices that incorporate ternary-to-ternary heterointerfaces. However, it is crucial to carefully consider both the advantages and disadvantages of such interfaces in terms of carrier injection efficiency and radiative efficiency.
The experimental section of this thesis entailed the fabrication and characterization of BGaN thin films. A comprehensive understanding and development of this material are essential, as boron-alloys have garnered attention due to their unique properties. Nevertheless, there have been reports of epitaxial complications and theoretical limits associated with these alloys. In this section, we present the characteristics of the first conductive memory-effect-obtained p-type BGaN, doped with magnesium. Although the characterization of the reported samples includes techniques such as HRXRD, AFM, SEM, Hall, CTLM, SIMS, and CL, it is important to note that a more profound fundamental study is still underway.
The relevance of this work can be summarized into two key aspects: Firstly, it provides valuable insights and descriptions of novel heterojunctions for ultraviolet LEDs from a physics perspective. Secondly, it contributes to material advancements in the pursuit of developing new ternary-alloys, offering a material science perspective.
|
722 |
Regulating Lipid Organization and Investigating Membrane Protein Properties in Physisorbed Polymer-tethered MembranesSiegel, Amanda P. 07 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cell membranes have remarkable properties both at the microscopic level and the molecular level. The current research describes the use of physisorbed polymer-grafted lipids in model membranes to investigate some of these properties on both of these length scales. On the microscopic scale, plasma membranes can be thought of as heterogenous thin films. Cell membranes adhered to elastic substrates are capable of sensing substrate/film mismatches and modulating their membrane stiffness to more closely match the substrate. Membrane/substrate mismatch can be modeled by constructing lipopolymer-enriched lipid monolayers with different bending stiffnesses and physisorbing them to rigid substrates which causes buckling. This report describes the use of atomic force microscopy and epimicroscopy to characterize these buckled structures and to illustrate the use of the buckled structures as diffusion barriers in lipid bilayers. In addition, a series of monolayers with varying bending stiffnesses and thicknesses are constructed on rigid substrates to analyze changes in buckling patterns and relate the experimental results to thin film buckling theory.
On the molecular scale, plasma membranes can also be thought of as heterogeneous mixtures of lipids where the specific lipid environment is a crucial factor affecting membrane protein function. Unfortunately, heterogeneities involving cholesterol, labeled lipid rafts, are small and transient in live cells. To address this difficulty, the present work describes a model platform based on polymer-supported lipid bilayers containing stable raft-mimicking domains into which transmembrane proteins are incorporated (αvβ3, and α5β1integrins). This flexible platform enables the use of confocal fluorescence fluctuation spectroscopy to quantitatively probe the effect of cholesterol concentrations and the binding of native ligands (vitronectin and fibronectin for αvβ3, and α5β1) on protein oligomerization state and on domain-specific protein sequestration. In particular, the report shows significant ligand-induced integrin sequestration with a low level of dimerization. Cholesterol concentration increases rate of dimerization, but only moderately. Ligand addition does not affect rate of dimerization in either system. The combined results strongly suggest that ligands induce changes to integrin conformation and/or dynamics without inducing changes in integrin oligomerization state, and in fact these ligand-induce conformational changes impact protein-lipid interactions.
|
723 |
Exploring the Mechanical Stability and Visco-elasticity of Membrane Proteins by Single-Molecule Force MeasurementsJanovjak, Harald 19 December 2005 (has links)
Relatively little is known about the folding and stability of membrane proteins. Conventional thermal or chemical unfolding techniques probe the average behavior of large numbers of molecules and thus cannot resolve co-existing minor and major unfolding pathways and intermediates. Here, I applied single-molecule force measurements based on an atomic force microscope (AFM) to characterize the stability of the membrane protein bacteriorhodopsin (BR). In these mechanical unfolding experiments, an external pulling force played the role of the denaturant and lead to unfolding of the three-dimensional structure of individual proteins. It was found that single BRs unfold step-wise in a well-defined sequence of stable intermediates and in different unfolding pathways. Although single [alpha]-helices were sufficiently stable to unfold in individual steps they also exhibited certain probabilities to unfold in pairs. These observations support the "two-stage" and the "helical-hairpin" model of membrane protein folding. Dynamic force measurements showed that [alpha]-helices and helical hairpins are relatively rigid structures, which are stabilized by narrow energy barriers and have stabilities between 100-10?000 seconds. These forced unfolding experiments were complemented with the development of new force measurement techniques. It is demonstrated that hydrodynamic effects need to be considered to obtain more complete kinetic pictures of single molecules. In addition, two force spectroscopy approaches to measure the complex visco-elastic response of single molecules are presented and applied to BR. These experiments revealed that the unfolding patterns of single proteins are dominated by purely elastic polypeptide extension and determined the dissipative interactions associated with the unfolding of single [alpha]-helices. In addition, it was found that kinks result in a reduced unfolding cooperativity of [alpha]-helices.
|
724 |
Design of Smart Polymeric Materials with Responsive / Adaptive Adhesion PropertiesBiehlig, Ekaterina 02 July 2013 (has links)
Adhesion between different objects is happening everywhere. Without it, simple procedures like walking or holding something in a hand or attaching a postage stamp would be impossible. The life itself depends on adhesion on all levels, starting from the interactions between the living cells.
