• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • Tagged with
  • 22
  • 22
  • 15
  • 13
  • 10
  • 9
  • 9
  • 9
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Repräsentation und Unterscheidbarkeit amplitudenmodulierter akustischer Signale im Nervensystem von Feldheuschrecken

Wohlgemuth, Sandra 27 May 2009 (has links)
Eine wesentliche Aufgabe auditorischer Systeme besteht in der Erkennung und Klassifikation verhaltensrelevanter Signale. Die akustischen Kommunikationssignale vieler Feldheuschrecken zeichnen sich durch artspezifische Modulationen der Signalamplitude aus, die im Kontext der Partnerwahl zur Erkennung der eigenen Art genutzt werden. Die Kommunikation ist jedoch auch als Basis für sexuelle Selektion von Interesse - einer Abschätzung der Qualität des Senders anhand der akustischen Signale, welche eine Bewertung subtiler Variationen der artspezifischen Musters erfordert. Das Ziel dieser Arbeit bestand darin zu untersuchen, wie amplitudenmodulierte akustische Signale in den Antworten identifizierter auditorischer Interneurone der zweiten und dritten Verarbeitungsstufe repräsentiert werden, insbesondere, wie gut sie anhand dieser Antworten unterscheidbar sind. Dazu wurden (i) sinusförmig amplitudenmodulierte Stimuli genutzt und die Parameter Modulationsfrequenz und Modulationstiefe systematisch variiert, (ii) individuelle Gesänge der gleichen Art, und (iii) im Grundmuster zeitlich reskalierte Gesänge. Lokale Interneurone zeichneten sich aus durch: ein oft sehr hohes zeitliches Auflösungsvermögen, hohe Empfindlichkeit gegenüber Schwankungen der Signalamplitude, sowie gute Unterscheidbarkeit der sinusförmig amplitudenmodulierten Signale und der Gesänge auf der Basis von Spikeantworten. Bei den aufsteigenden Interneuronen nahm die Fähigkeit zur zeitlichen Ankopplung der Spikes an die Amplitudenmodulationen der Stimuli ab, was sich auch in deren reduzierter Unterscheidbarkeit äußerte. Ursächlich hierfür war einerseits die Zunahme der Antwortvariabilität (Jitter der Spikezeitpunkte), aber auch verstärkt auftretende Filtereigenschaften. Auf dieser dritten Verarbeitungsebene kommt es zu einer stärkeren Spezialisierung auf bestimmte zeitliche Aspekte des Stimulus, die als Grundlage einer verhaltensrelevanten Klassifikation von akustischen Signalen interpretiert werden kann. / A central task of auditory systems is the recognition and classification of behaviorally relevant signals. The communication signals of many grasshoppers can be characterized by a species-specific pattern of amplitude modulation, which is mainly used for species recognition in the context of mate finding. Additionally, the communication is also of interest with respect to sexual selection - an evaluation of the signaler''s quality from the signal pattern, which requires the quantification of subtle variations of the common species-specific pattern.The goal of this study was to investigate how amplitude modulated acoustic signals are represented in the responses of identified 2nd and 3rd order auditory interneurons, particularly, how well they can be discriminated on the basis of the responses. For this (i) sinusoidal amplitude modulated stimuli were used and the parameters modulation frequency and modulation depth were systematically varied, (ii) individual songs of the same species and (iii) songs with temporal rescaled basic pattern were presented. Local interneurons can be characterized by: mostly high temporal resolution capacities, high sensitivity to fluctuations of the signal amplitude as well as a good distinguishability of sinusoidal amplitude modulated stimuli and songs on the basis of the spike trains. In ascending interneurons the synchronization to the amplitude modulations decreased, which also appeared in a reduced discrimination performance. This is caused by an increase of response variability (jitter of spike timing) but also by distinctive filter properties of the respective neurons. Neurons on this third processing level exhibit a greater specialization to particular temporal aspects of the stimulus. This can be interpret as a basis of a behaviorally relevant classification of acoustic signals.
12

Functional Sensory Representations of Natural Stimuli: the Case of Spatial Hearing