Adhesion between two substrates is a complex phenomenon, which at present is still not well understood. There are several factors determining the strength of adhesion: (i) molecular interactions at interface, (ii) mechanical properties of adhesive, and (iii) area of contact between adhesive and probing surface. Two surfaces are tacky when they possess the right balance between these factors.
Controlling the adhesion of materials is important in many fields ranging from industrial purposes to biomedical applications and everyday usage. There is a demand for “smart” materials with integrated functionalities that make them responsive, switchable, biocompatible, anti-bacterial, more energy efficient, or autonomous. In particular, materials for such cutting-edge applications like cell culture, drug delivery, tissue engineering, biosensors, anti/biofouling, microfluidics, climbing robots, sport equipment and many others require adjustable/tuneable adhesive properties.
Many efforts were directed towards fabrication of materials with either weak or strong adhesion depending on the field of application. However, design of “smart” surfaces with reversibly switchable/controllable adhesion is still a highly challenging task.
Therefore, the thesis aims on design of smart polymeric materials with responsive / adaptive adhesion properties. For this, fabrication and investigation of two types of switchable polymer layers based on stimuli-responsive polymer brushes will be performed. The first group is dealing with thermoresponsive polymer brushes: poly-(N-isopropylacrylamide) and two types of biocompatible polyethylene glycol-based systems. These polymer layers undergo phase transition below and above LCST between hydrophilic and hydrophobic states. The second part of the work is related to solvent-responsive comb-like and block copolymer brushes consisted of hydrophilic PEG and hydrophobic PDMS biocompatible and biodegradable polymers.
|
725 |
Collagen Fibril Abnormalities in Abdominal Aortic AneurysmJones, Blain January 2021 (has links)
No description available.
|
726 |
Atomic Force Microscope Conductivity Measurements of Single Ferritin MoleculesXu, Degao 08 December 2004 (has links) (PDF)
Conductive Atomic Force Microscope (c-AFM) was used to measure the conductivity of single horse spleen ferritin (HoSF) and azotobacter vinelandii bacterial ferritin (AvBF) molecules deposited on flat gold surfaces. A 500 micron diameter gold ball was also used as a contact probe to measure the conductivity of a thin film of ferritin molecules. The average current measured for holo HoSF was 13 and 5 times larger than that measured for apo HoSF as measured by c-AFM at 1V and gold ball at 2V and respectively, which indicates that the core of ferritin is more conductive than the protein shell and that conduction through the shell is likely the main factor limiting electron transfer. With 1 volt applied, the average electrical currents through single holo HoSF and single apo HoSF molecules were 2.6 pA and 0.19 pA respectively. Measurements on holo AvBF showed it was more than 10 times as conductive as holo HoSF, indicating that the protein shell of AvBF is more conductive than that of HoSF. The increased conductivity of AvBF is attributed to heme groups in the protein shell.
|
727 |
Testing the differential adhesion hypothesis across the epithelial− mesenchymal transitionPawlizak, Steve, Fritsch, Anatol W., Grosser, Steffen, Ahrens, Dave, Thalheim, Tobias, Riedel, Stefanie, Kießling, Tobias R., Oswald, Linda, Zink, Mareike, Manning, M. Lisa, Käs, Josef A. 12 August 2022 (has links)
Weanalyze the mechanical properties of three epithelial/mesenchymal cell lines (MCF-10A, MDAMB-
231, MDA-MB-436) that exhibit a shift in E-, N- and P-cadherin levels characteristic of an
epithelial−mesenchymal transition associated with processes such as metastasis, to quantify the role of
cell cohesion in cell sorting and compartmentalization. Wedevelop a unique set of methods to
measure cell–cell adhesiveness, cell stiffness and cell shapes, and compare the results to predictions
from cell sorting in mixtures of cell populations.Wefind that the final sorted state is extremely robust
among all three cell lines independent of epithelial or mesenchymal state, suggesting that cell sorting
may play an important role in organization and boundary formation in tumours.Wefind that surface
densities of adhesive molecules do not correlate with measured cell–cell adhesion, but do correlate
with cell shapes, cell stiffness and the rate at which cells sort, in accordance with an extended version of
the differential adhesion hypothesis (DAH). Surprisingly, theDAHdoes not correctly predict the final
sorted state. This suggests that these tissues are not behaving as immiscible fluids, and that dynamical
effects such as directional motility, friction and jamming may play an important role in tissue
compartmentalization across the epithelial−mesenchymal transition.
|
728 |
Probing The Nanoscale Interaction Forces And Elastic Properties Of Organic And Inorganic Materials Using Force-distance (f-d) SpectroscopyVincent, Abhilash 01 January 2010 (has links)
Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 µN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.