Mlynarski, Wiktor 21 January 2015 (has links)
In this thesis I attempt to explain mechanisms of neuronal coding in the auditory system as a form of adaptation to statistics of natural stereo sounds. To this end I analyse recordings of real-world auditory environments and construct novel statistical models of these data. I further compare regularities present in natural stimuli with known, experimentally observed neuronal mechanisms of spatial hearing. In a more general perspective, I use binaural auditory system as a starting point to consider the notion of function implemented by sensory neurons. In particular I argue for two, closely-related tenets: 1. The function of sensory neurons can not be fully elucidated without understanding statistics of natural stimuli they process. 2. Function of sensory representations is determined by redundancies present in the natural sensory environment. I present the evidence in support of the first tenet by describing and analysing marginal statistics of natural binaural sound. I compare observed, empirical distributions with knowledge from reductionist experiments. Such comparison allows to argue that the complexity of the spatial hearing task in the natural environment is much higher than analytic, physics-based predictions. I discuss the possibility that early brain stem circuits such as LSO and MSO do not \"compute sound localization\" as is often being claimed in the experimental literature. I propose that instead they perform a signal transformation, which constitutes the first step of a complex inference process. To support the second tenet I develop a hierarchical statistical model, which learns a joint sparse representation of amplitude and phase information from natural stereo sounds. I demonstrate that learned higher order features reproduce properties of auditory cortical neurons, when probed with spatial sounds. Reproduced aspects were hypothesized to be a manifestation of a fine-tuned computation specific to the sound-localization task. Here it is demonstrated that they rather reflect redundancies present in the natural stimulus. Taken together, results presented in this thesis suggest that efficient coding is a strategy useful for discovering structures (redundancies) in the input data. Their meaning has to be determined by the organism via environmental feedback.
13

Single neuron dynamics

Benda, Jan 18 January 2002 (has links)
Das Neuron ist das zentrale Element in der Informationsverarbeitung im Nervensystem. In dieser Arbeit werden verschiedene Aspekte der Spikegenerierung sowohl theoretisch als auch experimentell untersucht. Phasen-Rotatoren verschiedener Komplexität werden zur Vorhersage von Spikezeitpunkten vorgestellt. Die Kennlinie eines Neurons wird dabei als wichtiger Parameter für diese Modelle verwendet, damit diese leicht auf echte Neurone anwendbar sind. Die Phasenantwortkurve als ein zweiter wichtiger Aspekt der Spikedynamik wird zur Erweiterung der Modelle verwendet. Solange ein Neuron in seinem überschwelligen Bereich gereizt wird, erweisen sich die Phasenrotatoren als gute Beschreibung des Spikeverhaltens. Es wird jedoch gezeigt, daß bei einer Stimulierung mit Strömen, die um die Schwelle des Neurons herum fluktuieren, diese Modelle, genauso wie alle anderen eindimensionalen Modelle einschließlich des Intergrate-and-fire Neurons, versagen. Feuerraten Adaptation kann in vielen Neuronen beobachtet werden. Es wird ein allgemeines phänomenologisches Modell für die Feuerrate adaptierender Neurone aus den Eigenschaften verschiedene Ionenströme, die Adaptation verursachen, hergeleitet. Dieses Modell ist durch die Kennlinien und einer Adaptations-Zeitkonstanten vollständig definiert. Mit Hilfe des Modells können die Eigenschaften der Adaptation als Hochpassfilter quantifiziert werden. Weiterhin wird die Rolle der Adaptation bei der Unterdrückung von Hintergrundrauschen diskutiert. Sowohl die Phasenrotatoren als auch das Adaptationsmodell werden an auditorischen Rezeptorzellen der Wanderheuschrecke und dem AN1, ein primäres auditorisches Interneuron der Grille {Teleogryllus oceanicus}, getestet. In beiden Fällen stimmen die Modelle gut mit den experimentelle Daten überein. Es wird mit Hilfe der Modelle gezeigt, daß Adaptation in den Rezeptorzellen durch Ionenströme des Spikegenerators verursacht wird, während in dem Interneuron der Eingang schon adaptatiert. Zusätzlich wird der Einfluß der Feuerraten-Adaptation auf die Gesangserkennung analysiert. / The single neuron is the basic element of information processing in nervous systems. In this thesis several properties of the dynamics of the generation of spikes are investigated theoretically as well as experimentally. Phase oscillators of different complexity are introduced as models to predict the timing of spikes. The neuron's intensity-response curve is used as a basic parameter in these models to make them easily applicable to real neurons. As a second important aspect of the spiking dynamics, the neuron's phase-resetting curve is used to extend the models. The phase oscillators turn out to be a good approximation of the spiking behavior of a neuron as long as it is stimulated in its super-threshold regime. However, it is shown by comparison with conductance-based models that these models, as well as all other one-dimensional models including the common integrate-and-fire model, fail, if the neuron is stimulated with currents fluctuating around its threshold. Spike-frequency adaptation is a common feature of many neurons. For various ionic currents, as a possible reason for adaptation, a general phenomenological model for the firing rate of adapting neurons is derived from their biophysical properties. This model is defined by the neuron's intensity-response curves and an adaptation time-constant. By means of this model the high-pass properties of spike-frequency adaptation can be quantified. Also the role of adaptation in supression of background noise is discussed. Both the phase oscillators and the adaptation-model are tested on auditory receptor neurons of locusts and the AN1, a primary auditory interneuron of the cricket {Teleogryllus oceanicus}. In both cases the models are in good agreement with the experimental data. By means of the models it is shown that adaptation in the receptor neurons is caused by ionic currents of the spike generator while in the interneuron it is the input which is already adapting. In addition, the influence of spike-frequency adaptation on the recognition of courtship songs is analysed.
14

Intensity adaptation in the cricket auditory system

Ziehm, Ulrike 24 April 2013 (has links)
Die Intensität verhaltensrelevanter Signale variiert oft über viele Größenordnungen. Gleichzeitig müssen sensorische Systeme in der Lage sein, über den gesamten relevanten Bereich feine Intensitätsunterschiede aufzulösen. Auf neuronaler Ebene ergibt sich bei Nutzung eines Feuerratencodes aus diesen Anforderungen ein grundsätzlicher Konflikt, da neuronale Antwortbereiche beschränkt sind. Eine Lösung, die in vielen Sinnessystemen beschrieben wurde, ist die Verschiebung von Intensität-Kennlinien, so dass der gesamte Antwortbereich des Neurons zur Verfügung steht, um schnelle Abweichungen vom Mittelwert zu kodieren. Diese Arbeit versucht anhand mathematischer Modelle zu beantworten, wie die Verschiebung von Kennlinien in einem neuronalen Netzwerk entstehen könnte. Ausgangspunkt ist eine Rezeptorpopulation mit Intensitätsbereichsaufteilung und einem begrenzten Verschiebungsbereich der Kennlinien von Einzelrezeptoren, die auf ein Output-Neuron konvergieren. Diese Organisation wurde vom auditorischen System der Grille inspiriert. Modelle, die auf einer Kombination aus einer sättigenden Nichtlinearität und Spike-Frequenz-Adaptation basieren, reproduzieren die Verschiebung der Kennlinien entlang der Intensitäts-Achse. Diese Modelle sind in der Intensitätsdiskriminierung dem Rezeptormodell und der Summe von Rezeptorantworten über große Intensitätsbereiche deutlich überlegen. Die Kennlinien dieser Modelle besitzen zudem weitere Eigenschaften, die in ihrer Kombination übereinstimmend in verschiedenen sensorischen Systemen beschrieben wurden: Insbesondere erklären sie eine zusätzliche scheinbare Verschiebung entlang der Antwortachse, unterschiedliche Steigungen der verschobenen Kennlinien, sowie Steigungsänderungen innerhalb einzelner Kennlinien. Die einfachen, abstrakt formulierten Modelle ermöglichen ein tieferes Verständnis adaptiver Mechanismen über das Modellsystem Grille hinaus. / Intensities of behaviourally relevant signals often vary over many orders of magnitude. At the same time, sensory systems need to ensure high sensitivity to minute intensity differences across the full intensity range. These demands conflict on the neuronal level due to the boundedness of neuronal response ranges. To solve this dilemma, intensity response curves in many sensory system were found to shift towards the actual mean intensity so that the full response range can be used to encode fast fluctuations around the slowly varying mean. Using mathematical models, this study approaches the question how shifts of intensity response curves might arise in small neural networks. The starting point is a population of receptors with stacked response thresholds and limited capacity of adaptive shift that converge onto one output neuron. This organization was inspired by the auditory system of the cricket. A combination of a static saturating non-linearity and spike-frequency adaptation reproduced the desired shift of response curves along the intensity axis. With respect to intensity discrimination, these models are superior to the receptor model and the sum of receptor responses over a wide range of absolute intensities. The response curves generated by these model also displayed details of response curve behaviour consistently observed in numerous experimental studies. In particular, they explain an apparent shift along the response axis, different slopes of the shifted response curves, and changes in the slope within individual response curves. The simple, abstract models allow for a deeper understanding of adaptive mechanisms beyond the auditory system of the cricket.
15