|
729 |
INVESTIGATION OF NANOCELLULOSE MECHANICAL PROPERTIES AND INTERACTIONS IN SALT AND SURFACTANT SOLUTIONS MEASURED BY ATOMIC FORCE MICROSCOPY / NANOCELLULOSE PROPERTIES MEASURED BY ATOMIC FORCE MICROSCOPYMarway, Heera January 2017 (has links)
This understanding of nanocellulose can be directly applied in future formulation design to use nanocellulose in polymer nanocomposites, foams, emulsions, latexes, gels and biomedical materials. / In this study, the potential of nanocellulose as a reinforcing agent in composite materials was investigated using atomic force microscopy (AFM). AFM was used to probe the mechanical properties of nanocelluloses and to investigate their interactions and adhesion in liquid media. Amplitude modulated-frequency modulated AFM was used to map the mechanical properties of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Results showed Young’s moduli of 90 GPa and 120 GPa for CNCs and CNFs, respectively, which are comparable to literature values determined using other methods.
Additionally, colloid probe AFM was implemented to observe the interactions (attractive, repulsive, steric, adhesive) between cellulose and silica colloid probes with anionic CNCs (containing either a Na+ or H+ counterion) and cationic CNCs. Colloid probe AFM measurements were carried out in five different liquid media: two salt solutions (NaCl and CaCl2) and three surfactant solutions (cationic cetyltrimethylammonium bromide, CTAB; anionic sodium dodecyl sulfate, SDS; and nonionic Triton X100). It was found that low salt concentrations resulted in electrostatic repulsion and high adhesion, whereas the reverse was observed at high salt concentrations. On the contrary, an increased surfactant concentration and increased number of surfactant aggregates (micelles, bilayers, etc.) resulted in increased adhesion. Surprisingly, the interactions were strongly dependent on the CNC counterion as surfactant adsorption seemed to be primarily driven by electrostatic interactions; CTAB adsorbed more to anionic CNCs, SDS adsorbed more to cationic CNCs and Triton X100 adsorbed minimally to all CNCs. Electrophoretic mobility and particle size data showed complementary results to colloid probe AFM, indicating that interactions between surfactants and CNC films and CNCs in suspension are closely related. This research suggests that CNCs have potential as reinforcing agents due to their high strength and the tunability of their interactions through the simple addition of salts or surfactants. This understanding can be directly applied in future formulation design to use nanocellulose in polymer nanocomposites, foams, emulsions, latexes, gels and biomedical materials. / Thesis / Master of Applied Science (MASc) / Nanocellulose is a sustainable nanomaterial most commonly extracted from plants and trees. In recent research, nanocellulose has been shown to have potential as a reinforcing agent for materials such as plastics, foams, paints and adhesives. In this study, the potential of nanocellulose was investigated using atomic force microscopy (AFM). As predicted, AFM measurements indicated that nanocellulose has a high stiffness, supporting the substitution of this biobased material in the place of metals and synthetic fibres. AFM was also used to examine particle interactions in salt and soap-like (surfactant) solutions; changes in nanocellulose size and charge were used to support the findings. Negatively charged nanocellulose interacted more with positively charged surfactants and vice versa. Low salt and high surfactant concentrations led to high adhesion and better material compatibility, which is preferred. This understanding can help us design better nanocellulose materials for future applications.
|
730 |
A Beginner’s Guide to the Characterization of Hydrogel Microarchitecture for Cellular ApplicationsMartinez-Garcia, Francisco Drusso, Fischer, Tony, Hayn, Alexander, Mierke, Claudia Tanja, Burgess, Janette Kay, Harmsen, Martin Conrad 04 December 2023 (has links)
The extracellular matrix (ECM) is a three-dimensional, acellular scaffold of living tissues.
Incorporating the ECM into cell culture models is a goal of cell biology studies and requires biocompatible materials that can mimic the ECM. Among such materials are hydrogels: polymeric networks
that derive most of their mass from water. With the tuning of their properties, these polymer networks
can resemble living tissues. The microarchitectural properties of hydrogels, such as porosity, pore
size, fiber length, and surface topology can determine cell plasticity. The adequate characterization
of these parameters requires reliable and reproducible methods. However, most methods were
historically standardized using other biological specimens, such as 2D cell cultures, biopsies, or
even animal models. Therefore, their translation comes with technical limitations when applied
to hydrogel-based cell culture systems. In our current work, we have reviewed the most common
techniques employed in the characterization of hydrogel microarchitectures. Our review provides a
concise description of the underlying principles of each method and summarizes the collective data
obtained from cell-free and cell-loaded hydrogels. The advantages and limitations of each technique
are discussed, and comparisons are made. The information presented in our current work will be of
interest to researchers who employ hydrogels as platforms for cell culture, 3D bioprinting, and other
fields within hydrogel-based research.
|
Page generated in 0.0576 seconds