Neuronale Variabilität und die Grenzen der Signalerkennung

Neuhofer, Daniela 14 September 2010 (has links)
Ziel der vorliegenden Arbeit war es, die Auswirkungen von externen Störquellen und intrinsischer Variabilität auf die Verarbeitung und Erkennung von akustischen Signalen am Modellsystem der Feldheuschrecke Chorthippus biguttulus zu untersuchen. Damit sowohl die Gesangserkennung am sich verhaltenden Tier als auch die dieser Erkennung zugrunde liegende neuronale Verarbeitung untersucht werden konnte, wurde ein Weibchengesang verwendet, dessen zeitliches Muster durch zufällige Amplitudenmodulationen gestört wurde. Durch die Degradation mit verschiedenen Frequenzbändern konnte überprüft werden, ob bestimmte Modulationsfrequenzen die Signalerkennung stärker beeinflussen als andere. Mit zunehmender Störung der Gesangsstruktur kam es in den Verhaltenstests an Männchen zu einer Abnahme der Erkennungsleistung. Die Stärke der tolerierten Degradation war dabei in der Regel nicht unterschiedlich für die getesteten Degradationsbänder. Die Unterschiede in den neuronalen Antworten, welche entweder durch die artifizielle extrinsische Degradation oder durch interne Fehler in der auditorischen Verarbeitung verursacht wurden, konnten durch eine Spiketrain-Metrik quantifiziert werden. Diese Analyse zeigte, dass die Auswirkung der extrinsischen Signaldegradation von den Rezeptoren über die lokalen Interneurone zu den aufsteigenden Interneuronen abnahm, während es zu einem signifikanten Anstieg der intrinsischen Variabilität kam. Die Stärke der Degradation war dabei erneut nicht unterschiedlich für die getesteten Degradationsbänder. Durch die Bestimmung von neurometrischen Schwellen konnten die Grenzen der Signalerkennung der Männchen mit der Rauschtoleranz der einzelnen auditorischen Neurone verglichen werden. Die kritischen Degradationsstufen, die so ermittelt werden konnten, stimmten teilweise erstaunlich gut überein. Somit sind die Grenzen der Signalerkennung durch die Analyse der Antwortkapazitäten der ersten drei Verarbeitungsstufen relativ gut erklärbar. / The aim of this study was to investigate the effects of extrinsic and intrinsic noise sources on signal recognition and processing within the acoustic communication system of the grasshopper Chorthippus biguttulus. To test both - signal recognition of behaving animals and the underlying auditory processing mechanisms - a female song was used, whose temporal pattern was disturbed by random amplitude modulations. Due to the degradation with various modulation bands, it was possible to test if distinct modulation frequencies have more pronounced effects on signal recognition than others. Behavioural tests on males of Chorthippus biguttulus showed that progressive degradation of the song pattern induced a decrease in recognition performance. The strength of degradation tolerated generally was the same for different modulation bands. The differences between neuronal responses, which were either caused by the artificial extrinsic degradation or internal errors during auditory processing, could be quantified by a spiketrain metric. This analysis showed that the effect of extrinsic signal degradation was much more severe for receptors and local interneurons than for ascending interneurons, whereas there was a significant increase of intrinsic variability with higher levels of processing. The strength of the degradation was again not different for different modulation bands. Signal recognition could be compared with the noise tolerance of individual auditory neurons by determining neurometric thresholds. The average critical degradation levels, to some extend, matched the critical degradation level for behaviour. Thus, by means of analysing the response capacities of neurons from the first three levels of auditory processing, the limits of signal detection are relatively well explained.
16

Neural adaptation in the auditory pathway of crickets and grasshoppers

Hildebrandt, Kai Jannis 06 July 2010 (has links)
Neuronale Adaptation dient dazu, eine Sinnesbahn kurzfristig an die aktuelle Umgebung des Tieres anzupassen. Ihr zeitlicher Verlauf lässt sich in der Antwort einzelner Nervenzellen direkt beobachten. Der Adaptation unterliegen eine Vielzahl verschiedener Mechanismen, die über die gesamte Sinnesbahn verteilt sein können. In der vorliegenden Arbeit wurde der Versuch unternommen, diese unterschiedlichen Betrachtungsebenen zusammenzuführen. Dazu wurden mehrere experimentelle und theoretische Studien durchgeführt. In zwei der vorgestellten Studien wurden Kombinationen aus Strominjektionen und akustischen Reizen verwendet, um intrinsische Adaptation von Netzwerkeffekten zu trennen. Dabei ergab sich in einer experimentellen Studie am auditorischen System der Heuschrecke, dass die Adaptationsmechanismen, die in verschiedenen Teilen der Hörbahn rekrutiert werden, sehr stark von Identität und Funktion der jeweils untersuchten Nervenzelle abhängen. Ähnliche Methoden ermöglichten es, im auditorischen System der Grille präsynaptische Hemmung als Substrat für die wichtige mathematische Operation der Division zu identifizieren. Zusätzlich wurden Modellierungen durchgeführt, bei denen die Frage bearbeitet wurde, wo Adaptation in der Hörbahn wirken sollte, bezogen auf zwei verschieden Aufgaben: die Lokalisation eines Signals und die neuronale Abbildung dessen zeitlicher Struktur. Die Ergebnisse dieser Studie deuten darauf hin, dass die Anforderungen für diese beiden Aufgaben sehr unterschiedliche sind. In einer vierten Studie wurde untersucht, ob die Adaptation in einem auditorischen Interneuron der Grille dazu dient, die gesamte sensorische Umgebung gut abzubilden, oder ob durch die Adaptation eine Abtrennung des jeweils lautesten Signals erreicht werden kann. Zusammenfassend lässt sich sagen, dass sowohl die Adaptationsmechanismen, als auch deren genaue Platzierung innerhalb der sensorischen Bahn wesentlich für Sinnesleistungen sind. / Neural adaptation serves to adjust the sensory pathway to the current environment of an animal. While the effect and time course of adaptation can be observed directly within single cells, its underlying cause is a combination of many different mechanisms spread out along the sensory pathway. The present work has the objective to unite these different levels of understanding of the term adaptation. In order to do so, several experimental and theoretical studies were carried out. In two of these studies, a combination of current injection and auditory stimulation was used, in order to disentangle intrinsic adaptation from network effects. In one of the studies, carried out in the auditory system of locusts, it was revealed that the mechanisms behind adaptation that are activated within different parts of the auditory system depend critically on identity and function of the cell under study. Similar methods enabled the identification of presynaptic inhibition as a possible mechanisms behind the important mathematical operation of division in the auditory system of crickets. Additionally, a modeling study pursued the question, where adaption should work in the auditory system from the perspective of two different tasks of sensory processing: identification of a signal and localization of its source. The results obtained from the model suggest conflicting demands for these two tasks and also present a solution of this conflict. In a fourth study, it was asked wether adaptation in the auditory system of crickets serves to guarantee optimal representation of the entire sensory environment or if it helps to separate one most important signal from the background. In summary, not only which mechanisms of adaptation are at work is of crucial importance for sensory processing, but also the exact placement of these along the pathway.
17

Sufficient encoding of dynamical systems

Creutzig, Felix 04 July 2008 (has links)
Diese Doktorarbeit besteht aus zwei Teilen. In dem ersten Teil der Doktorarbeit behandele ich die Kodierung von Kommunikationssignalen in einem burstenden Interneuron im auditorischen System des Grashuepfers Chorthippus biguttulus. Mit der Anzahl der Aktionspotentialen im Burst wird eine zeitliche Komponente der Kommunikationssignale - die Pausendauer - wiedergegeben. Ein Modell basierend auf schneller Exzitation und langsamer Inhibition kann diese spezielle Kodierung erklaeren. Ich zeige, dass eine zeitliche Integration der Aktionspotentiale dieses burstenden Interneurons dazu genutzt werden kann, die Signale zeitskaleninvariant zu dekodieren. Dieser Mechanismus kann in ein umfassenderes Modell eingebaut werden, dass die Verhaltensantwort des Grashuepfers auf Kommunikationssignale widerspiegelt. Im zweiten Teil der Doktorarbeit benutze ich Konzepte aus der Informationstheorie und der Theorie linearer dynamisches Systeme, um den Begriff der ''vorhersagenden Information'' zu operationalisieren. Im einfachen Fall der informations-theoretisch optimalen Vorhersage des naechsten Zeitschrittes, erhalte ich Eigenvektoren, die denjenigen eines anderen etablierten Algorithmuses, der sogenannten ''Slow Feature Analysis'', entsprechen. Im allgemeinen Fall optimiere ich die vorhersagenden Information, die die Vergangenheit des Inputs eines dynamischen Systems ueber die Zukunft des Outputs enthaelt. Dabei gelange ich zu einer informations-theoretisch optimalen Charakterisierung eines reduzierten Systems, die auf den Eigenvektoren der konditionalen Kovarianzmatrix zwischen Inputvergangenheit und Outputzukunft basiert. / This thesis consists of two parts. In the first part, I investigate the coding of communication signal in a bursting interneuron in the auditory system of the grasshopper Chorthippus biguttulus. The intra-burst spike count codes one temporal feature of the communication signal - pause duration. I show that this code can be understood by a model of parallel fast excitation and slow inhibition. Furthermore, temporal integration of the spike train of this bursting interneuron results in a desirable time-scale invariant read-out of the communication signal. This mechanism can be integrated into a more comprehensive model that can explain behavioural response of grasshoppers. In the second part of this thesis, I combine concepts from information theory and linear system theory to operationalize the notion of ''predictive information''. In the simple case of predicting the next time-step of a signal in an information-theoretic optimal sense, I obtain a description by eigenvectors that are identical to another established algorith, the so-called ''Slow Feature Analysis''. In the general case I optimize a dynamical system such that the predictive information in the input past about the output future is optimalle compressed into the state space. Thereby, I obtain an information-theoretically optimal characterization of reduced system, based on the eigenvectors of the conditional covariance matrix between input past and output future.
18

Neural computation in small sensory systems

Clemens, Jan 01 August 2012 (has links)
Das Ziel von computational neuroscience ist, neuronale Transformationen zu beschreiben und deren Mechanismen und Funktionen zu beleuchten. Diese Doktorarbeit kombiniert Experiment, Datenanalyse und Modelle um neuronale Kodierung anhand des auditorischen Systems von Feldheuschrecke und Grille zu erforschen. Der erste Teil befasst sich mit der neuronalen Repräsentation von Balzsignalen in Feldheuschrecken. In Rezeptoren ist die Kodierung dieser Signale homogen - alle Neuronen bilden den Reiz gleich ab. In nachgeschalteten Zellen wird die Kodierung spärlicher, sowohl auf Ebene der Zeit als auch der Zellpopulation. Es entsteht ein labeled line code, bei dem unterschiedliche Nervenzellen unterschiedliche Merkmale des Stimulus abbilden. Dieser Transformation liegt eine nichtlineare Kombination von mehreren Stimulusmerkmalen zu Grunde. Die erhöhte Spezifizität von Neuronen dritter Ordnung ermöglicht eine einfache Art der Musterklassifikation, bei der die Zeitpunkte bestimmter Reizelemente innerhalb des Signals ignoriert werden können. Die beschriebene Reiztransformation repräsentiert einen Mechanismus für die Erkennung zeitlich redundanter Kommunikationssignale, wie sie von vielen Insekten produziert werden. Im zweiten Teil wird gezeigt, dass die spektrale und zeitliche Abstimmung von Neuronen zweiter Ordnung bei Grillen von der Komplexität des Reizes abhängt. Während die Abstimmung für Reize mit nur einer Trägerfrequenz breit ist, führen Reize mit mehreren Trägerfrequenzen zu einer Schärfung. Hierdurch kann Information über einzelne Komponenten eines komplexen Signals in der Kodierung erhalten werden. Ein statisches Netzwerkmodell zeigt, dass diese adaptive Abstimmung mit Mechanismen erzeugt werden kann, die in Nervensystemen vieler Organismen vorkommen. Wie diese Doktorabeit zeigt, vereinen Insekten einfach aufgebaute und gut zugängliche Nervensysteme mit komplexen Reiztransformationen. Dies macht sie zu produktiven Modellorganismen für die Neurowissenschaften. / The goal of computational neuroscience is to describe the stimulus transformations performed by neural systems and to elucidate their mechanisms and functions. This thesis combines experiment, data analysis and theoretical modeling to explore neural coding in the small auditory systems of grasshoppers and crickets. The first part deals with the transformation of the neural representation of courtship signals in grasshoppers. The code in auditory receptors is relatively homogeneous. That is, all neurons represent a very similar stimulus feature. Representation in higher-order neurons leads to an increase of temporal and population sparseness. This creates a labeled-line population code where different neurons represent different and specific stimulus features. Sparseness in the system increases through a nonlinear combination of two stimulus features. This transformation enables a simple mode of pattern classification, which ignores the timing of individual features and relies only on their average values during a signal. The transformation can therefore facilitate the recognition of the long, temporally redundant communication signals produced by grasshoppers and other insects. The second part shows that spectral and temporal tuning of second-order neurons in crickets strongly depends on the complexity of the stimulus. While tuning is relatively broad for single-carrier stimuli, signals containing multiple carrier frequencies lead to a sharpening of the tuning. This sharpening preserves information about individual components of a complex stimulus. A network model revealed that such adaptive tuning can be implemented in a static network with mechanisms that are ubiquitous in many neural systems. In summary, this study shows that the nervous systems of insects combine a relatively simple structure with complex stimulus transformations. This renders them empirically accessible and suitable model systems for computational neuroscience.
19

Stimulus- and context-dependent temporal filtering in the auditory pathway of the locust

Wirtssohn, Sarah Kaarina 18 December 2015 (has links)
Die zeitliche Filterung von sensorischem Input ist entscheidend für das Erkennen vieler Stimuli. Auditorische Neurone führen dazu mehrere Verarbeitungsschritte und Signaltransformationen durch, u.a. durch zeitliche Integration, zeitliche Auflösung und Selektion eines zeitlichen Merkmals. Um zu testen ob zeitliche Filterung von Stimuluseigenschaften (Intensität) oder Kontext (Temperatur) abhängt untersuchte ich Neurone in der Hörbahn der Wanderheuschrecke. Zuerst untersuchte ich zeitliche Integration in Rezeptoren und Interneuronen. Zeitverlauf und Ausmaß der Integration waren Neuronen-spezifisch. Während periphere Neurone die akustische Energie integrierten, unterschied sich die zeitliche Integration der Interneuronentypen stark, was eine spezifische zeitliche Filterung ermöglicht. Die Analyse postsynaptischer Potentiale deckte presynaptische und intrinsische Mechanismen der Integration auf, was darauf hindeutet, dass Unterschiede zwischen Neuronen wahrscheinlich auf Typ-spezifischer Verarbeitung beruhen. Zweitens erforschte ich die neuronale Antwort auf den zweiten Stimulus in einem Stimuluspaar mit einem Interstimulus-Intervall von wenigen Millisekunden. Die Veränderung der Antwort auf den zweiten im Vergleich zum ersten Stimulus zeigt den Effekt von akuter, kurzfristiger Adaptation und ist ein Maß für die maximale zeitliche Auflösung. In der sensorischen Peripherie trat moderate Adaptation auf, deren Einfluss exponentiell abfiel. Viele Interneurone zeigten dagegen nicht-lineare Effekte, wie die Unterdrückung oder Verstärkung der Antwort auf den zweiten Stimulus. Drittens testete ich den Effekt von Temperatur auf zeitliche Filterung. Die Selektivität von Interneuronen für zeitliche Stimulusmerkmale wurde bei wechselnden Temperaturen untersucht. Mit steigender Temperatur präferierten Neurone ein zeitlich komprimiertes Merkmal. Diese temperaturabhängige Veränderung könnte zur Temperatur-Kopplung von Sender und Empfänger bei den wechselwarmen Heuschrecken beitragen. / Temporal filtering of sensory input is crucial for the recognition of many sensory stimuli. Auditory neurons perform various computations and signal transformations to accomplish temporal filtering of acoustic input, comprising temporal integration, temporal resolution and temporal feature selection. To test whether temporal filtering processes within a neuron type depend on stimulus features, such as intensity, and on context, such as temperature, I conducted neurophysiological recordings from neurons in the auditory pathway of migratory locusts. First, I examined temporal integration in receptors and interneurons. The time course and extent of integration of subthreshold acoustic stimuli were neuronspecific. While peripheral sensory neurons acted as energy integrators, interneurons showed different temporal integration profiles, enabling neuron-specific temporal filtering. The analysis of postsynaptic potentials elucidated implemented mechanisms, suggesting that temporal integration is based on neuron-specific presynaptic and neuron-intrinsic computations. Second, I studied the response recovery of receptors and interneurons to the second stimulus in a stimulus pair, separated by a few milliseconds. This revealed the effect of acute, short-term adaptation and thus indicated the maximal temporal resolution of these neurons. In the sensory periphery response recovery was shaped by moderate adaptation and an exponential recovery. In many interneurons non-linear effects occurred, comprising a suppression of the response to the second stimulus and a response gain. Third, I tested the effect of temperature on temporal filtering. Temporal feature selectivity of interneurons was examined at cold and warm temperatures. With increasing temperature, the neurons preferred a temporally compressed feature. Temperature-dependent changes in temporal feature selectivity might thus contribute to temperature coupling of the sender and the receiver of the poikilothermic grasshoppers.
20

Physiologische und anatomische Korrelate einer Lärmschwerhörigkeit in subcortikalen Strukturen des zentralen auditorischen Systems in der Maus (Mus musculus)

Gröschel, Moritz 08 April 2010 (has links)
In der vorliegenden Arbeit sind physiologische und anatomische Auswirkungen einer Lärmexposition auf subcortikale Strukturen des zentralen auditorischen Systems zu unterschiedlichen Zeitpunkten posttraumatisch untersucht worden. Dabei sollte zwischen akuten (TTS-Gruppe) und langfristigen Effekten (PTS-Gruppe) unterschieden werden. Normalhörende Mäuse wurden für 3 Stunden mit einem Bandrauschen (5-20 kHz) bei 115 dB SPL beschallt und mittels Hirnstammaudiometrie der Hörverlust bestimmt. In der TTS- und der PTS-Gruppe lag im Vergleich zur Kontrolle eine signifikante Hörschwellenverschiebung mit einem höheren Hörverlust in der TTS-Gruppe vor. Zur Untersuchung zentraler Veränderungen wurden neuronale Spontanaktivitäten mittels Einzelzellableitungen im Hirnschnitt ermittelt. Weiterhin sind histologisch die Zelldichten in den Versuchsgruppen bestimmt worden. Außerdem wurde ein manganverstärktes MRT durchgeführt, um die calciumabhängige Aktivität darzustellen. Die untersuchten auditorischen Strukturen waren der Nucleus cochlearis (CN), der inferiore Colliculus (IC) und der mediale Kniehöckers (MGB). Die Ergebnisse zeigen, dass es einen Unterschied in den akuten und langfristigen Auswirkungen einer Lärmexposition gibt. In der TTS-Gruppe sind ausschließlich die Kerngebiete des CN im Hirnstamm betroffen, was auf direkte Einwirkungen der Lärmexposition hindeutet und akute toxische Exzitation im Gewebe auslösen kann. In der PTS-Gruppe treten physiologische und anatomische Veränderung in höheren Strukturen der Hörbahn auf. Dabei kann es sich sowohl um späte direkte Lärmauswirkungen als auch um plastische Veränderungen handeln, die durch die lärminduzierte Deprivation ausgelöst wurden. Einerseits kommt es zu einem dramatischen Zellverlust in den untersuchten Gebieten. Zum anderen steigt die calciumabhängige Aktivität in einigen Strukturen stark an. Dies kann sowohl durch veränderte neuronale Aktivitätsmuster, aber auch durch plastische und neurodegenerative Prozesse bedingt sein. / In the present study, noise-induced physiological and anatomical changes in subcortical structures of the central auditory system were investigated at different posttraumatic stages. Thus, it should be distinguished between acute (TTS group) and long-term (PTS group) effects of noise damage. Normal hearing mice were exposed to a band noise (5-20 kHz) for 3 hours at 115 dB SPL. Auditory brainstem responses were measured to determine the produced hearing loss. A significant threshold shift was detectable in the TTS as well as in the PTS group. This effect was greater in TTS animals. To investigate central changes, neuronal spontaneous activities were recorded from single units in brain slices. Further, cell densities were determined by histological techniques. In addition, calcium dependent activity was measured using manganese enhanced MRI. Investigations were carried out in central auditory structures of the cochlear nucleus (CN), the inferior colliculus (IC) and the medial geniculate body (MGB). The results demonstrate a difference in acute and long-term effects of noise exposure. In the TTS group, only the CN in the brainstem was affected, indicating a direct noise impact leading to acute excitotoxicity. In the PTS group, physiological and anatomical changes could also be observed in higher structures of the auditory pathway. The effects can be related to long-lasting noise damage as well as neural plasticity caused by deprivation of auditory input. The results show a dramatic cell loss within the investigated structures. Further, there is an increase in calcium dependent activity in several auditory brain regions which can be caused by changes in neuronal activity patterns, neuroplasticity and neurodegenerative processes.

Page generated in 0.0779 seconds